AAV VECTOR ENCODING ANTI-VEGF-A AND ANG-2 BISPECIFIC ANTIBODY

Abstract
Provided are a bispecific antibody, an encoding nucleic acid thereof, an AAV virus vector containing the nucleic acid, and a virus particle. Further provided is a pharmaceutical composition containing the bispecific antibody, the encoding nucleic acid, the AAV virus vector, or the virus particle. The bispecific antibody comprises binding domains specific to VEGF-A and ANG-2, and can be used for treating wet age-related macular degeneration or diabetic macular edema of a subject.
Description
TECHNICAL FIELD

The present invention relates to the field of immunology and gene delivery. More particularly, the present application relates to compositions, systems, and methods for producing proteins of interest, such as antibodies.


BACKGROUND

Age-related macular degeneration (AMD) is a group of age-related macular diseases induced by various factors. Their common features are the lesions of the macular retina and retinal pigment epithelium and choroid, which cause visual dysfunction and progressive decrease in central vision of patients. The prevalence of AMD in China and even the world is increasing with age, and AMD is one of the main causes of irreversible vision impairment in people over 50 years old. As the population ages, AMD patients are expected to reach 288 million by 2040. There is no unified standard for the clinical classification of AMD. At present, both domestic and foreign countries tend to stage first and then classify, and the late stage is divided into 2 types, which are dry (atrophic) and neovascular (exudative, wet), among which, neovascular age-related macular degeneration (nAMD), also called wet age-related macular degeneration (wAMD), is a main clinical type causing vision loss, and its main feature is that choroidal neovascularization (CNV) appears in the macular area, thereby causing bleeding and exudation in the macular area. Diabetic macular edema (DME) is currently one of important causes of blindness in western developed countries, and with the improvement of living standards of people in China and the aging of the population, the prevalence rate of DME has gradually increased, which seriously affects visual function and life quality of patients.


Vascular endothelial growth factor (VEGF) is one of the most important factors in the pathogenesis of wAMD and DME, and can specifically act on vascular endothelial cells, promote the proliferation of vascular endothelial cells, induce the formation of neovessels, and increase vascular leakage. At present, it has been found that blocking the expression of VEGF can induce vascular remodeling and promote the regression of immature neovascularization. Therefore, VEGF is a promising therapeutic target for wAMD and DME. Since the application of anti-VEGF drugs represented by Ranibizumab in 2006, anti-VEGF drugs have been widely used to treat wAMD and DME. In recent 10 years, irreversible blindness caused by wAMD and DME has been greatly reduced due to the simultaneous application of multiple anti-VEGF therapies.


Although there have been great progress and breakthroughs VEGF-targeting drugs in clinicals, which can significantly reduce the degree of vascular leakage and edema, improve vision, and have not found serious complications, these protein drugs injected into the body are rapidly eliminated through metabolism, thus multiple intraocular injections are required to maintain the therapeutic effects. Long-term treatment increases the economic burden of patients, repeated injection increases the pain and the possibility of adverse reactions of patients, some degree of vision loss occurs when changing from conventional administration to low-frequency administration, and some patients are prone to relapse after treatment. In response to the limitations of existing therapies for wAMD and DME, there is a need in the art for more economical, longer lasting and more effective treatment strategies.


The present invention aims to provide an anti-VEGF-A and anti-ANG-2 gene therapy.


SUMMARY

The present invention provides a bispecific antibody comprising anti-VEGF-A and anti-ANG-2 binding domain, which is preferably a tandem single chain antibody molecule (tandem scFv, ta-scFv), wherein the heavy chain variable regions (VH) and the light chain variable regions (VL) of the bispecific antibody are arranged from N-terminus to C-terminus in the following order:

    • 1) VHanti-VEGF-A-VLanti-VEGF-A-VHanti-ANG-2-VLanti-ANG-2;
    • 2) VLanti-ANG-2-VHanti-VEGF-A-VLanti-VEGF-A-VHanti-ANG-2; Of
    • 3) VLanti-VEGF-A-VHanti-ANG-2-VLanti-ANG-2-VHanti-VEGF-A; wherein the VHanti-VEGF-A comprises a CDR1 as depicted in SEQ ID NO: 1, a CDR2 as depicted in SEQ ID NO: 2, and a CDR3 as depicted in SEQ ID NO: 3;
    • the VLanti-VEGF-A Comprises a CDR1 as depicted in SEQ ID NO: 4, a CDR2 as depicted in SEQ ID NO: 5, and a CDR3 as depicted in SEQ ID NO: 6 or SEQ ID NO: 47;
    • the VHanti-ANG-2 comprises a CDR1 as depicted in SEQ ID NO: 7, a CDR2 as depicted in SEQ ID NO: 8, and a CDR3 as depicted in SEQ ID NO: 9;
    • the VLanti-ANG-2 Comprises a CDR1 as depicted in SEQ ID NO: 10, a CDR2 as depicted in SEQ ID NO: 11, and a CDR3 as depicted in SEQ ID NO: 12.


In one embodiment, the VHanti-VEGF-A comprises a sequence as depicted in SEQ ID NO: 13 or a sequence that is 70%, 80%, 90%, 95% or 99% identical to the sequence of SEQ ID NO: 13;

    • the VLanti-VEGF-A comprises a sequence as depicted in SEQ ID NO: 14 or a sequence that is 70%, 80%, 90%, 95% or 99% identical to the sequence of SEQ ID NO: 14 or SEQ ID NO: 48;
    • the VHanti-ANG-2 comprises a sequence as depicted in SEQ ID NO: 15 or a sequence that is 70%, 80%, 90%, 95% or 99% identical to the sequence of SEQ ID NO: 15;
    • the VLanti-ANG-2 comprises a sequence as depicted in SEQ ID NO: 16 or a sequence that is 70%, 80%, 90%, 95% or 99% identical to the sequence of SEQ ID NO: 16.


In one embodiment, the antibody comprises a sequence as depicted in SEQ ID NO: 17, 18, 19, 49, 51 or 53 or a sequence that is 70%, 80%, 90%, 95% or 99% identical to the sequence of SEQ ID NO: 17, 18, 19, 49, 51 or 53.


In one embodiment, the N-terminus of the bispecific antibody construct comprises a signal peptide sequence or a tag sequence, preferably the signal peptide sequence is a CD5-sp signal peptide comprising a sequence as depicted in SEQ ID NO: 23.


In one embodiment, the antibody comprises a sequence as depicted in SEQ ID NO: 20, 21, 22, 50, 52 or 54 or a sequence that is 70%, 80%, 90%, 95% or 99% identical to the sequence of SEQ ID NO: 20, 21, 22, 50, 52 or 54.


In one embodiment, the heavy chain variable region (VH) and the light chain variable region (VL) are operably linked by (G4S)n, where n is an integer greater than 1, preferably any integer between 1 and 4, such as G4S, (G4S)2, (G4S)3 or (G4S)4, for example,

    • 1) VHanti-VEGF-A-(G4S)m+X-VLanti-VEGF-A-(G4S)m-VHanti-ANG-2-(G4S)m+X-VLanti-ANG-2, wherein m≥1, X≥2, preferably VHanti-VEGF-A-(G4S)3-VLanti-VEGF-A-G4S-VHanti-ANG-2-(G4S)3-VLanti-ANG-2;
    • 2) VLanti-ANG-2-(G4S)m-VHanti-VEGF-A-(G4S)m+X-VLanti-VEGF-A-(G4S)m-VHanti-ANG-2, wherein m≥1, X≥2, preferably VLanti-ANG-2-G4S-VHanti-VEGF-A-(G4S)3-VLanti-VEGF-A-G4S-VHanti-ANG-2; or
    • 3) VLanti-VEGF-A-(G4S)m-VHanti-ANG-2-(G4S)m+X-VLanti-ANG-2-(G4S)m-VHanti-VEGF-A, wherein m≥1, X≥2, preferably VLanti-VEGF-A-G4S-VHanti-ANG-2-(G4S)3-VLanti-ANG-2-G4S-VHanti-VEGF-A.


Furthermore, the present invention provides a nucleic acid sequence encoding the bispecific antibody as described above.


The present invention also provides a vector comprising a nucleic acid sequence encoding the bispecific antibody.


In one embodiment, the vector is preferably AAV virus.


In one embodiment, the AAV virus vector further comprises: a 5′ ITR and a 3′ ITR, a promoter, and a polyA sequence. In another aspect, the present invention provides an AAV virus particle, comprising any of the AAV virus vectors as described above and a capsid protein, preferably wherein the serotype of the capsid protein is AAV1, AAV2, AAV4, AAV5, AAV6, AAV7, AAV8 or AAV9.


The present invention provides a pharmaceutical composition comprising at least one of the bispecific antibody, nucleic acid sequence, vector such as AAV virus vector as described above and AAV virus particle as described above, and a pharmaceutically acceptable carrier.


The present invention provides a use of the bispecific antibody, nucleic acid sequence, vector such as AAV virus vector, AAV particle as described above, or pharmaceutical compositions as described above in the preparation of a medicament for treating or preventing cancer, intraocular neovascularization syndrome, rheumatoid arthritis, psoriasis, proliferative retinopathy, age-related macular degeneration or diabetic macular edema.


In one embodiment, the age-related macular degeneration is wet age-related macular degeneration.


In a specific embodiment, the medicament is administered by intravitreal or subretinal injection.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows schematic structural diagrams of XMVA01, XMVA04, and XMVA09.



FIG. 2 shows vector information of pAAV9-XMVA09, ssAAV-XMVA09.



FIG. 3 shows expression levels of VEGF165 neutralizing proteins in cells after transfection by pAAV9-XMVA01, pAAV9-XMVA04 and pAAV9-XMVA09 vectors.



FIG. 4 shows effect of expressing XMVA01, XMVA04 and XMVA09 in cells on the proliferation of human retinal microvascular endothelial cells (HRMECs) under ECGS stimulation.



FIGS. 5, 6 show the effects of expressing XMVA01, XMVA04 and XMVA09 in cells on the tube formation of HRMECs.



FIG. 7 shows a schematic structural diagram of XMVA10.



FIG. 8 shows a schematic structural diagram of XMVA11.



FIG. 9 shows a schematic structural diagram of XMVA13.



FIG. 10 shows a schematic structural diagram of XMVA14.



FIG. 11 shows a schematic structural diagram of XMVA15.



FIG. 12 shows a fluorescein fundus angiography (FFA) images of laser-induced wAMD model mice after injection of AAV-XMVA09.



FIG. 13 shows percentage of grade 3 light spots and mean score of leakage light spots after laser-induced wAMD model mice were injected with AAV-XMVA09.



FIG. 14 shows the changes of grade IV light spots number and fluorescence leakage area in the laser-induced wAMD model rhesus monkey control group.



FIG. 15 shows the changes of grade IV light spots number and fluorescence leakage area in the laser-induced wAMD model rhesus monkey injected with AAV-XMVA09.



FIG. 16 shows the changes in retinal thickness of grade IV light spots in the laser-induced wAMD model rhesus monkey control group.



FIG. 17 shows the changes in retinal thickness of grade IV light spots in the laser-induced wAMD model rhesus monkey injected with AAV-XMVA09.



FIG. 18 shows the changes in permeability of high glucose induced HRMECs.



FIG. 19 shows the regulatory effect of XMVA09 on the permeability of HRMECs based on VE-cadherin indicator.



FIG. 20 shows regulatory effect of XMVA09 on the permeability of HRMECs based on the biotin-avidin system indicator.



FIG. 21 shows monitoring analysis of fasting blood glucose and body weight in diabetic model mice.



FIG. 22 shows images of retinal vascular leakage in diabetic model mouse.



FIG. 23 shows the changes in retinal vascular leakage area in diabetic model mice after injection of AAV-XMVA09.





DETAILED DESCRIPTION

The present invention will be described in detail below according to embodiments and in conjunction with the accompanying drawings. The above aspects of the invention and other aspects of the invention will be apparent in the following detailed description. The scope of the present invention is not limited to the following examples.


The antibodies in the present invention are multispecific, and can be humanized, single-chain, chimeric, synthetic, recombinant, heterozygous, mutant, and grafted antibodies; the antibody format in the present invention is a scFv spliced by antibody light chain variable regions (VL) and antibody heavy chain variable regions (VH), and the antibody can bind to two different antigens, such as VEGF-A and ANG-2.


The antibody light chain variable region (VL) and antibody heavy chain variable region (VH) can be further subdivided into hypervariable regions called complementarity determining regions (CDRs), and interspersed more conserved regions called framework regions (FWR). The CDRs of the antibodies and antigen-binding fragments disclosed herein are defined or identified by Kabat numbering. In one embodiment, each VH and VL generally includes 3 CDRs and 4 FWRs arranged in the following order from the amino end to the carboxy end: FWR1, CDR1, FWR2, CDR2, FWR3, CDR3, FWR4. The CDRs of the antibodies and antigen-binding fragments disclosed herein are defined or recognized by Kabat numbering.


