The present invention relates to a wrinkle detection device and a wrinkle detection method.
Secondary batteries have been used in various products in recent years. A secondary battery includes a battery element formed by stacking positive electrodes, separators and negative electrodes. In order to form the battery element, the electrodes and the separators are stacked alternately in the order of a positive electrode, a separator, a negative electrode and a separator, for example.
When the separator is stacked on the electrode, the separator is likely to form wrinkles, or to form swells which may develop into wrinkles later. Wrinkles of the separator, if any, make the stacking inhomogeneous, resulting in local application of pressure and variations in the distance between the electrodes. This makes the battery quality worse. For this reason, whether a wrinkle is formed or not is important for evaluating the battery quality. Although the existence of wrinkles can be visually determined, there is still a risk of overlooking wrinkles. In addition, the visual determination is undesirable from a cycle-time viewpoint.
Against this background, a technique has been known in which: a laser beam is emitted onto the surface of the separator; and wrinkles are detected in accordance with the intensity of light reflected off the surface (see Patent Literature 1).
Patent Literature 1: Japanese Patent Application Publication No. 2003-214828
In the invention described in Patent Literature 1, a wrinkle is detected by using size (length, width) as criteria. However, the existence of a precursor to a wrinkle or the existence of a wrinkle which poses an actual problem can be determined from the gradient of its rise, instead of the size (hereinafter, a wrinkle and its precursor will simply be referred to as a wrinkle).
The present invention has been made in view of this situation. An object of the present invention is to provide a wrinkle detection device and a wrinkle detection method which are capable of identifying a wrinkle on the basis of its gradient.
One aspect of the present invention is a wrinkle detection device including: a light projector; a shooting unit; and a determination unit. The light projector projects slit light onto the outermost separator while moving relative to a layered body formed by stacking electrodes and separators. The shooting unit shoots the shape of the slit light reflected on the separator. The determination unit calculates a gradient of the separator on the basis of the shot shape of the slit light, and determines the existence of a wrinkle on the basis of the calculated gradient.
Another aspect of the present invention is a wrinkle detection method including: a light projecting step; a shooting step; and a determining step. In the light projecting step, slit light is projected onto an outermost separator while moving relative to a layered body formed by stacking electrodes and separators. In the shooting step, the shape of the slit light reflected on the separator is shot. In the determining step, a gradient of the separator is calculated on the basis of the shot shape of the slit light, and the existence of a wrinkle is determined on the basis of the calculated gradient.
Referring to the attached drawings, descriptions will be hereinbelow provided for an embodiment of the present invention. It should be noted that dimensional ratios in the drawings are exaggerated for the sake of explanatory convenience and may differ from actual ratios.
To begin with, brief descriptions will be provided for a configuration of a battery including separators. Here, the separators are targeted for detection of a wrinkle by a wrinkle detection device.
As shown in
As shown in
Each packaged positive electrode 40 is made by interposing a positive electrode 50 between two separators 60. The positive electrode 50 is made by forming positive electrode active material layers on the two surfaces of a sheet-shaped positive electrode current collector. A tab portion of the positive electrode 50 is led out from a bag which is made from the two separators 60. As shown in
It should be noted that a method of manufacturing the lithium-ion secondary battery by stacking the negative electrodes 30 and the packaged positive electrodes 40 alternately is a generally-used lithium secondary battery manufacturing method. For this reason, detailed descriptions of the manufacturing method will be omitted.
Next, descriptions will be provided for a wrinkle detection device.
