Celenza, J. L., et al., Science, vol. 233, “A yeast gene that is essential for release from glucose repression encodes a protein kinase”, pp. 1175-1180, 1986.* |
Singh, H., et al., Cell, vol. 52, “Molecular cloning of an enhancer binding protein: Isolation by screening of an expression library with a recognition site DNA”, pp. 415-423, 1988.* |
Wright, J. J., et al., Science, vol. 248, “Expression of a zinc-finger gene in HTLV-I-and HTLV-II-transformed cells”, pp. 588-591, 1990.* |
Debs, R. J., et al., The Journal of Biological Chemistry, vol. 265, “Regulation of gene expression in vivo by liposome-mediated delivery of a purified transcription factor”, pp. 10189-10192, 1990.* |
Bergqvist, A., et al., Nucleic Acids Research, vol. 18, “Loss of DNA-binding and new transcriptional trans-activation function in polyomavirus large T-antigen with mutation of zinc finger motif”, pp. 2715-2720, 1990.* |
Rauscher, F. J., et al., Science, vol. 250, “Binding of the Wilms′ tumor locus zinc finger protein to the EGR-1 consensus sequence”, pp. 1259-1262, 1990.* |
South, T. L., et al., Biochemistry, vol. 29, “The nucleocapsid protein isolated from HIV-1 particles binds zinc and forms retroviral-type zinc fingers”, pp. 7786-7789, 1990.* |
Ray, A., et al., Proceedings of the National Academy of Sciences, U.S.A., vol. 88, “Repressor to activator switch by mutations in the first Zn finger of the glucocorticoid receptor”, pp. 7086-7090, 1991.* |
Agarwal, K., et al., Biochemistry, vol. 30, “Stimulation of transcript elongation requires both the zinc finger and RNA polymerase II binding domains of human TFIIS”, pp. 7842-7851, 1991.* |
Barbas, III, C. F., et al., Proceedings of the National Academy of Sciences, U.S.A, vol. 89, “Semisynthetic combinatorial antibody libraries: A chemical solution to the diversity problem”, pp. 4457-4461, 1992.* |
Thukral, S. K., et al., Molecular and Cellular Biology, vol. 12, “Mutations in the zinc fingers of ADR1 that change the specificity of DNA binding and transactivation”, pp. 2784-2792, 1992.* |
Quigley, C. A., et al., Molecular Endocrinology, vol. 6, “Complete androgen insensitivity due to deletion of exon C of the androgen receptor gene highlights the functional importance of the second zinc finger of the androgen receptor in vivo”, pp. 1103-1992.* |
Jacobs, G. H., The EMBO Journal, vol. 11, “Determination of the base recognition positions of zinc fingers from sequence analysis”, pp. 4507-4517, 1992.* |
Yu, M., et al., Proceedings of the National Academy of Sciences, U.S.A., vol. 90, “A hairpin ribozyme inhibits expression of diverse strains of human immunodeficiency virus type 1”, pp. 6340-6344, 1993.* |
Rollins, M. B., et al., Molecular and Cellular Biology, vol. 13, “Role of TFIIIA zinc fingers in vivo: Analysis of single-finger function in developing Xenopus embryos”, pp. 4776-4783, 1993.* |
Julian, N., et al., FEBS Letters, vol. 331, “Replacement of His23 by Cys in a zinc finger of HIV-1 NCp7 led to change in 1H NMR-derived 3D structure and to a loss of biological activity”, pp. 43-48, 1993.* |
Jamieson, A., C., et al., Biochemistry, vol. 33, “In vitro selection of zinc fingers with altered DNA-binding specificity”, pp. 5689-5695, 1994.* |
Pabo, C. O., Annual Review of Biochemistry, vol. 61, “Transcription factors: Structural families and principles of DNA recognition”, pp. 1053-1095, 1992. |