As used herein, “vector” refers to a vector comprising a recombinant polynucleotide comprising an expression control sequence operably linked to a nucleotide sequence to be expressed.


The experimental methods in the following examples, unless otherwise specified, are all conventional methods.


EXAMPLES
Example 1. Construction of Plasmid Vector
Construction of AAV Vector Plasmid Expressing Anti-VEGF-A/Anti-ANG-2 Gene

The VH amino acid sequence and the VL amino acid sequence of anti-VEGF, the VH amino acid sequence and the VL amino acid sequence of anti-ANG-2 were linked with (G4S)3, G4S, and (G4S)3 peptide linkers, respectively, with a secretory signal peptide CD5-sp nucleotide sequence added to the N-terminus to form an open reading frame with a structure of CD5-sp-VHanti-VEGF-A-(G4S)3-VLanti-VEGF-A-G4S-VHanti-ANG-2-(G4S)3-VLanti-ANG-2; the nucleotide sequences were designed according to human codon preference, with a BamH I cleavage site introduced at the 5′ terminus, and an EcoR V cleavage site introduced at the 3′ terminus, constructed according to the respective sequences in Table 1 and Table 2, and were named as XMVA01, XMVA04 and XMVA09 (the full-length genes were synthesized by Nanjing GenScript Biotech Corporation). The schematic diagrams of their structures are shown in FIG. 1.


The above constructs and pAAV9neo-CAG plasmid were double digested with BamH I/EcoR V, and pAAV9-XMVA01, pAAV9-XMVA04 and pAAV9-XMVA09 vectors were constructed respectively by conventional molecular biology operations such as ligation, transformation, cloning screening and identification; the information of pAAV9-XMVA09 vector was shown in FIG. 2A. High-quality plasmid DNA was obtained for later use by using an endotoxin-free plasmid extraction kit (MN).









TABLE 1







Sequence information of XMVA09












Product
Sequence
amino acid





Number
information
sequence

DNA sequence





XMVA09
VHanti-VEGF-A
DYWIH
SEQ ID
gactactggattcac
SEQ ID



(G6-23)-

NO: 1

NO: 24



CDR1










VHanti-VEGF-A
GITPAGGYTYYADS
SEQ ID
ggaatcaccccagcaggaggctacacatactatgccgacagcgt
SEQ ID



(G6-23)-
VKG
NO: 2
gaagggc
NO. 25



CDR2










VHanti-VEGF-A
FVFFLPYAMDY
SEQ ID
ttcgtgttcttcctgccatacgccatggattat
SEQ ID



(G6-23)-

NO: 3

NO: 26



CDR3










VHanti-VEGF-A
EVQLVESGGGLVQ
SEQ ID
gaggtgcagctggtggagagcggaggaggactggtgcagccagg
SEQ ID



(G6-23)
PGGSLRLSCAASQF
NO: 13
aggctccctgcggctgtcttgcgccgccagcggctttaccatct
NO: 27




TISDYWIHWVRQA

ccgactactggattcactgggtgagacaggcacctggcaaggga





PGKGLEWVAGITP

ctggagtgggtggcaggaatcaccccagcaggaggctacacata





AGGYTYYADSVKG

ctatgccgacagcgtgaagggccggttcaccatctccgccgatac





RFTISADTSKNTAY

ctctaagaacacagcctatctgcagatgaactccctgcgggccga





LQMNSLRAEDTAV

ggacacagccgtgtactattgcgccagatcgtgttcttcctgcca





YYCARFVFFLPYA

tacgccatggattattggggccagggcaccctggtgacagtgagc





MDYWGQGTLVTV

tcc





SS









VLanti-VEGF-A
RASQDVSTAVA
SEQ ID
agagcaagccaggacgtgagcaccgcagtggca
SEQ ID



(G6-23)-

NO: 4

NO: 28



CDR1










VLanti-VEGF-A
SASFLYS
SEQ ID
tccgcctctttcctgtattct
SEQ ID



(G6-23)-

NO: 5

NO: 29



CDR2










VLanti-VEGF-A
KQGYANPWT
SEQ ID
aagcagggctatgccaatccatggacc
SEQ DD



(G6-23)-

NO: 6

NO: 30



CDR3










VLanti-VEGF-A
DIQMTQSPSSLSAS
SEQ ID
gatattcagatgacacagtccccatctagcctgtctgccagcgt
SEQ ID



(G6-23)
VGDRVTITCRASQ
NO: 14
gggcgacagggtgaccatcacatgtagagcaagccaggacgtga
NO: 31




DVSTAVAWYQQKP

gcaccgcagtggcatggtaccagcagaagcctggcaaggcccca





GKAPKLLIYSASFL

aagctgctgatctactccgcctctttcctgtattctggcgtgcc





YSGVPSRFSGSGSG

aagcaggtttagcgggtccggatctggaaccgacttcaccctga





TDFTLTISSLQPEDF

caatctcctctctgcagcctgaggattttgccacatactattgc





ATYYCKQGYANP

aagcagggctatgccaatccatggaccttcggccagggcacaaa





WTFGQGTKVEIKR

ggtggagatcaagagg







VHanti-ANG-2
NYGMH
SEQ ID
aactatggaatgcac
SEQ ID



(3.19.3)-

NO: 7

NO: 32



CDR1










VHanti-ANG-2
VISHDGNNKYYVD
SEQ ID
gtgatcagccacgacggcaacaacaagtactacgtggacagcgt
SEQ ID



(3.19.3)-
SVKG
NO: 8
gaagggc
NO: 33



CDR2










VHanti-ANG-2
EGIDFWSGLNWED
SEQ ID
gagggcatcgacttttggagcggcctgaattggttcgaccct
SEQ ID



(3.19.3)-
P
NO: 9

NO: 34



CDR3










VHanti-ANG-2
QVQLVESGGGVVQ
SEQ ID
caggtgcagctggttgaatctggtggcggagttgtgcagcctggc
SEQ ID



(3.19.3)
PGRSLRLSCAASGF
NO:15
agaagcctgagactgtcttgtgccgccagcggcttcaccttcacc
NO: 35




TFTNYGMHWGRQ

aactatggaatgcactggggcagacaggcccctggcaaaggactt





APGKGLEWVAVIS

gaatgggtcgccgtgatcagccacgacggcaacaacaagtacta





HDGNNKYYVDSV

cgtggacagcgtgaagggcagattcaccatcagccgggacaac





KGRFTISRDNSKNT

agcaagaacaccctgtacctgcagatgaacagcctgagagccga





LYLQMNSLRAEDT

ggacaccgccgtgtactattgtgccagagagggcatcgacttttg





AVYYCAREGIDFW

gagcggcctgaattggttcgacccttggggacagggcaccctgg





SGLNWFDPWGQG

ttacagtttcttctgcc





TLVTVSSA









VLanti-ANG-2
RASQSITGSYLA
SEQ ID
agagccagccagagcatcaccggctcttacctggct
SEQ TD



(3.19.3)-

NO: 10

NO: 36



CDR1










VLanti-ANG-2
GASSWAT
SEQ ID
cgcgcctcttcttgggccacc
SEQ ID



(3.19.3)-

NO: 11

NO: 37



CDR2










VLanti-ANG-2
QQYSSSPIT
SEQ ID
cagcagtacagcagcagccccatcacc
SEQ ID



(3.19.3)-

NO: 12

NO: 38



CDR3










VLanti-ANG-2
EIVLTQSPGTLSLSP
SEQ ID
gagatcgtgctgacacagagccctggcacactgtcactgtctcc
SEQ ID



(3.19.3)
GERATLSCRASQSI
NO: 16
aggcgaaagagccacactgagctgtagagccagccagagcatca
NO: 39




TGSYLAWYQQKPG

ccggctcttacctggcttggtatcagcagaagcctggacaggcc





QAPRLLICGASSWA

cctagactgctgatttgtggcgcctcttcttgggccaccggcat





TGIPDRFSGSGSGT

tcccgatagattttctggcagcggctccggcaccgacttcaccc





DFTLTISRLEPEDFA

tgacaatcagcagactggaacccgaggacttcgccgtgtactac





VYYCQQYSSSPITF

tgccagcagtacagcagcagccccatcacctttggccagggcac





GQGTRLEIKR

aagactggaaatcaagcgg







VHanti-VEGF-A-
EVQLVESGGGLVQ
SEQ ID
gaggtgcagctggtggagagcggaggaggactggtgcagccagga
SEQ ID



(G4S)3-
PGGSLRLSCAASGE
NO: 17
ggctccctgcggctgtcttgcgccgccagcggctttaccatctc
NO: 40



VLanti-VEGF-A
TISDYWIHWVRQA

cgactactcgattcactgggtgagacaggcacctggcaagggac




-G4S-
PGKGLEWVAGITP

tggagtggctggcaggaatcaccccagcaggaggctacacatac




VHanti-ANG-2-
AGGYTYYADSVKG

tatgccgacagcgtgaagggccggttcaccatctccgccgatac




(G4S)3-
RFTISADTSKNTAY

ctctaagatcacagcctatctgcagatgaactccctgcgggccg




VLanti-ANG-2
LQMNSLRAEDTAV

aggacacagccgtgtactattgcgccagattcgtgttcttcctg





YYCARFVFELPYA

ccatacgccatggattattggggccagggcaccctggtgacagt





MDYWGQGTLVTV

gagctccggtggaggtggctccggtggcggtggcagcggcggtg





SSGGGGSGGGGSG

gcggctctgatattcagatgacacagtccccatctagcctgtct





GGGSDIQMTQSPSS

gccagcgtgggcgacagggtgaccatcacatgtagagcaagcca





LSASVGDRVTITCR

ggacgtgagcaccgcagtggcatggtaccagcagaagcctggca





ASQDVSTAVAWYQ

tggccccaaagctgctgatctactccgcctctttcctgtattct





QKPGKAPKLLIYSA

ggcgtgccaagcaggtttagcgggtccggatctggaaccgactt





SFLYSGVPSRESGS

caccctgacaatctcctctctgcagcctgaggattttgccacat





GSGTDFTLTISSLQP

actattgcaagcagggctatgccaatccatggaccttcggccag





EDFATYYCKQGYA

ggcacaaaggtggagalcaagaggggcggagggcgctctcaggt





NPWTFGQGTKVEI

gcagctggttgaatctggtggcggagttgtgcagcctggcagaa





KRGGGGSQVQLVE

gcctgagactgtcttgtgccgccagcggcttcaccttcaccaac





SGGGVVQPGRSLR

tatggaatgcactggggcagacaggcccctggcaaaggacttga





LSCAASGFTFTNY

atgggtcgccgtgatcagccacgacggcaacaacaagtactacg





GMHWGRQAPGKG

tggacagcgtgaagggcagattcaccatcagccgggacaacagc





LEWVAVISHDGNN

aagaacaccctgtacctgcagatgaacagcctgagagccgagga





KYYVDSVKGRFTI

caccgccgtgtactattgtgccagagagggcatcgacttttgga





SRDNSKNILYLQM

gcggcctgaattggttcgacccttggggacagggcaccctggtt





NSLRAEDTAVYYC

acagtttcttctgccggtggaggtggctccggtggcggtggcag





AREGIDFWSGLNW

cggcggtggcggctctgagatcgtgctgacacagagccctggca





FDPWGQGTLVTVS

cactgtcactgtctccaggcgaaagagccacactgagctgtaga





SAGGGGGGGGSG

gccagccagagcatcaccggctcttacctggcttggtatcagca





GGGSEIVLTQSPGT

gaagcctggacaggcccctagactgctgatttgtggcgcctctt





LSLSPGERATLSCR

cttgggccaccggcattcccgatagattttctggcagcggctcc





ASQSITGSYLAWY

ggcaccgacttcaccctgacaatcagcagactggaacccgagga





QQKPGQAPRLLIC

cttcgccgtgtactactgccagcagtacagcagcagccccatca





GASSWATGIPDRFS

cctttggccagggcacaagactggaaatcaagcgg





GSGSGTDFTLTISR







LEPEDFAVYYCQQ







YSSSPITFGQGIRL







EIKR









CD5-sp-
MPMGSLQPLATLY
SEQ ID
atgccaatggggtccctacaacccctggcaacactatatctgct
SEQ ID



VHanti-VEGF-A-
LLGMLVASCLGEV
NO: 20
aggtatgctcgtggcctcctgtttaggagaggtgcagctggtgg
NO: 41