As shown in
As a shooting unit, the camera 120 diagonally shoots the shape of the slit light projected on the surface of the separator 60. For example, if as shown in
In addition, if the wrinkle 66 as shown in
The light projector 110 and the camera 120 move relative to the separator 60 so that the slit light can be sequentially projected onto the entirety of the surface of the separator 60. The direction of their movement is a direction intersecting with a direction in which the projected line-shaped slit light extends on the surface of the separator 60. Their relative movement in the direction intersecting with the slit light makes it possible to project the slit light onto the entirety of the surface of the separator 60, and to shoot the resultant slit light with the camera 120. For example, while the packaged positive electrode 40 is moving by being conveyed, the light projector 110 projects the slit light intersecting with the conveyance direction and the plane direction (in other words, the light projector 110 projects the slit light which extends in a direction intersecting with the conveyance direction on the surface of a wrinkle detection target). It is desirable that the light projector 110 project the slit light which extends in a direction intersecting with the conveyance direction at 90° on the surface of the wrinkle detection target.
As a determination unit, the control unit 130 detects a surface geometry of the separator 60, and determines the existence of a wrinkle on the basis of a gradient of the surface. The wrinkle detection and determination method is as follows. It should be noted that the gradient means an inclination to the plane direction of the surface of the wrinkle detection target.
The control unit 130 calculates the cross-sectional shape of a part of the separator 60 onto which the slit light is projected on the basis of the shape of the slit light on the separator 60 shot with the camera 120. This cross-sectional shape includes the elevation of the part of the separator 60. For example, the slit light shown in
For each image shot with the camera 120, on the basis of the corresponding cross-sectional shape, the control unit 130 associates elevation information with each of the pixels representing the part onto which the slit light is projected, and stores the association in a storage unit 131. After associating the elevation with each pixel, the control unit 130 calculates whether or not a steep gradient exists around each pixel.
For example, as shown in
Once completing screening of wrinkle candidates, the control unit 130 then extracts only the wrinkle candidates, as shown in
As described above, the wrinkle detection device 100 is capable of determining the existence of the wrinkle by: shooting the surface of the separator 60; associating the elevations with the pixels; and detecting the steep gradient on the basis of the difference in elevation between each pixel and its neighboring pixels. In short, the wrinkle detection device 100 is capable of determining the existence of the wrinkle on the basis of the gradient of the surface of the separator 60. For this reason, in the ensuing steps, it is possible to discard a packaged positive electrode 40 determined to include the wrinkle, and to get rid of a battery including such packaged positive electrode 40 as a defective item.
It should be noted that in the embodiment, the radius R1 is a value which is determined as appropriate by those skilled in the art. When R1 is set at a smaller value, the gradient in a narrower area can be detected. For example, when the inter-pixel distance is in a range of 0.2 mm to 0.3 mm, R1 is in a range of 2 mm to 3 mm. In addition, the threshold values th1, th2 may also be set as appropriate by those skilled in the art. When the radius R1 is set at a smaller value and the quotient of the threshold value th1 divided by the threshold value th2 is set at a larger value, a sharper change in the gradient can be determined as a wrinkle. In this manner, the radius R1 and the threshold values th1, th2 are parameters which constitute the threshold values for determining the existence of the wrinkle. For this reason, when the values of the radius R1 and the threshold values th1, th2 are adjusted, the threshold value of the gradient for determining the existence of the wrinkle can be adjusted. The radius R2 and the threshold value th3 are also values which are determined as appropriate by those skilled in the art. When the radius R2 and the threshold value th3 are adjusted depending on the necessity, the threshold value of the gradient for determining the existence of the wrinkle can be adjusted.
Next, descriptions will be provided for an example of a process to which the wrinkle detection device 100 is applied.
The wrinkle detection device 100 can be applied while the packaged positive electrode 40 shown in
The wrinkle detection device 100 includes two light projectors 110 and two cameras 120 which are provided respectively over and under the suction conveyors 70, 72 in the conveyance passage. A wrinkle can be detected in the surface of the top-side separator 60 of the packaged positive electrode 40 by the light projector 110 and the camera 120 on the upper side. In addition, a wrinkle can be detected in the surface of the back-side separator 60 of the packaged positive electrode 40 by the light projector 110 and the camera 120 on the lower side. The angles of the light projector 110 and the camera 120 on the lower side are adjusted in order that: the slit light can be projected onto the surface of the corresponding separator 60 through the space 74 between the suction conveyors 70, 72: and the resultant slit light can be shot.
