This application claims priority from Japanese Patent Application No. 2003-206629 filed Aug. 8, 2003, which is hereby incorporated by reference herein.
1. Field of the Invention
The present invention relates to an X-ray multi-layer mirror used as a reflecting mirror in a projection optical system or the like and an X-ray exposure apparatus using the X-ray multi-layer mirror.
2. Related Background Art
In an X-ray exposure apparatus using a soft X-ray having a wavelength of 13.5 nm or less, a multi-layer film structure is necessarily used to obtain a mirror having a high reflectance outside a total reflection incident angle range. There has been widely known a structure using a distributed Bragg reflecting material similar to a ¼-wavelength stack having an entirely constant film thickness. For example, when a mirror for an X-ray having a wavelength of 13.4 nm includes an Mo/Si alternate layer having a constant film thickness fundamental structure, which is composed of an Mo layer having a film thickness of 2.8 nm and an Si layer having a film thickness of 4.1 nm, a maximum theoretical reflectance exceeds 70% (see Japanese Patent Application Laid-open No. 2001-51106).
However, in the Mo/Si alternate layer having the constant film thickness fundamental structure, a range of an X-ray incident angle at which a high reflectance is obtained is only within about 10 degrees. Therefore, with respect to a light beam incident at an incident angle outside this range, a significant reduction in reflectance is caused.
According to Japanese Patent Application Laid-open No. 2001-51106, there is proposed an alternate multi-layer film having a non-uniform film thickness structure in which Ru or the like is used as a third material for the Mo/Si alternate layer and the thickness of each layer is changed by numeric repetition optimization processing, for example, the film thickness of the Mo layer is changed from about 1 nm or less to near 2 nm.
However, in the Mo/Si alternate layer which is widely used for a mirror for the soft X-ray having the wavelength of 13.5 nm and made of two materials of Mo and Si, Mo and Si are easy to react with each other and form a compound of MoSix at an interface. Therefore, when a design film thickness obtained by optimization processing reduces, a design value is significantly different from a reflection characteristic after film formation in some cases.
The present invention has been made in view of the problem that is not solved in the above-mentioned background art. An object of the present invention is to provide an X-ray multi-layer mirror capable of surely realizing a target reflectance in a wide incident angle range and an X-ray exposure apparatus using the X-ray multi-layer mirror.
In order to attain the above-mentioned object, an X-ray multi-layer mirror according to the present invention includes an Mo/Si alternate layer with a non-uniform film thickness structure, which is produced by conducting optimization processing for widening an X-ray reflection characteristic on a constant film thickness fundamental structure of an Mo/Si alternate layer having the X-ray reflection characteristic, wherein each of all of Mo layers and Si layers for forming the non-uniform film thickness structure is designed to have a film thickness of 1.5 nm or more.
In the Mo/Si alternate layer, it was found from a sectional TEM photograph or the like that an MoSix layer formed in an interface between the Mo layer and the Si layer has a thickness of about 1 nm. Therefore, even when the X-ray multi-layer mirror having the non-uniform film thickness structure in which the Mo layer has a film thickness of 1.5 nm or less is designed by the optimization processing for widening an incident angle range in the reflection characteristic, a target reflection characteristic cannot be obtained because of the MoSix layer caused in the interface by actual film formation.
Therefore, the optimization processing is conducted under conditions that each of the layers has the film thickness of 1.5 nm or more, whereby the Mo/Si alternate layer having the non-uniform film thickness structure in which the influence of an interface layer is reduced is realized.
Thus formed X-ray multi-layer mirror having a wide range reflection characteristic is used to be able to significantly improve an optical characteristic of an X-ray exposure apparatus.
The embodiments of the present invention will be described with reference to the drawings.
When the Mo/Si alternate layer is formed by sputtering or the like, as shown in an enlarged form in
In order to increase a region having a reflectance of, for example, 50% or more at a design wavelength of 13.5 nm in these fundamental structures, optimization processing using a known thin film design program is conducted under conditions that a minimum film thickness of each of the layers is set to 1.5 nm.
(Embodiment 1)
B-doped polycrystalline Si material and a metal Mo material are provided as the targets 908 and 909 each having a diameter of four inches, respectively. The targets 908 and 909 are rotated and then the materials are alternately selected to alternately form the Si layer and Mo layer on the substrate.
Low expansion glass having a diameter of 500 mm and a thickness of 35 mm is used for the substrate and rotated during the film formation. The shutter 906 and the movable mask 904 for controlling a film thickness distribution on the substrate are provided between the substrate and the targets 908 and 909. With respect to a process gas introduced into a film formation atmosphere, an Ar gas is introduced at 10 sccm during the Si film formation and an Xe gas is introduced at 50 sccm during the Mo film formation. With respect to the power applied to the targets 908 and 909, high frequency (RF) power of 150 W having a wavelength of 13.56 MHz is applied during the Si film formation and DC power of 100 W is applied during the Mo film formation. A film thickness of each of the Si layer and the Mo layer is controlled with time by the computer 912.
The mirror thus formed has a preferable reflection characteristic in which a reflectance of 50% is maintained at an incident angle of up to 20 degrees, as a design value.
(Embodiment 2)
In Embodiments 1 and 2, the film formation method for each of the layers is not limited to sputtering and may be another film formation method such as an evaporation.
According to the above-mentioned structure of the present invention, the following effect is obtained.
It is possible to produce an X-ray multi-layer mirror having a high reflectance over a wide incident angle range. Therefore, a performance of an X-ray exposure apparatus can be improved.
Number | Date | Country | Kind |
---|---|---|---|
2003-206629 | Aug 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5958605 | Montcalm et al. | Sep 1999 | A |
6160867 | Murakami | Dec 2000 | A |
6295164 | Murakami et al. | Sep 2001 | B1 |
6333961 | Murakami | Dec 2001 | B1 |
6385290 | Kondo et al. | May 2002 | B1 |
6396900 | Barbee et al. | May 2002 | B1 |
6441963 | Murakami et al. | Aug 2002 | B1 |
6449086 | Singh | Sep 2002 | B1 |
6724462 | Singh et al. | Apr 2004 | B1 |
6738188 | Singh | May 2004 | B1 |
20030147058 | Murakami et al. | Aug 2003 | A1 |
Number | Date | Country |
---|---|---|
405034500 | Sep 1993 | JP |
2001-51106 | Feb 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20050031071 A1 | Feb 2005 | US |