(G4S)3-
QLVESGGGLVQPG

agagcggaggaggactggtgcagccaggaggctccctgcggctg




VLanti-VEGF-A-
GSLRLSCAASGFTI

tcttgcgccgccagcggctttaccatctccgactactggattca




G4S-
SDYWIHWVRQAP

ctgggtgagacaggcacctggcaagggactggagtggctggcag




VHanti-ANG-2-
GKGLEWVAGITPA

gaatcaccccagcaggaggctacacatactatgccgacagcgtg




(G4S)3-
GGYTYYADSVKGR

aagggccggttcaccatctccgccgatacctctaagaacacagc




VLanti-ANG-2
FTISADTSENTAYL

ctatctgcagatgaactccctgcgggccgaggacacagccgtgt





QMNSLRAEDTAVY

actattgcgccagattcgtgttcttcctgccatacgccatggat





YCARFVFFLPYAM

tattggggccagggcaccctggtgacagtgagctccggtggagg





DYWGQGTLVTVSS

tggctccggtggcggtggcagcggcggtggcggctctgatattc





GGGGSGGGGSGG

agatgacacagtcccatctagcctgtctgccagcgtgggcgaca





GGSDIQMTQSPSSL

gggtgaccatcacatgtagagcaagccaggacgtgagcaccgca





SASVGDRVTITCRA

gtggcatggtaccagcagaagcctggcaaggccccaaagctgct





SQDVSTAVAWYQQ

gatctactccgcctctttcctgtattctggcgtgccaagcaggt





KPGKAPKLLIYSAS

ttagcgggtccggatctggaaccgacttcaccctgacaatctcc





FLYSGVPSRFSGSG

tctctgcagcctgaggattttgccacatactattgcaagcaggg





SGTDFTLTISSLQPE

ctatgccaatccatggaccttcggccagggcacaaaggtggaga





DPATYYCKQGYAN

tcaagaggggcggagggggctctcaggtgcagctggttgaatct





PWTFGQGTKVEIK

ggtggcggagttgtgcagcctggcagaagcctgagactgtcttg





RGGGGSQVQLVES

tgccgccagcggcttcaccttcaccaactatggaatgcactggg





GGGVVQPGRSERL

gcagacaggcccctggcaaaggacttgaatgggtcgccgtgatc





SCAASGETFTNYG

agccacgacggcaacaacaagtactacgtggacagcgtgaaggg





MHWGRQAPGKGL

cagattcaccatcagccgggacaacagcaagaacaccctgtacc





EWVAVISHDGNNK

tgcagatgaacagcctgagagccgaggacaccgccgtgtactat





YYVDSVKGRFTISR

tgtgccagagagggcatcgacttttggagcggcctgaattcgtt





DNSKNTLYLQMNS

cgacccttggggacagggcaccctggttacagtttcttctgccg





LRAEDTAVYYCAR

gtggaggtggctccggtggcggtggcagcggcggtggcggctct





EGIDFWSGLNWFD

gagatcgtgctgacacagagccctggcacactgtcactgtctcc





PWGQGTLVTVSSA

aggcgaaagagccacactgagctgtagagccagccagagcatca





GGGGSGGGGSGG

ccggctcttacctggcttggtatcagcagaagcctggacaggcc





GGSEIVLTQSPGTL

cctagactgctgatttgtggcgcctcttcttgggccaccggcat





SLSPGERATLSCRA

tcccgatagattttctggcagcggctccggcaccgacttcaccc





SQSITQSYLAWYQ

tgacaatcagcagactggaacccgaggacttcgccgtgtactac





QKPGQAPRLLICG

tgccagcagtacagcagcagccccatcacctttggccagggcac





ASSWATGIPDRESG

aagactggatatcatgcgg





SGSGTDFTLTISRLE







PEDFAVYYCQQYS







SSPITFGQGTRLEIK







R









CD5-sp
MPMGSLQPLATLY
SEQ ID
atgccaatggggtccctacaacccctggcaacactatatctgct
SEQ ID



signal
LLGMLVASCLG
NO: 23
aggtatgctcgtggcctcctgtttagga
NO: 42



peptide
















TABLE 2







Sequence information of XMVA01 and XMVA04











Sequence




Product
informa-




Number
tion
AA sequence
DNA sequence





XMVA01
VHanti-VEGF-A
EVQLVESGGGLVQPGGSL
gaggtgcagctggttgaatctggcggaggactggttcagcctggcggatc




RLSCTASGESLIDYYYMT
tctgagactgagctgtaccgccagcggcttcagcctgaccgactactact




WVRQAPGKGLEWVGFID
acatgacctgggtccgacaggcccctggcaaaggacttgagtgggtcgga





PDDDPYYATWAKGRATIS

ttcatcgaccccgacgacgatccttactacgccacatgggccaagggcag




RDNSKNTLYLQMNSLRAE
attcaccatcagccgggacaacagcaagaacaccctgtacctgcagatga




DTAVYYCAGGDHNSGWG
acagcctgagagccgaggacaccgccgtgtactattgtgccggcggagat





LDIWGQGTLVTVSS

cacaatagcggctggggccttgatatttggggccagggaacactggtcac





cgtgtctagt






VLanti-VEGF-A
EIVMTQSPSTLSASVGDR
gagatcgtgatgacacagagccccagcacactgtctgccagcgtgggaga




VIITCQASEIIHSWLAWYQ
cagagtgatcatcacatgccaggccagcgagatcatccacagctggctgg




QKPGKAPKLLIYLASTLA
cttggtatcagcagaagcctggcaaggcccctagctgctgatctacctgg





SGVPSRFSGSGSGAEFTLT

cctctacactggccagcggagtgcctagcagattttctggctctggatct




ISSLQPDDFATYYCQNVY
ggcgccgagttcaccctgaccatcagtagcctgcagcctgacgacttcgc





LASTNGANFGQGTKLTVL

cacctactactgccagaacgtgtacctggccagcaccaacggcgccaatt




G
ttggccagggcaccaagctgacagtgctggga






VHanti-ANG-2
QVQLVQSGAEVKKPGAS
caggttcagctggttcagtctggcgccgaagtgaagaaacctggcgcctc




VKVSCKASGYTFTGYYM
tgtgaaggtgtcctgcaaggccagcggctacacctttaccggctactaca





HWVRQAPGQGLEWMGWI

tgcactgggtccgacaggctccaggacagggacttgaatggatgggctgg





NPNSGGTNYAQKFQGRVT

atcaaccccaatagcggcggcaccaattacgcccagaaattccagggcag




MTRDTSISTAYMELSRLR
agtgaccatgaccagagacaccagcatcagcaccgcctacatggaactga




SDDTAVYYCARSPNPYYY
gccggctgagatccgatgacaccgccgtgtactactgcgccagatctccc





DSSGYYYPGAFDIWGQGT

aatccttactactacgacagcagcgggtactactacccaggcgccttcga




MVTVSS
tatttcgggccagggcacaatggtcaccgtgtctagt






VLanti-ANG-2
SYVETQPPSVSVAPGQTAR
agctacgtgctgacacagcctccatccgtgtctgtggctccaggacagac




ITCGGNNIGSKSVHWYQQ
cgccagaatcacatgcggcggcaacaacatcggcagcaagagcgtgcact




KPGQAPVEVVYDDSDRPS
ggtatcagcagaagcctggacaggctcctgtgctggtggtgtacgacgac




GIPERFSGSNSGNTATLTI
agcgatagacctagcggcatccccgagagattcagcggcagcaattccgg




SRVEAGDEADYYCQVWDS
caataccgccacactgaccatcagcagagtggaagctggcgacgaggccg





SSDHWVFGGGTKLTVL

actactactgccaagtgtgggacagcagcagcgaccactgggttttcggg





gaggcacaaagctgacagtgctg






VHanti-VEGF-A
EVQLVESGGGLVQPGGSL
gaggtgcagctggttgaatctggcggaggactggttcagcctggcggatc



-(G4S)3-
RLSCTASGFSLIDYYYMT
tctgagactgagctgtaccgccagcggcttcagcctgaccgactactact



VLanti-VEGF-A
WVRQAPGKGLEWVGFID
acatgacctgggtccgacaggcccctggcaaaggacttgagtgggtcgga



-G4S)-
PDDDPYYATWAKGRATIS
ttcatcgaccccgacgacgatccttactacgccacatgggccaagggcag



VHanti-ANG-2-
RDNSKNTLYLQMNSLRAE
attcaccatcagccgggacaacagcaagaacaccctgtacctgcagatga



(G4S)3-
DTAVYYCAGGDHNSGWG
acagcctgagagccgaggacaccgccgtgtactattgtgccggcggagat



VLanti-ANG-2
LDIWGQGTLVTVSSGGGG
cacaatagcggctggggccttgatatttggggccagggttacactggtca




SGGGGSGGGGSEIVMTQS
ccgtgtctagtggtggaggtggctccggtggcggtggcagcggcggtggc




PSTLSASVGDRVITCQAS
ggctctgagatcgtgatgacacagagccccagcacactgtctgccagcgt




EIIHSWLAWYQQKPGKAP
gggagacagagtgatcatcacatgccaggccagcgagatcatccacagct




KLLIYLASTLASGVPSRFS
ggctggcttggtatcagcagaagcctggcaaggcccctaagctgctgatc




GSGSGAEFTLTISSLQPDD
tacctggcctctacactggccagcggagtgcctagcagattttctggctc




FATYYCQNVYLASTNGA
tggatctggcgccgagttcaccctgaccatcagtagcctgcagcctgacg




NFGQGTKLTVLGGGGGS
acttcgccacctactactgccagaacgtgtacctggccagcaccaacggc




QVQLVQSGAEVKKPGAS
gccaattttggccagggcaccaagctgacagtgctgggaggcggaggggg




VKVSCKASGYTFTGYYM
ctctcaggttcagctggttcagtctggcgccgaagtgaagaaacctggcg




HWVRQAPGQGLEWMGW
cctctgtgaaggtgtcctgcaaggccagcggctacacctttaccggctac




INPNSGGTNYAQKFQGRV
tacatgcactgggtccgacaggctccaggacagggacttgaatggatggg




TMTRDTSISTAYMELSRLR
ctggatcaaccccaatagcggcggcaccaattacgcccagaaattccagg




SDDTAVYYCARSPNPYYY
gcagagtgaccatgaccagagacaccagcatcagcaccgcctacatggaa




DSSGYYYPGAFDIWGQGT
ctgagccggctgagatccgatgacaccgccgtgtactactgcgccagatc




MVTVSSGGGGGGGGSG
tcccaatccttactactacgacagcagcggctactactacccaggcgcct




GGGSSYVLTQPPSVSVAP
tcgatatttggggccagggcacaatggtcaccgtgtctagtggtggagct




GQTARITCGGNNIGSKSV
ggctccggtggcgctggcagcggcggtcgcggctctagctacgtgctgac




HWYQQKPGQAPVIVVYD
acagcctccatccgtgtctgtggctccaggacagaccgccagaatcacat




DSDRPSGIPERFSGSNSGN
gcggcggcaacaacatcggcagcaagagcgtgcactggtatcagcagaag




TATLTISRVEAGDEADYYC
cctggacaggctcctgtgctggtggtgtacgacgacagcgatagacctag




QVWDSSSDHWVFGGGTK
cggcatccccgagagattcagcggcagcaattccggcaataccgccacac




LTVI
tgaccatcagcagagtggaagctggcgacgagggcgactactactgccaa





gtgtgggacagcagcagcgaccactgggttttcggcggaggcacaaagct





gacagtgctg






CD5-sp-
MPMGSLQPLATLYLLGML
atgccaatggggtccctacaacccctggcaacactatatctgctaggtat



VHanti-VEGF-A
VASCLGEVQLVESGGGLV
gctcgtggcctcctgtttaggagaggtgcagctggttgaatctggcggag



(G4S)3-
QPGGSLRLSCTASGPSLTD
gactggttcagcctggcggatctctgagactgagctgtaccgccagcggc



VLanti-VEGF-A
YYYMTWVRQAPGKGLE
ttcagcctgaccgactactactacatgacctgggtccgacaggcccctgg



-G4S-
WVGFIDPDDDPYYATWA
caaaggacttgagtgggtcggattcatcgaccccgacgacgatccttact



VHanti-ANG-2
KGRFTISRDNSKNTLYLQ
acgccacatgggccaagggcagattcaccatcagccgggacaacagcaag



(G4S)3-
MNSLRAEDTAVYYCAGG
aacaccctgtacctgcagatgaacagcctgagagccgaggacaccgccgt



VLanti-ANG-2
DHNSGWGLDIWGQGTLV
gtactattgtgccggcggagatcacaatagcggctggggccttgatattt