Even in the case where the packaged positive electrode 40 with the separators 60 placed on the two sides of the packaged positive electrode 40 is employed, a wrinkle can be detected in each of the surfaces of the separators 60 on the two sides by arranging the wrinkle detection device 100 in a way as described above, that the space between the conveyance devices is aimed at on the lower side.
In addition, even in a case where the packaged positive electrode 40 is not employed, the wrinkle detection device 100 is applicable.
There is a production line in which a stack 90 (power generation element) is formed by sequentially stacking the electrodes (positive electrodes or negative electrodes) and the separators alternately on a pallet 80 which is being conveyed. In this production line, as shown in
Here, the electrodes and the separators may be alternately stacked on a stationary pallet 80. In this case, the light projector 110 and a camera 120 installed over the pallet 80 move in order that: the slit light can be projected onto the entirety of the surface of each separator 60; and the resultant slit light can be shot. The direction of their movement is a direction intersecting with a direction in which the slit light extends and the plane direction (a direction intersecting with a direction in which the slit light extends on the surface of a wrinkle detection target). It is desirable that the direction of their movement be a direction intersecting therewith at 90°.
As described above, the wrinkle detection device 100 is applicable to various processes in the production line as well.
In the embodiment, as shown in
Furthermore, the wrinkle candidate judgment and the wrinkle judgment are based on the evaluation of pixels within the radii of R1 and R2. However, the pixels may be evaluated in a rectangular area or any other polygonal area, instead of in the circular areas with the radii of R1 and R2.
Moreover, the foregoing descriptions have been provided citing the case where each packaged positive electrode 40 is formed by packing the positive electrode 50 with the separators 60. Here, the negative electrode 30 may be packaged with the separators 60 instead. Even in this case, similarly, a wrinkle can be detected in the surface of each separator 60.
What is more, in the embodiment, as shown in
Furthermore, in the embodiment, the single line-shaped ray of slit light is projected onto the separators 60. However, the invention is not limited to this configuration. Multiple stripe-shaped rays of slit light may be projected.
Although the foregoing descriptions have been provided for the embodiment, this embodiment is just an example for facilitating the understanding of the present invention and the invention is not limited to the embodiment. The technical scope of the present invention is not limited to the specific technical matters which have been disclosed with regard to the embodiment, but includes various modifications, changes, alternative technologies, and the like which can easily be derived therefrom.
This application claims the benefit of priority on the basis of Japanese Patent Application No. 2011-085793 filed on Apr. 7, 2011, all the contents of which are incorporated herein by reference.
The wrinkle detection device and the wrinkle detection method of the present invention are capable of detecting a wrinkle on the basis of a gradient of a surface of a separator.
Number | Date | Country | Kind |
---|---|---|---|
2011-085793 | Apr 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/057017 | 3/19/2012 | WO | 00 | 10/1/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/137594 | 10/11/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6721047 | Shimoda et al. | Apr 2004 | B2 |
7738102 | Kobayashi | Jun 2010 | B2 |
20020036769 | Shimoda et al. | Mar 2002 | A1 |
20090141287 | Sato | Jun 2009 | A1 |
Number | Date | Country |
---|---|---|
1 925 908 | May 2008 | EP |
2000-215870 | Aug 2000 | JP |
2001-133233 | May 2001 | JP |
2003-214828 | Jul 2003 | JP |
2007-265863 | Oct 2007 | JP |
2009-132524 | Jun 2009 | JP |
200714778 | Apr 2007 | TW |
Entry |
---|
Taiwanese Office Action dated Feb. 26, 2014, (4 pgs.). |
Supplementary European Search Report dated Sep. 29, 2014, 6 pgs. |
Number | Date | Country | |
---|---|---|---|
20140185058 A1 | Jul 2014 | US |