TVSSGGGGSGGGGSGGG
ggggccagggaacactggtcaccgtgtctagtggtggaggtggctccggt




GSEIVMTQSPSTLSASVGD
ggcggtggcagcggcggtggcggctctgagatcgtgatgacacagagccc




RVUTCQASEIHSWLAWY
cagcacactgtctcccagcgtgggagacagagtgatcatcacatgccagg




QQKPGKAPKLLIYLASTL
ccagcgagatcatccacagctggctggcttggtatcagcagaagcctggc




ASGVPSRFSGSGSGAEFTL
aaggcccctaagctgctgatctacctggcctctacactggccagcggagt




TISSLQPDDFATYYCQNV
gcctagcagattttctggctctggatctggcgccgagttcaccctgacca




YLASTNGANFGQGTKLTV
tcagtagcctgcagcctgacgacttcgccacctactactgccagaacgtg




LGGGGGSQVQLVQSGAE
tacctggccagcaccaacggcgccaattttggccagggcaccaagctgac




VKKPGASVKVSCKASGY
agtgctgggaggcggagggggctctcaggttcagctcgttcagtctggcg




TFTGYYMHWVRQAPGQG
ccgaagtgaagttaacctggcgcctctgtgaaggtgtcctgcaaggccgg




LEWMGWINPNSGGTNYA
cggctacacctttaccggctactacatgcactgggtccgacaggctccag




QKFQGRVTMTRDTSISTA
gacagggacttgaatggatgggctggatcaaccccaatagcggcggcacc




YMELSRLRSDDTAVYYCA
aattacgcccagaaattccagggcagagtgaccatgaccagagacaccag




RSPNPYYYDSSGYYYPGA
catcagcaccgcctacatggaactgagccggctgagatccgatgacaccg




FDIWGQGTMVTVSSGQG
ccgtgtactactgcgccagatctcccaatccttactactacgacagcagc




GSGGGGSGGGGSSYVETQ
gggtactactacccaggcgccttcgatatttggggccagggcacagctct




PPSVSVAPGQTARITCGGN
agctacgtgctgacacagcctccatccgtgtctgtggctccaggacagac




NIGSKSVHWYQQKPGQA
cgccagaatcacatgcggcggcaacaacatcggcagcaagagcgtgcact




PVLVVYDDSDRPSGIPERF
ggtatcagcagaagcctggacaggctcctgtgctggtggtgtacgacgac




SGSNSGNTATLTISRVEAG
agcgatagacctagcggcatccccgagagattcagcggcagcaattccgg




DEADYYCQVWDSSSDHW
caataccgccacactgaccatcagcagagtggaagctggcgacgaggccg




VFGGGTKLIVL
actactactgccaagtgtgggacagcagcagcgaccactgggttttcggc





ggaggcacaaagctgacagtgctg





XMVA04
VHanti-VEGF-A
EVQLVESGGGLVQPGGSL
gaggtgcagctggtggagagcggaggaggactggtgcagccaggaggctc



(G6-23)
RLSCAASGFTISDYWIHW
cctgcggctgtcttgcgccgccagcggctttaccatctccgactactgga




VRQAPGKGLEWVAGITPA
ttcactgggtgagacaggcacctggcaagggactggagtgggtcgcagga





GGYTYYADSVKGRFTISA

atcaccccagcaggaggctacacatactatgccgacagcgtgaagggccg




DTSKNTAYLQMNSLRAED
gttcaccatctccgccgatacctctaagaacacagcctatctgcagatga




TAVYYCARFVFFLPYAMD
actccctgcgggccgaggacacagccgtgtactattgcgccagattcgtg





YWGQGTLVTVSS

ttcttcctgccatacgccatggattattggggccagggcaccctggtgac





agtgagctcc






VLanti-VEGF-A
DIQMTQSPSSLSASVGDR
gatattcagatgacacagtccccatctagcctgtctgccagcgtgggcga



(G6-23)
VTITCRASQDVSTAVAWY
cagcgtgaccatcacatgtagagcaagccaggacgtgagcaccgcagtgg




QQKPGKAPKLLIYSASFLY
catggtaccagcagaagcctggcaaggccccaaagctgctgatctactcc





SGVPSRFSGSGSGTDFTLT

gcctctttcctgtattctggcgtgccaagcaggtttagcgggtccggatc




ISSLQPEDFATYYCKQGYA
tggaaccgacttcaccctgacaatctcctctctgcagcctgaggattttg





NPWTFGQGTKVEIKR

ccacatactattgcaagcagggctatgccaatccatggaccttcggccag





ggcacaaaggtggagatcaagagg






VHanti-ANG-2
QVQLVQSGAEVKKPGAS
caggttcagctggttcagtctggcgccgaagtgaagaaacctggcgcctc




VKVSCKASGYTFTGYYM
tgtgaaggtgtcctgcaaggccagcggctacacctttaccggctactaca





HWVRQAPGQGLEWMGWI

tgcactgggtccgacaggctccaggacagggacttgaatggatgggctgg





NPNSGGTNYAQKFQGRVT

atcaaccccaatagcggcggcaccaattacgcccagaaattccagggcag




MTRDTSISTAYMELSRLR
agtgaccatgaccagagacaccagcatcagcaccgcctacatggaactga




SDDTAVYYCARSPNPYYY
gccggctgagatccgatgacaccgccgtgtactactgcgccagatctccc





DSSGYYYPGAFDIWGQGT

aatccttactactacgacagcagcgggtactactacccaggcgccttcga




MVTVSS
tatttggggccagggcacaatggtcaccgtgtctagt






VLanti-ANG-2
SYVETQPPSVSVAPGQTAR
agctacgtgctgacacagcctccatccgtgtctgtggctccaggacagac




ITCGGNNIGSKSVHWYQQ
cgccagaatcacatgcggcggcancancatcggcagcaagagcgtgcact




KPGQAPVLVVYDDSDRPS
ggtatcagcagaagcctggacaggctcctgtgctggtggtgtacgacgac




GIPERFSGSNSGNTATLT
agcgatagacctagcggcatccccgagagattcagcggcagcaattccgg




ISRVEAGDEADYYCQVWD
caataccgccacactgaccatcagcagagtggaagctcgcgacgaggccg





SSSDHWVFGGGTKLTVL

actactactgccaagtgtgggacagcagcagcgaccactgggttttcggc





ggaggcacaaagctgacagtgctg






VHanti-VEGF-A-
EVQLVESGGGLVQPGGSL
gaggtgcagctggtggagagcggaggaggactggtgcagccaggaggctc



(G4S)3-
RLSCAASGETISDYWIHW
cctgcggctgtcttgcgccgccagcggctttaccatctccgactactgga



VLanti-VEGF-A-
VRQAPGKGLEWVAGITPA
ttcactgggtgagacaggcacctggcaagggactggagtgggtggcagga



G4S-
GGYTYYADSVKGRFTISA
atcaccccagcaggaggctacacatactatgccgacagcgtgaagggccg



VHanti-ANG-2-
DESKNTAYLQMNSLRAED
gttcaccatctccgccgatacctctaagttacacagcctatctgcagatg



(G4S)3-
TAVYYCARFVEFLPYAMD
aactccctgcgggccgaggacacagccgtgtactattgcgccagattcgt



VLanti-ANG-2
YWGQGTLVTVSSGGGGS
gttcttcctgccatacgccatggattattggggccagggcaccctggtga




GGGGSGGGGSDIQMTQSP
cagtgagctccggtggaggtggctccggtggcggtggcagcggcggtggc




SSLSASVGDRVTITCRAS
ggctctgatattcagatgacacagtccccatctagcctgtctgccagcgt




QDVSTAVAWYQQKPGKAP
gggcgacagggtgaccatcacatgtagagcaagccaggacgtgagcaccg




KLLIYSASFLYSGVPSRFS
cagtggcatggtaccagcagaagcctggcaaggccccaaagctgctgatc




GSGSGTDFTLTISSLQPED
tactccgcctctttcctgtattctggcgtgccaagcaggtttagcgggtc




FATYYCKQGYANPWTFG
cggatctggaaccgacttcaccctgacaatctcctctctgcagcctgagg




QGTKVEIKRGGGGSQVQL
attttgccacatactattgcaagcagggctatgccaatccatggaccttc




VQSGAEVKKPGASVKVS
ggccagggcacaaaggtggagatcaagaggggggagggggctctcaggtt




CKASGYTFTGYYMHWVR
cagctggttcagtctggcgccgangtgBagaaacctcgcgcctctgtgaa




QAPGQGLEWMGWINPNS
ggtgtcctgcaaggccagcggctacacctttaccggctactacatgcact




GGTNYAQKPQGRVTMTRD
gggtccgacaggctccaggacagggacttgaatggatgggctggatcaac




TSISTAYMELSRERSDDT
cccaatagcggcggcaccaattacgcccagaaattccagggcagagtgac




AVYYCARSPNPYYYDSSG
catgaccagagacaccagcatcagcaccgcctacatggaactgagccggc




YYYPGAFDIWGQGTMVT
tgagatccgatgacaccgccgtgtactactgcgccagatctcccaatcct




VSSGGGGSGGGGSGGGG
tactactacgacagcagcgggtactgaggtggctccggtggcggtggcag




SSYVLTQPPSVSVAPGQTA
cgacggtcgcggctctagctacgtgctgacacagcctccatccgtgtctg




RITCGGNNIGSKSVHWYQ
tggctccaggacagaccgccagaatcacatgcggcggcaacaacatcggc




QKPGQAPVLVVYDDSDRP
agcaagagcgtgcactggtatcagcagaagcctggacaggctcctgtgct




SGIPERFSGSNSGNTATLT
ggtggtgtacgacgacagcgatagacctagcggcatccccgagagattca




ISRVEAGDEADYYCQVW
gcggcagcaattccggcaataccgccacactgaccatcagcagagtcgaa




DSSSDHWVFGGGTKLTVL
gctggcgacgaggccgactactactgccaagtgtgggacagcagcagcga





ccactgggttttcggcggaggcacaaagctgacagtgctg






CD5-sp-
MPMGSLQPLATLYLLGML
atgccaatggggtccctacaacccctggcaacactatatctgctaggtat



VHanti-VEGF-A-
VASCLGEVQLVESGGGLV
gctcgtggcctcctgtttaggagaggtgcagctggtggagagcggaggag



(G4S)3-
QPGGSLRLSCAASGFTISD
gactggtgcagccaggaggctccctgcggctgtcttgcgccgccagcggc



VLanti-VEGF-A-
YWIHWVRQAPGKGLEW
tttaccatctccgactactggattcactgggtgagacaggcacctggcaa



G4S-
VAGITPAGGYTYYADSVK
gggactggagtgggtggcaggaatcaccccagcaggaggctacacatact



VHanti-ANG-2-
GRFTISADTSKNTAYLQM
atgccgacagcgtgaagggccggttcaccatctccgccgatacctctaag



(G4S)3-
NSLRAEDTAVYYCARFVF
aacacagcctatctgcagatgaactccctgcgggccgaggacacagccgt



VLanti-ANG-2
FLPYAMDYWGQGTLVTV
gtactattgcgccagattcgtgttcttcctgccatacgccatggattatt




SSGGGGSGGGGSGQGGS
gcggccagggcaccctggtgacagtgagctccggtggaggtggctccggt




DIQMTQSPSSLSASVGDR
ggcggtggcagcggcgctggcggctctgatattcagatgacacagtcccc




VTITCRASQDVSTAVAWY
atctagcctgtctgccagcgtgggcgacagggtgaccatcacatgtagag




QQKPGKAPKLLIYSASFLY
caagccaggacgtgagcaccgcagtggcatggtaccagcagaagcctggc




SGVPSRFSGSGSGTDFILT
aaggccccaaagctgctgatctactccgcctctttcctgtattctggcgt




ISSLQPEDFATYYCKQGYA
gccaagcaggttttagcgggtccggatctcgaaccgacttcaccctgaca




NPWTPGQGTKVEIKRGG
atctcctctctgcagcctgaggattttgccacatactattgcaagcaggg




GGSQVQLVQSGAEVKKP
ctatgccaatccatggaccttcggccagcgcacaaaggtggagatcaaga




GASVKVSCKASGYTFTGY
ggggcggagggggctctcaggttcagctggttcagtctggcgccgaagtg




YMHWVRQAPGQGLEWM
angBancctggcgcctctgtgaaggtgtcctgcaaggccagcggctacac




GWINPNSGGTNYAQKFQ
ctttaccggctactacatgcactgggtccgacaggctccnggacagggnc




GRVTMTRDTSISTAYMEL
ttgaatggatgggctggatcaaccccaatagcggcggcaccaattacgcc




SRLRSDDTAVYYCARSPN
cagaaattccagggcagagtgaccatgaccagagacaccagcatcagcac




PYYYDSSGYYYPGAFDIW
cgcctacatggaactgagccggctgagatccgatgacaccgccgtgtact




GQGTMVTVSSGGGGSGG
actgcgccagatctcccaatccttactactacgacagcagcgggtactac




GGSGGGGSSYVETQPPSV
tacccaggcgccttcgatatttggggccagggcacaatggtcaccgtgtc




SVAPGQTARITCGGNNIGS
tagtgctggagctggctccggtggcggtggcagcggcggtcgcggctcta




KSVHWYQQKPGQAPVLV
gctacgtgctgacacagcctccatccgtgtctgtggctccaggacagacc




VYDDSDRPSGIPERFSGSN
gccagaatcacatgcggcggcaacaacatcggcagcaagagcgtgcactg




SGNTATLTISRVEAGDEAD
gtatcagcagaagcctggacaggctcctgtgctggtggtgtacgacgaca




YYCQVWDSSSDHWVFGG
gcgatagacctagcggcatccccgagagattcagcggcagcaattccggc




GTKLTVL
aataccgccacactgaccatcagcagagtggaagctggcgacgaggccga





ctactactgccaagtgtgggacagcagcagcgaccactgggttttcggcg





gaggcacaaagctgacagtgctg









Example 2. Measurement of Expression of XMVA01, XMVA04, and XMVA09 in Cells

The HEK293T cells were transfected with pAAV9-XMVA01, pAAV9-XMVA04 and pAAV9-XMVA09 plasmids respectively, the supernatant was collected, and the expression of proteins in the supernatant was detected by ELISA. The specific operation is as follows: 293T cells were resuspended in complete culture medium of DMEM containing 10% fetal bovine serum, inoculated into a culture dish, and cultured at 37° C. in 5% CO2 incubator until the confluence of the cells reaches 70%-90%, then the plasmid was transfected using Lipofectamine 2000 (Invitrogen) transfection reagent according to the instructions thereof. The culture was continued for 72 hours, and then the supernatant was collected and stored at −80° C. for later use.


The specific detection method of ELISA was as follows: an ELISA plate (Thermo) was coated with 0.1 μg/mL VEGF165 (proteintech) protein, 100 μL per well, incubated overnight at 4° C., and the ELISA plate was washed three times with PBS containing 0.05% Tween (Sangon) for 3 minutes each time. The plates were blocked with PBS 200 μL/well containing 2% BSA (MikeBio) for 1 hour at room temperature and washed three times again. Conbercept (10 mg/mL) standard and the cell supernatants collected after transfecting HEK293T cells with pAAV9-XMVA01, pAAV9-XMVA04, and pAAV9-XMVA09 plasmids were added to the ELISA plate. The standard was diluted at 8 continuous dilutions starting at 312.5 ng/mL from the first well, and the supernatants to be tested were diluted at 1:10 or 1:50, the data were averaged, and a cell supernatant without plasmid transfection was used as a Control group, and the plate was incubated at 37° C. for 1 hour, and washed three times. A 1:5000 dilutions of goat anti-human IgG antibody (Jackson Immuno Research) labeled with horseradish peroxidase was added to each well, and the plate was incubated at 37° C. for 1 hour, and then washed three times. 100 μL/well of TMB chromogen solution (Beyotime) was added to each well, and reacted for 6 minutes at room temperature in the dark, and 100 μL/well of stop solution (Beyotime) was added to the above wells to terminate the reaction. A microplate reader was used to detect the OD value at 450 nm, and the contents of the sample to be tested were calculated. The results are shown in FIG. 3. Cells transfected with pAAV9-XMVA01, pAAV9-XMVA04 and pAAV9-XMVA09 vectors can effectively express VEGF165 neutralizing protein, with significant differences compared with the Control group.


Example 3. Effects of Expressing XMVA01, XMVA04, and XMVA09 in Cells on the Proliferation of Human Retinal Microvascular Endothelial Cells (HRMEC)

The cell density of HRMECs was adjusted to 4×104/mL with complete culture medium (Science Cell) of the ECM containing 1% ECGS, and the cells were inoculated 100 μL/well into a flat-bottom 96-well plate; after the pAAV9-XMVA01, pAAV9-XMVA04 and pAAV9-XMVA09 plasmids were transfected into HEK293T cells, respectively, the collected cell supernatants were added into the wells at 100 μL/well, and the cell supernatant without transfected plasmids was used as a Control group, and the cells were cultured for 72 hours at 37° C. in a 5% CO2 incubator. 20 μL/well of CCK-8 solution was added to the experimental group and control group respectively according to the instructions of Cell Counting Kit-8 (CCK-8, Biosharp). After incubation for 4 hours, a microplate reader was used to detect the OD value at 450 nm wavelength. The results are shown in FIG. 4. The protein expressed by pAAV9-XMVA09 can effectively inhibit the proliferation of HRMECs under the stimulation of ECGS, and the inhibition effect is significantly better than that of pAAV9-XMVA01 and pAAV9-XMVA04.


Example 4. Effects of Expressing XMVA01, XMVA04, and XMVA09 in Cells on the Tube Formation of HRMECS

The thawed matrigel (Corning) was uniformly spreaded in a flat-bottom 96-well plate, 50 μL/well, and then the plate was incubated at 37° C. for 1 hour in a 5% CO2 incubator; after the pAAV9-XMVA01, pAAV9-XMVA04 and pAAV9-XMVA09 plasmids were transfected into HEK293T cells, respectively, the collected cell supernatants were used to treat HRMECs, the cell supernatant without transfected plasmids was used as a control group, and the cells were resuspended with a basal medium of ECM without growth factors and serum after cultured for 48 hours, adjusted the cell density to 2×105/mL, and inoculated at 100 μL/well in a 96-well plate containing matrigel, and cultured in a 5% CO2 incubator at 37° C., and observed once every 2 hours; after 4 to 8 hours, the cells were observed and photographed under a microscope, and the influence of the supernatants to be tested on the formation of HRMECs tubes were recorded. The results are shown in FIG. 5. The protein expressed by pAAV9-XMVA09 can effectively inhibit the formation of HRMECs tubes, and the inhibition effect is significantly better than that of pAAV9-XMVA01 and pAAV9-XMVA04.


Example 5. Construction of Other Plasmid Vectors
Scheme 1

The VH amino acid sequence and the VL amino acid sequence of anti-VEGF, the VH amino acid sequence and the VL amino acid sequence of anti-ANG-2 were linked with G4S, (G4S)3 and G4S peptide linkers, respectively, with a secretory signal peptide CD5-sp nucleotide sequence added to the N-terminus to form an open reading frame with the structure of CD5-sp-VLanti-ANG-2-G4S-VHanti-VEGF-A-(G4S)3-VLanti-VEGF-A-G4S-VHanti-ANG-2; the nucleotide sequence was designed according to human codon preference, with a BamH I cleavage site introduced at the 5′ terminus, and an EcoR V cleavage site introduced at the 3′ terminus, and was named as XMVA10 (FIG. 7). The VH amino acid sequence and the VL amino acid sequence of anti-VEGF, the VH amino acid sequence and the VL amino acid sequence of anti-ANG-2 were identical to XMVA09.


Scheme 2

The VH amino acid sequence and the VL amino acid sequence of anti-VEGF, the VH amino acid sequence and the VL amino acid sequence of anti-ANG-2 were linked with G4S, (G4S)3 and G4S peptide linkers, respectively, with a secretory signal peptide CD5-sp nucleotide sequence added to the N-terminus to form an open reading frame with the structure of CD5-sp-VLanti-VEGF-A-G4S-VHanti-ANG-2-(G4S)3-VLanti-ANG-2-G4S-VHanti-VEGF-A; the nucleotide sequence was designed according to human codon preference, with a the BamH I cleavage site introduced at the 5′ terminus, and an EcoR V cleavage site introduced at the 3′ terminus, and was named as XMVA11 (FIG. 8). The VH amino acid sequence and the VL amino acid sequence of anti-VEGF, the VH amino acid sequence and the VL amino acid sequence of anti-ANG-2 were identical to XMVA09.


Scheme 3

The VH amino acid sequence and the VL amino acid sequence of anti-VEGF, the VH amino acid sequence and the VL amino acid sequence of anti-ANG-2 were linked with (G(S)3, G4S and (G4S)3 peptide linkers, respectively, with a secretory signal peptide CD5-sp nucleotide sequence added to the N-terminus to form an open reading frame with the structure CD5-sp-VHanti-VEGF-A-(G4S)3-VLanti-VEGF-A-G4S-VHanti-ANG-2-(G4S)3-VLanti-ANG-2; the nucleotide sequence was designed according to human codon preference, with a BamH I cleavage site introduced at the 5′ terminus, and an EcoR. V cleavage site introduced at the 3′ terminus, and was named as XMVA13 (FIG. 9).


Scheme 4

The VH amino acid sequence and the VL amino acid sequence of anti-VEGF, the VH amino acid sequence and the VL amino acid sequence of anti-ANG-2 were linked with G4S, (G4S)3 and G4S peptide linkers, respectively, with a secretory signal peptide CD5-sp nucleotide sequence added to the N-terminus to form an open reading frame with the structure of CD5-sp-VLanti-ANG-2-G4S-VHanti-VEGF-A-(G4S)3-VL anti-VEGF-A-G4S-VHanti-ANG-2; the nucleotide sequence was designed according to human codon preference, with a BamH I cleavage site introduced at the 5′ terminus, and an EcoR V cleavage site introduced at the 3′ terminus, and was named as XMVA14 (FIG. 10). The VH amino acid sequence and the VL amino acid sequence of anti-VEGF, the VH amino acid sequence and the VL amino acid sequence of anti-ANG-2 were identical to XMVA13.


Scheme 5

The VH amino acid sequence and the VL amino acid sequence of anti-VEGF, the VH amino acid sequence and the VL amino acid sequence of anti-ANG-2 were linked with G4S, (G4S)3 and G4S peptide linkers, respectively, with a secretory signal peptide CD5-sp nucleotide sequence added to the N-terminus to form an open reading frame with the structure of CD5-sp-VLanti-VEGF-A-G4S-VHanti-ANG-2-(G4S)3-VLanti-ANG-2-G4S-VHanti-VEGF-A; the nucleotide sequence was designed according to human codon preference, with a BamH I cleavage site introduced at the 5′ terminus, and an EcoR V cleavage site introduced at the 3′ terminus, and was named as XMVA15 (FIG. 11). The VH amino acid sequence and the VL amino acid sequence of anti-VEGF, the VH amino acid sequence and the VL amino acid sequence of anti-ANG-2 were identical to XMVA13.


XMVA10, XMVA11, XMVA13, XMVA14 and XMVA15 vectors were constructed through conventional molecular biology operations such as ligation, transformation, cloning screening and identification, and high-quality plasmid DNA was obtained for later use by using an endotoxin-free plasmid extraction kit (MN).


According to the method described in Example 2, plasmids were transfected into HEK293T cells, respectively, supernatants were collected, and expression of protein in supernatant was detected by ELISA. The effect of expressing the above vectors in cells on the proliferation of HRMECs was detected according to the method described in Example 3. The effect of expressing the above plasmids in cells on HRMECs tube formation was detected according to the method described in Example 4. Recombinant AAV viruses were prepared and identified according to the method described in Example 5.









TABLE 3







Sequence information of XMVA10-XMVAIS












Sequence















Product
informa-






Number
tion
AA sequence

DNA sequence





XMVA10
VLanti-ANG-2-
EIVLTQSPGTLSLSPGERA
SEQ
gagatcgtgctgacacagagccctggcacactgtcactgtctccag
SEQ



G4S-
TLSCRASQSITGSYLAWYQ
ID
gcgaaagagccacactgagctgtagagccagccagagcatcaccg
ID



VHanti-VEGF-A-
QKPGQAPRLLICGASSWAT
NO:
gctcttacctggcttggtatcagcagaagcctggacaggcccctaga
NO:



(G4S)3-
GIPDRESGSGSGTDFTLTI
18
ctgctgatttgtggcgcctcttcttgggccaccggcattcccgatagat
43



VLanti-VEGF-A-
SRLEPEDFAVYYCQQYSSS

tttctggcagcggctccggcaccgacttcaccctgacaatcagcaga




G4S-
PITFGQGTRLEIKRGGGGS

ctggaacccgaggacttcgccgtgtactactgccagcagtacagca




VHanti-ANG-2
EVQLVESGGGLVQPGGSL

gcagccccatcacctttggccagggcacaagactggaaatcaagc





RISCAASGFTISDYWIHW

ggggcggagggggctctgaggtgcagctggtggagagcggagg





VRQAPGKGLEWVAGITPA

aggactggtgcagccaggaggctccctgcggctgtcttgcgccgcc





GQYTYYADSVKQRFTISA

agcggctttaccatctccgactactggattcactgggtgagacaggc





DISKNTAYLQMNSERAED

acctggcaagggactggagtgggtggcaggaatcaccccagcag





TAVYYCARFVFFLPYAMD

gaggctacacatactatgccgacagcgtgaagggccggttcaccat





YWGQGTLVTVSSGGGGS

ctccgccgatacctctaagaacacagcctatctgcagatgaactccct





GGGGSGGGGSDIQMTQSP

gcgggccgaggacacagccgtgtactattgcgccagattcgtgttct





SSLSASVGDRVTITCRASQ

tcctgccatacgccatggattattggggccagggcaccctggtgaca





DVSTAVAWYQQKPGKAP

gtgagctccggtggaggtggctccggtggcggtggcagcggcggt





KLLIYSASFLYSGVPSRES

ggcggctctgatattcagatgacacagtccccatctagcctgtctgcc





GSGSGTDFTLTISSLQPED

agcgtgggcgacagggtgaccatcacatgtagagcaagccaggac





FATYYCKQGYANPWTFGQ

gtgagcaccgcagtggcatggtaccagcagaagcctggcaaggcc





GTKVEIKRGGGGSQVQLV

ccaaagctgctgatctactccgcctctttcctgtattctggcgtgccaa





ESGGGVVQPGRSLRLSCA

gcaggtttagcgggtccggatctggaaccgacttcaccctgacaatc





ASGFTFINYGMHWGRQA

tcctctctgcagcctgaggattttgccacatactattgraagcagggct





PGKGLEWVAVISHDGNNK

atgccaatccatggaccttcggccagggcacaaagctggagatcaa





YYVDSVKGRFTISRDNSK

gaggggcggagggggctctcaggtgcagctggttgaatctggtgg





NTLYLQMNSLRAEDTAVY

cggagttgtgcagcctggcagaagcctgagactgtcttgtgccgcc





YCAREGIDFWSGLNWFDP

agcggcttcaccttcaccaactatggaatgcactggggcagacagg





WGQGTLVTVSSA

cccctggcaaaggacttgaatgggtcgccgtgatcagccacgacg







gcaacaacaagtactacgtggacagcgtgaagggcagattcaccat







cagccgggacaacagcaagaacaccctgtacctgcagatgaacag







cctgagagccgaggacaccgccgtgtactattgtgccagagaggg







catcgacttttggagcggcctgaattggttcgacccttggggacagg







gcaccctggttacagtttcttctgcc







CD5-sp-
MPMGSLQPLATLYLLGMLV
SEQ
atgccaatggggtccctacaacccctggcaacactatatctgctaggt
SEQ



VLanti-ANG-2-
ASCLGEIVLTQSPGTLSLS
ID
atgctcgtggcctcctgtttaggagagatcgtgctgacacagagccc
ID



G4S-
PGERATLSCRASQSITGSY
NO:
tggcacactgtcactgtctccaggcgaaagagccacactgagctgta
NO:



VHanti-VEGF-A-
LAWYQQKPGQAPRLLICG
21
gagccagccagagcatcaccggctctacctggcttggtatcagca
44



(G4S)3-
ASSWATGIPDRESGSGSGT

gaagcctggacaggcccctagactgctgatttgtggcgcctcttcttg




VLanti-VEGF-A-
DFTLTISRLEPEDFAVYYC

ggccaccggcattcccgatagattttctggcagcggctccggcacc




G4S-
QQYSSSPITPGQGTRLEIK

gacttcaccctgacaatcagcagactggaacccgaggacttcgccg




VHanti-ANG-2
RGGGGSEVQLVESGGGLV

tgtactactgccagcagtacagcagcagccccatcacctttggccag





QPGGSERLSCAASGFTISD

ggcacaagactggaaatcaagcggggcggagggggctctgaggt





YWIHWVRQAPGKGLEWV

gcagctggtggagagcggaggaggaatggtgcagccaggaggct





AGITPAGGYTYYADSVKG

ccctgcggctgtcttgcgccgccagcggctttaccatctccgactact





RFTISADTSKNTAYLQMNS

ggattcactgggtgagacaggcacctggcaagggactggagtggg





LRAEDTAVYYCARFVFFL

tggcaggaatcaccccagcaggaggctacacatactatgccgaca





PYAMDYWGQGTLVTVSS

gcgtgaagggccggttcaccatctccgccgatacctctaagaacac





GGGGSGGGGSGGGGSDIQ

agcctatctgcagatgaactccctgcgggccgaggacacagccgtg





MTQSPSSLSASVGDRVTIT

tactattgcgccagattcgtgttcttcctgccatacgccatggattattg





CRASQDVSTAVAWYQQKP

gggccagggcaccctggtgacagtgagctccggtggaggtggctc





GKAPKLLIYSASFLYSGVP

cggtggcggtggcagcggcggtggcggctctgatattcagatgaca





SRFSGSGSGTDFTLTISSL

cagtccccatctagcctgtctgccagcgtgggcgacagggtgacca





QPEDFATYYCKQGYANPWT

tcacatgtagagcaagccaggacgtgagcaccgcagtggcatggt





FGQGTKVEIKRGGGGSQV

accagcagaagcctggcaaggccccaaagctgctgatctactccgc





QLVESGGGVVQPGRSLRL

ctctttcctgtattctggcgtgccaagcaggtttagcgggtccggatct





SCAASQFTFTNYGMHWG

ggaaccgacttcaccctgacaatctcctctctgcagcctgaggatttt





RQAPGKGLEWVAVISHDG

gccacatactattgcaagcagggctatgccaatccatggaccttcgg





NNKYYVDSVKGRFTISRD

ccagggcacaaaggtggagatcaagaggggcggagggggctctc





NSKNILYLQMNSLRAEDT

aggtgcagctggttgaatctggtggcggagttgtgcagcctggcag





AVYYCAREGIDFWSGLN

aagcctgagactgtcttgtgccgccagcggcttcaccttcaccaacta





WEDPWGQGTLVTVSSA

tggaatgcactggggcagacaggcccctggcaaaggacttgaatg







ggtcgccgtgatcagccacgacggcaacaacaagtactacgtgga







cagcgtgaagggcagattcaccatcagccgggacaacagcaagaa







caccctgtaccrgcagatgaacagcctgagagccgaggacaccgc







cgtgtactattgtgccagagagggcatcgacttttggagcggcctga







attggttcgacccttggggacagggcaccctggttacagtttcttctgc







c






XMVAII
VLanti-VEGF-A
DIQMTQSPSSLSASVGDRV
SEQ
gatattcagatgacacagtccccatctagcctgtctgccagcgtggg
SEQ



-G4S-
TITCRASQDVSTAVAWYQ
ID
cgacagggtgaccatcacatgtagagcaagccaggacgtgagcac
ID



VHanti-ANG-2
QKPGKAPKLLIYSASFLYS
NO:
cgcagtggcatggtaccagcagaagcctggcaaggccccaaagct
NO:



-(G4S)3-
GVPSRFSGSGSGTDETLTI
19
gctgatctactccgcctctttcctgtattctggcgtgccaagcaggttta
45



VLanti-ANG-2
SSLQPEDFATYYCKQGYAN

gcgggtccggatctggaaccgacttcaccctgacaatctcctctctg




G4S-
PWTFGQGTKVEIKRGGGG

cagcctgaggattttgccacatactattgcaagcagggctatgccaat




VHanti-VEGF-A
SQVQLVESGGGVVQPGRS

ccatggaccttcggccagggcacaaaggtggagatcaagagggg





LRLSCAASGFTETNYGMH

cggagggggctctcaggtgcagctggtttgaatctggtggcggagtt





WGRQAPGKGLEWVAVISH

gtgcagcctggcagaagcctgagactgtcttgtgccgccagcggct





DGNNKYYVDSVKGRFTIS

tcaccttcaccaactatggaatgcactggggcagacaggcccctgg





RDNSKNTLYLQMNSLRAE

caaaggacttgaatgggtcgccgtgatcagccacgacggcaacaa





DTAVYYCAREGIDFWSGL

caagtactacgtggacagcgtgaagggcagattcaccatcagccgg





NWEDPWGQGTLVTVSSA

gacaacagcaagaacaccctgtacctgcagatgaacagcctgaga





GGGGSGGGGSGGGGSEIV

gccgaggacaccgccgtgtactattgtgccagagagggcatcgact





LTQSPGTLSLSPGERATLS

tttggagcggcctgaattggttcgacccttggggacagggcaccctg





CRASQSITGSYLAWYQQKP

gttacagtttcttctgccggtggaggtggctccggtggcggtggcag





GQAPRLLICGASSWATGIP

cggcggtggcggctctgagatcgtgctgacacagagccctggcac





DRFSGSGSGTDFTLTISRL

actgtcactgtctccaggcgaaagagccacactgagctgtagagcc





EPEDFAVYYCQQYSSSPIT

agccagagcatcaccggctcttacctggcttggtatcagcagaagcc





FGQGTRLEIKRGGGGSEV

tggacaggcccctagactgctgatttgtggcgcctcttcttgggccac





QLVESGGQLVQPGGSLRL

cggcattcccgatagattttctggcagcggctccggcaccgacttca





SCAASGETISDYWIHWVR

ccctgacaatcagcagactggaacccgaggacttcgccgtgtacta





QAPGKGLEWVAGITPAGG

ctgccagcagtacagcagcagccccatcacctttggccagggcaca





YTYYADSVKGRFTISADTS

agactggaBatcaagcggggggagggggctctgaggtgcagct





KNTAYLQMNSLRAEDTAV

ggtggagagcggaggaggactggtgcagccaggaggctccctgc





YYCARFVPFLPYAMDYW

ggctgtcttgcgccgccagcggctttaccatctccgactactggattc





GQGTLVTVSS

actgggtgagacaggcacctggcaagggactggagtggctggca







ggaatcaccccagcaggaggctacacatactatgccgacagcgtg







aagggccggttcaccatctccgccgatacctctaagaacacagccta







tctgcagatgaactccctgcgggccgaggacacagccgtgtactatt







gcgccagattcgtgttcttcctgccatacgccatggattattggggcc







agggcaccctggtgacagtgagctcc







CD5-sp-
MPMGSLQPLATLYLLGML
SEQ
atgccaatggggtccctacaacccctggcaacactatatctgctaggt
SEQ



VLanti-VEGF-A-
VASCLGDIQMTQSPSSLSA
ID
atgctcgtcgcctcctgtttaggagatattcagatgacacagtccccat
ID



G4S-
SVGDRVTITCRASQDVSTA
NO:
ctagcctgtctgccagcgtgggcgacagggtgaccatcacatgtag
NO:



VHanti-ANG-2-
VAWYQQKPGKAPKLLIYS
22
agcaagccaggacgtgagcaccgcagtggcatggtaccagcaga
46



(G4S)3-
ASFLYSGVPSRESGSGSGT

agcctggcaaggccccaaagctgctgatctactccgcctctttcctgt




VLanti-ANG-2-
DFTLTISSLQPEDFATYYC

attctggcgtgccaagcaggtttagcgggtccggatctggaaccga




G4S-
KQGYANPWTFGQGTKVEI

cttcaccctgacaatctcctctctgcagcctgaggattttgccacatac




VHanti-VEGF-A
KRGGGGSQVQLVESGGG

tattgcaagcagggctatgccaatccatggaccttcggccagggca





VVQPGRSLRLSCAASGFT

caaaggtggagatcaagaggggcggagggggctctcaggtgcag





FTNYGMHWGRQAPGKGL

ctgcttgaatctggtggcggagttgtgcagcctggcagaagcctga





EWVAVISHDGNNKYYVDS

gactgtcttgtgccgccagcggcttcaccttcaccaactatggaatgc





VKGRFTISRDNSKNTLYLQ

actggggcagacaggcccctggcaRaggacttgaatgggtcgccg





MNSLRAEDTAVYYCAREG

tgatcagccacgacggcaacaacaagtactacgtggacagcgtga





IDFWSGLNWEDPWGQGT

agggcagattcaccatcagccgggacaacagcaagaacaccctgt





LVTVSSAGGGGSGGGGSG

acctgcagatgaacagcctgagagccgaggacaccgccgtgtact





GGGSEIVLTQSPGTLSLSP

attgtgccagagagggcatcgacttttggagcggcctgaattggttc





GERATLSCRASQSITGSYL

gacccatggggacagggcaccctggttacagttttctttctgccggtgg





AWYQQKPGQAPRLLICGA

aggtggctccggtggcggtggcagcggcggtggcggctctgagat





SSWATGIPDRESGSGSGTD

cgtgctgacacagagccctggcacactgtcactgtctccaggcgaa





FTLTISRLEPEDFAVYYCQ

agagccacactgagctgtagagccagccagagcatcaccggctctt





QYSSSPITFGQGTRLEIKR

acctggcttggtatcagcagaagcctggacaggcccctagactgct





GGGGSEVQLVESGGGLVQ

gatttgtggcgcctcttcttgggccaccggcattcccgatagattttct





PGGSLRLSCAASGFTISDY

ggcagcggctccggcaccgacttcaccctgacaatcagcagactg





WIHWVRQAPGKGLEWVA

gaacccgaggacttcgccgtgtactactgccagcagtacagcagca





GITPAGGYTYYADSVKGR

gccccatcacctttggccagggcacaagactggaaatcaagcgcg





FTISADTSKNTAYLQMNSL

gcggagggggctctgaggtgcagctggtggagagcggaggagg





RAEDTAVYYCARFVFELP

actggtgcagccaggaggctccctgcggctgtcttgcgccgccagc





YAMDYWGQGTLVTVSS

ggctttaccatctccgactactggattcactgggtgagacaggcacct







ggcaagggactggagtgggtggcaggaatcaccccagcaggagg







ctacacatactatgccgacagcgtgaagggccggttcaccatctccg







ccgatacctctaagaacacagcctatctgcagatgaactccctgcgg







gccgaggacacagccgtgtactattgcgccagattcgtgttcttcctg







ccatacgccatggattattggggccagggcaccctggtgacagtga







gctcc






XMVA13
VHanti-VEGF-A
DYWIH
SEQ
gactactggattcac
SEQ



(G6-31)-

ID

ID



CDR1

NO:

NO:





1

24






VHanti-VEGF-A
GITPAGGYTYYADSVKG
SEQ
ggaatcaccccagcaggaggctacacatactatgccgacagcgtg
SEQ



(G6-31)-

ID

ID



CDR2

NO:

NO:





2

25






VHanti-VEGF-A
FVFFLPYAMDY
SEQ
ttcgtgttcttcctgccatacgccatggattat
SEQ



(G6-33)-

ED

ID



CDR3

NO:

NO:





3

26






VHanti-VEGF-A
EVQLVESGGGLVQPGGSL
SEQ
gaggtgcagctggtggagagcggaggaggactggtgcagccagga
SEQ



(G6-31)
RLSCAASGFTISDYWIHW
ID
ggctccctgcggctgtcttgcgccgccagcggctttaccatctccg
ID




VRQAPGKGLEWVAGITPA
NO:
actactggattcactgggtgagacaggcacctggcaagggactgga
NO:




GGYTYYADSVKGRFTISA
13
gtgggtggcaggaatcaccccagcaggaggctacacatactatgcc
27




DTSKNTAYLQMNSLRAED

gacagcgtgaagggccggttcaccatctccgccgatacctctaaga





TAVYYCARFVFFLPYAMD

acacagcctatctgcagatgaactccctgcgggccgaggacacagcc





YWGQGTLVTVSS

gtgtactattgcgccagattcgtgttcttcctgccatacgccatgga







ttattggggccagggcaccctggtgacagtgagctcc







VLanti-VEGF-A
RASQDVSTAVA
SEQ
agagcaagccaggacgtgagcaccgcagtggca
SEQ



(G6-31)-

ID

ID



CDR1

NO:

NO:





4

28






VLanti-VEGF-A
SASFLYS
SEQ

SEQ



(G6-31)-

ID

ID



CDR2

NO:

NO:





5

29






VLanti-VEGF-A
QQGYGNPFT
SEQ
cagcagggctatggcaatccattcacc
SEQ



(G6-31)-

ID

ID



CDR3

NO:

NO:





47

55






VLanti-VEGF-A
DIQMTQSPSSLSASVGDRV
SEQ
gatattcagatgacacagtccccatctagcctgtctgccagcgtggg
SEQ



(G6-31)
TITCRASQDVSTAVAWYQ
ID
cgacagggtgaccatcacatgtagagcaagccaggacgtgagcac
ID




QKPGKAPKLLIYSASFLYS
NO:
cgcagtggcatggtaccagcagaagcctggcaaggccccaaagct
NO:




GVPSRFSGSGSGTDETLTI
48
gctgatctactccgcctctttcctgtattctggcgtcccaagcaggttta
56




SSLQPEDFATYYCQQGYGN

gcgggtccggatctggaaccgacttcaccctgacaatctcctctctg





PFTFGQGTKVEIKR

cagcctgaggattttgccacatactattgccagcagggctatggcaat







ccattcacctttggccagggcacaaaggtggagatcaagagg







VHanti-ANG-2
QVQLVESGGGVVQPGRSL
SEQ
caggtgcagctggttgaatctggtggcggagttgtgcagcctggca
SEQ



(3.19.3)
RESCAASGFTFTNYGMH
ID
gaagcctgagactgtcttgtgccgccagcggcttcaccttcaccaac
NO:




WGRQAPGKGLEWVAVISH
NO:
tatggaatgcactggggcagacaggcccctggcaaaggacttgaat
35




DGNNKYYVDSVKGRETIS
15
gggtcgccgtgatcagccacgacggcaacaacaagtactacgtgg





RDNSKNTLYLQMNSLRAE

acagcgtgaagggcagattcaccatcagccgggacaacagcaaga





DTAVYYCAREGIDFWSGL

acaccctgtacctgcagatgaacagcctgagagccgaggacaccg





NWFDPWGQGTLVTVSSA

ccgtgtactattgtgccagagagggcatcgacttttggagcggcctg







aattggttcgacccttggggacagggcaccctggttacagtttcttctg







CC







VLanti-ANG-2
EIVLTQSPGILSLSPGERAT
SEQ
gagatcgtgctgacacagagccctggcacactgtcactgtctccag
SEQ



(3.19.3)
LSCRASQSITGSYLAWYQ
ID
gcgaaagagccacactgagctgtagagccagccagagcatcaccg
ID




QKPGQAPRLLICGASSWAT
NO:
gctcttacctggcttggtatcagcagaagcctggacaggcccctaga
NO:




GIPDRPSGSGSGTDFTLTI
16
ctgctgatttctggcgcctcttcttgggccaccggcattcccgatagat
39




SRLEPEDPAVYYCQQYSSS

ttctggcagcggctccggcaccgacttcaccctgacaatcagcaga





PITFGQGTRLEIKR

ctggaacccgaggacttcgccgtgtactactgccagcagtacagca







gcagccccatcacctttggccagggcacaagactggaaatcaagc







gg







VHanti-VEGF-A
EVQLVESGGGLVQPGGSL
SEQ
gaggtgcagctggtggagagcggaggaggactggtgcagccagg
SEQ



-(G4S)3-
RISCAASGFTISDYWIHW
ID
aggctccctgcggctgtcttgcgccgccagcggctttaccatctccg
ID



VLanti-VEGF-A
VRQAPGKGLEWVAGITPA
NO:
actactggattcactgggtgagacaggcacctggcaagggactgga
NO:



-G4S-
GGYTYYADSVKGRFTISA
49
gtgggtggcaggaatcaccccagcaggaggctacacatactatgcc
57



VHanti-ANG-2
DTSKNTAYLQMNSERAED

gacagcgtgaagggccggttcaccatctccgccgatacctctaaga




2-(G4S)3-
TAVYYCARFVFFLPYAMD

acacagcctatctgcagatgaactccctgcgggccgaggacacag




VLanti-ANG-2
YWGQGTLVTVSSGGGGS

ccgtgtactattgcgccagattcgtgttcttcctgccatacgccatgga





GGGGSGGGGSDIQMTQSP

tattggggccagggcaccctggtgacagtgagctccggtggaggt





SSLSASVGDRVTITCRASQ

ggctccggtggcggtggcagcggcggtggcggctctgatattcag





DVSTAVAWYQQKPGKAP

atgacacagtccccatctagcctgtctgccagcgtgggcgacaggg





KLLIYSASFLYSGVPSRFS

tgaccatcacatgtagagcaagccaggacgtgagcaccgcagtgg





GSGSGTDFTLTISSLQPEDP

catggtaccagcagaagcctggcaaggccccaaagctgctgatcta





ATYYCQQGYGNPFTFGQG

ctccgcctctttcctgtattctggcgtgccaagcaggtttagcgggtcc





TKVEIKRGGGGSQVQLVE

ggatctggaaccgacttcaccctgacaatctcctctctgcagcctgag





SGGGVVQPGRSLRLSCAA

gattttgccacatactattgccagcagggctatggcaatccattcacct





SGFTFTNYGMHWGRQAP

ttggccagggcacaRaggtggagatcaagaggggggaggggg





GKGLEWVAVISHDGNNKY

ctctcaggtgcagctggttgaatctggtggcggagttgtgcagcctg





YVDSVKGRFTISRDNSKN

gcagaagcctgagactgtcttgtgccgccagcggcttcaccttcacc





TLYLQMNSLRAEDTAVYY

aactatggaatgcactggggcagacaggcccctggcaaaggactt





CAREGIDFWSGLNWEDP

gaatgggtcgccgtgatcagccacgacggcaacaacaagtactac





WQQGTLVTVSSAGGGGS

gtggacagcgtgaagggcagattcaccatcagccgggacaacagc





GGGGSGGGGSEIVLTQSP

aagaacaccctgtacctgcagatgaacagcctgagagccgaggac





GTLSLSPGERATLSCRASQ

accgccgtgtactattgtgccagagagggcatcgactttggagcgg





SITGSYLAWYQQKPGQAP

cctgaattggttcgacccttggggacagggcaccctggttacagtttc





RELICGASSWATGIPDRES

ttctgccggtggaggtggctccggtggcggtggcagcggcggtgg





GSGSGTDFTLTISRLEPED

cggctctgagatcatgctgacacagagccctggcacactgtcactgt





FAVYYCQQYSSSPITFGQG

ctccaggcgaaagagccacactgagctgtagagccagccagagca





TRLEIKR

tcaccggctcttacctggcttcgtatcagcagaagcctggacaggcc







cctagactgctgatttgtggcgcctcttcttgggccaccggcattccc







gatagattttctggcagcggctccggcaccgacttcaccctgacaat







cagcagactggaacccgaggacttcgccgtgtactactgccagcag







tacagcagcagccccatcacctttggccagggcacaagactggaaa







tcaagcgg







CD5-sp-
MPMGSLQPLATLYLLGML
SEQ
atgccaatggggtccctacaacccctggcaacactatatctgctaggt
SEQ



VHanti-VEGF-A
VASCLGEVQLVESGGGLV
ID
atgctcgtggcctcctgtttaggagaggtgcagctggtggagagcg
ID



-(G4S)3-
QPGGSLRLSCAASGFTISD
NO:
gaggaggactggtgcagccaggaggctccctgcggctgtcttgcg
NO:



VLanti-VEGF-A
YWIHWVRQAPGKGLEWV
50
ccgccagcggctttaccatctccgactactggattcactgggtgaga
58



-G4S-
AGITPAGGYTYYADSVKG

caggcacctggcaagggactggagtgggtggcaggaatcacccc




VHanti-ANG-2
RFTISADTSKNTAYLQMNS

agcaggaggctacacatactatgccgacagcgtgaagggccggtt




-(G4S)3-
LRAEDTAVYYCARFVFFL

caccatctccgccgatacctctaagaacacagcctatctgcagatga




VLanti-ANG-2
PYAMDYWGQGTLVTVSS

actccctgcgggccgaggacacagccgtgtactattgcgccagatt





GGGGSGGGGSGGGGSDIQ

cgtgttcttcctgccatacgccatggattattggggccagggcaccct





MTQSPSSLSASVGDRVTIT

ggtgacagtgagctccggtggaggtggctccggtggcggtggcag





CRASQDVSTAVAWYQQKP

cggcggtggcggctctgatattcagatgacacagtccccatctagcc





GKAPKLLIYSASFLYSGVP

tgtctgccagcgtgggcgacagggtgaccatcacatgtagagcaag





SRFSGSGSGTDFTLTISSL

ccaggacgtgagcaccgcagtggcatggtaccagcagaagcctgg





QPEDEATYYCQQGYGNPFT

caaggccccaaagctgctgatctactccgcctctttcctgtattctggc





FGQGTKVEIKRGGGGSQV

gtgccaagcaggtttagcgggtccggatctggaaccgacttcaccct





QLVESGGGVVQPGRSLRL

gacaatctcctctctgcagcctgaggattttgccacatactattgccag





SCAASGFTFTNYGMHWG

cagggctatggcaatccattcacctttggccagggcacaaaggtgg














RQAPGKGLEWVAVISHDG

agatcaagaggggcggagggggctctcaggtgcagctagttgaat














NNKYYVDSVKGRFTISRD

ctggtggcggagttgtgcagcctggcagaagcctgagactgtcttgt





NSKNTLYLQMNSLRAEDT

gccgccagcggcttcaccttcaccaactatggaatgcactggggca





AVYYCAREGIDFWSGLN

gacaggcccctggcaaaggacttgaatgggtcgccgtgatcagcc





WEDPWGQGTLVTVSSAG

acgacggcaacaacaagtactacgtggacagcgtgaagggcagat





GGGSGGGGSGGGGSEIVL

tcaccatcagccgggacaacagcaagaacaccctgtacctgcagat





TQSPGTLSLSPGERATLSC

gaacagcctgagagccgaggacaccgccgtgtactattgtgccaga





RASQSITGSYLAWYQQKP

gagggcatcgacttttggagcggcctgaattggttcgacccttgggg





GQAPRELICGASSWATGIP

acagggcaccctggttacagtttcttctgccggtggaggtcgctccg





DRPSGSGSGTDFTLTISRL

gtggcggtggcagcggcggtggcggctctgagatcgtgctgacac





EPEDFAVYYCQQYSSSPIT

agagccctggcacactgtcactgtctccaggcgaaagagccacact





PGQGTRLEIKR

gagctgtagagccagccagagcatcaccggctcttacctggcttggt







atcagcagaagcctggacaggcccctagactgctgatttgtggcgc







ctcttcttgggccaccggcattcccgatagattttctggcagcggctc







cggcaccgacttcaccctgacaatcagcagactggaacccgagga







cttcgccgtgtactactgccagcagtacagcagcagccccatcacct







ttggccagggcacaagactggaaatcaagcgg






XMVA14
VLanti-ANG-2-
EIVLTQSPGTLSLSPGERA
SEQ
gagatcgtgctgacacagagccctggcacactgtcactgtctccag
SEQ



G4S-
TLSCRASQSITGSYLAWYQ
ID
gcgaaagagccacactgagctgtagagccagccagagcatcaccg
ID



VHanti-VEGF-A
QKPGQAPRLLICGASSWAT
NO:
gctcttacctggcttggtatcagcagaagcctggacaggcccctaga
NO:



-(G4S)3-
GIPDRFSGSGSGTDFTILT
51
ctgctgatttctggcgcctcttcttgggccaccggcattcccgatagat
59



VLanti-VEGF-A
ISRLEPEDFAVYYCQQYSS

tttctggcagcggctccggcaccgacttcaccctgacaatcagcaga




-G4S-
SPITFGQGTRLEIKRGGGG

ctggaacccgaggacttcgccgtgtactactgccagcagtacagca




VHanti-ANG-2
SEVQLVESGGGLVQPGGSL

gcagccccatcacctttggccagggcacaagactggaaatcaagc





RESCAASGFTISDYWIHW

ggggcggagggggctctgaggtgcagctggtggagagcggagg





VRQAPGKGLEWVAGITPA

aggactggtgcagccaggaggctccctgcggctgtcttgcgccgcc





GGYTYYADSVKGRFTISA

agcggctttaccatctccgactactggattcactgcgtgagacaggc





DTSKNTAYLQMNSLRAED

acctggcaagggactggagtgggtggcaggaatcaccccagcag





TAVYYCARFVFFLPYAMD

gaggctacacatactatgccgacagcgtgaagggccggttcaccat





YWGQGTLVTVSSGGGGS

ctccgccgatacctctaagaacacagcctatctgcagatgaactccct





GGGGSGGGGSDIQMTQSP

gcgggccgaggacacagccgtgtactattgcgccagattcgtgttct





SSLSASVGDRVTITCRASQ

tcctgccatacgccatggattattggggccagggcaccctggtgaca





DVSTAVAWYQQKPGKAP

gtgagctccggtggaggtggctccggtggcggtggcagcggcggt





KLLIYSASFLYSGVPSRES

ggcggctctgatattcagatgacacagtccccatctagcctgtctgcc





GSGSGTDFILTISSLQPED

agcgtgggcgacagcgtgaccatcacatgtagagcaagccaggac





FATYYCQQGYGNPFTFGQG

gtgagcaccgcagtggcatggtaccagcagaagcctggcaaggcc





TKVEIKRGGGGSQVQLVE

ccaaagctgctgatctactccgcctctttcctgtattctggcgtgccaa





SGGGVVQPGRSLRISCAA

gcaggtttagcgggtccggatctggaaccgacttcaccctgacaatc





SGFTFTNYGMHWGRQAP

tcctctctgcagcctgaggattttgccacatactattgccagcagggct





GKGLEWVAVISHDGNNKY

atggcaatccattcacctttggccagggcacaaaggtggagatcaa





YVDSVKGRFTISRDNSKN

gaggggcggagggggctctcaggtgcagctgcttgaatctggtgg





TLYLQMNSLRAEDTAVYY

cggagtgtgcagcctggcagaagcctgagactgtcttgtgccgcc





CAREGIDFWSGLNWFDP

agcggcttcaccttcaccaactatggaatgcactggggcagacagg





WGQGTLVTVSSA

cccctggcaaaggacttgaatgggtcgccgtgatcagccacgacg







gcaacaacaagtactacgtggacagcgtgaagggcagattcaccat







caaccgggacaacagcaagaacaccctgtacctgcagatgaacag







cctgagagccgaggacaccgccgtgtactattgtgccagagaggg







catcgacttttggagcggcctgaattggttcgacccttggggacagg







gcaccctggttacagtttcttctgcc







CD5-sp-
MPMGSLQPLATLYLLGMLV
SEQ
atgccaatggggtccctacaacccctggcaacactatatctgctaggt
SEQ



VLanti-ANG-2-
ASCLGEIVLTQSPGTLSLS
ID
atgctcgtggcctcctgtttaggagagatcgtgctgacacagagccc
ID



G4S-
PGERATLSCRASQSITQSY
NO:
tggcacactgtcactgtctccaggcgaaagagccacactgagctgta
NO:



VHanti-VEGF-A
LAWYQQKPGQAPRLLICG
52
gagccagccagagcatcaccggctcttacctggcttggtatcagca
60



(G4S)3-
ASSWATGIPDRESGSGSGT

gaagcctggacaggcccctagactgctgatttgtggcgcctcttcttg




VLanti-VEGF-A
DFTLTISRLEPEDFAVYYC

ggccaccggcattcccgatagattttctggcagcggctccggcacc




-G4S-
QQYSSSPITFGQGTRLEIK

gacttcaccctgacaatcagcagactggaacccgaggacttcgccg




VHanti-ANG-2
RGGGGSEVQLVESGGGLV

tgtactactgccagcagtacagcagcagccccatcacctttggccag





QPGGSLRLSCAASGFTISD

ggcacaagactggaaatcaagcggggggagggggctctgaggt





YWIHWVRQAPGKGLEWV

gcagctggtggagagcggaggaggactggtgcagccaggaggct





AGITPAGGYTYYADSVKG

ccctgcggctgtcttgcgccgccagcggctttaccatctccgactact





RFTISADTSENTAYLQMNS

ggattcactgggtgagacaggcacctggcaagggactggagtggg





LRAEDTAVYYCARFVFEL

tggcaggaatcaccccagcaggaggctacacatactatgccgaca





PYAMDYWGQGTLVTVSS

gcgtgaagggccggttcaccatctccgccgatacctctaagaacac





GGGGSGGGGSGGGGSDIQ

agcctatctgcagatgaactccctgcgcgccgaggacacagccgtg





MTQSPSSLSASVGDRVTIT

tactattgcgccagattcgtgttcttcctgccatacgccatggattattg





CRASQDVSTAVAWYQQKP

cggccagggcaccctggtgacagtgagctccgctggagctggctc





GKAPKLLIYSASFLYSGVP

cggtggcggtggcagcggcggtggcggctctgatattcagatgaca





SRFSGSGSGIDFTLTISSL

cagtccccatctagcctgtctgccagcgtgggcgacagggtgacca





QPEDFATYYCQQGYGNPFT

tcacatgtagagcaagccaggacgtgagcaccgcagtggcatggt





PGQGTKVEIKRGGGGSQV

accagcagaagcctggcaaggccccaaagctgctgatctactccgc





QLVESGGGVVQPGRSLRL

ctctttcctgtattctggcgtgccaagcaggtttagcgggtccggatct





SCAASGFTFTNYGMHWG

ggaaccgacttcaccctgacaatctcctctctgcagcctgaggatttt





RQAPGKGLEWVAVISHDG

gccacatactattgccagcagggctatcgcaatccattcacctttggc





NNKYYVDSVKGRFTISRD

cagggcacaaaggtggagatcaagaggggcggagggggctctca





NSKNTLYLQMNSLRAEDT

ggtgcagctggttgaatctggtggcggagttgtgcagcctggcaga





AVYYCAREGIDFWSGLN

agcctgagactgtcttgtgccgccagcggcttcaccttcaccaactat





WEDPWGQGTLVTVSSA

ggaatgcactggggcagacaggcccctggcaaaggacttgaatgg







gtcgccgtgatcagccacgacggcaacaacaagtactacgtggac







agcgtgaagggcagattcaccatcagccgggacaacagcaagaac







accctgtacctgcagatgttacagcctgagagccgaggacaccgcc







gtgtactattgtgccagagagcgcatcgacttttggagcggcctgaat







tgcttcgacccttggggacagggcaccctggttacagtttcttctgcc






XMVA15
VLanti-VEGF-A
DIQMTQSPSSLSASVGDRV
SEQ
gatattcagatgacacagtccccatctagcctgtctgccagcgtggg
SEQ



-G4S-
TITCRASQDVSTAVAWYQ
ID
cgacagggtgaccatcacatgtagagcaagccaggacgtgagcac
ID



VHanti-ANG-2
QKPGKAPKLLIYSASFLYS
NO:
cgcagtggcatggtaccagcagaagcctggcaaggccccaaagct
NO:



-(G4S)3-
GVPSRFSGSGSGTDFTLTI
53
gctgatctactccgcctctttcctgtattctggcgtgccaagcaggttta
61



VLanti-ANG-2-
SSLQPEDFATYYCQQGYGN

gcgggtccggatctggaaccgaattcaccctgacaatctcctctctg




G4S-
PFTPGQGTKVEIKRGGGG

cagcctgaggattttgccacatactattgccagcagggctatggcaat




VHanti-VEGF-A
SQVQLVESGGGVVQPGRS

ccattcacctttggccagggcacaaaggtggagatcaagaggggc





LRLSCAASGFTETNYGMH

ggagggggctctcaggtgcagctggttgaatctgctggcggagttg





WGRQAPGKGLEWVAVISH

tgcagcctggcagttagcctgagactgtcttgtgccgccagcggcttc





DGNNKYYVDSVKGRFTIS

accttcaccaactatggaatgcactggggcagacaggcccctggca





RDNSKNTLYLQMNSLRAE

Baggacttgaatgggtcgccgtgatcagccacgacggcaacaaca





DTAVYYCAREGIDFWSGL

agtactacgtggacagcgtgaagggcagattcaccatcagccggg





NWFDPWGQGTLVTVSSA

acaacagcaagaacaccctgtacctgcagatgaacagcctgagag





GGGGSGGGGSGGGGSEIV

ccgaggacaccgccgtgtactattgtgccagagagggcatcgacttt





LTQSPGTLSLSPGERATLS

tggagcggcctgaattcgttcgaccctttggggacagcgcaccctgg





CRASQSITGSYLAWYQQK

ttacagtttcttctgccggtggaggtggctccggtggcggtggcagc





PGQAPRLLICGASSWATGI

ggcggtggcggctctgagatcgtgctgacacagagccctggcaca





PDRFSGSGSGTDFTLTISRL

ctgtcactgtctccaggcgaaagagccacactgagctgtagagcca





EPEDFAVYYCQQYSSSPIT

gccagagcatcaccggctcttacctggcttggtatcagcagaagcct





FGQGTRLEIKRGGGGSEV

ggacaggcccctagactgctgatttgtggcgcctcttcttgcgccac





QLVESGGGLVQPGGSLRL

cggcattcccgatagattttctggcagcggctccggcaccgacttca





SCAASQFTISDYWIHWVR

ccctgacaatcagcagactggaacccgaggacttcgccgtgtacta





QAPGKGLEWVAGITPAGG

ctgccagcagtacagcagcagccccatcacctttggccagggcaca





YTYYADSVKGRFTISADTS

agactggaaatcaagcggggggagggggctctgaggtgcagct





KNTAYLQMNSLRAEDTAV

ggtggagagcggaggaggactggtgcagccaggaggctccctgc





YYCARFVFFLPYAMDYW

ggctgtcttgcgccgccagcggctttaccatctccgactactggattc





GQGTLVTVSS

actgggtgagacaggcacctggcaagggactggagtggctggca







ggaatcaccccagcaggaggctacacatactatgccgacagcgtg







aagggccggttcaccatctccgccgatacctctaagaacacagccta







tctgcagatgaactccctgcgggccgaggacacagccgtgtactatt







gcgccagattcgtgttcttcctgccatacgccatggattattggggcc







agggcaccctggtgacagtgagctcc







CD5-sp-
MPMGSLQPLATLYLLGML
SEQ
atgccaatggggtccctacaacccctggcaacactatatctgctaggt
SEQ



VLanti-VEGF-A
VASCLGDIQMTQSPSSLSA
ID
atgctcgtggcctcctgtttaggagatattcagatgacacagtccccat
ID



-G4S-
SVGDRVTITCRASQDVSTA
NO:
ctagcctgtctgccagcgtgggcgacagggtgaccatcacatgtag
NO:



VHanti-ANG-2
VAWYQQKPGKAPKLLIYS
54
agcaagccaggacgtgagcaccgcagtggcatggtaccagcaga
62



-(G4S)3-
ASFLYSGVPSRFSGSGSGT

Bgcctggcaaggccccaaagctgctgatctactccgcctctttcctgt




VLanti-ANG-2
DFTLTISSLQPEDFATYYC

attctggcgtgccaagcaggtttagcgggtccggatctggaaccga




-G4S-
QQGYGNPFTFGQGTKVEI

cttcaccctgacaatctcctctctgcagcctgaggattttgccacatac




VHanti-VEGF-A
KRGGGGSQVQLVESGGG

tattgccagcagggctatggcaatccattcacctttggccagggcac





VVQPGRSLRLSCAASGFT

aaaggtggagatcaagaggggggagggggctctcaggtgcagc





FTNYGMHWGRQAPGKGL

tggttgaatctggtggcggagttgtgcagcctggcagaagcctgag





EWVAVISHDGNNKYYVDS

actgtcttgtgccgccagcggcttcaccttcaccaactatggaatgca





VKGRFTISRDNSKNTLYLQ

ctggggcagacaggcccctggcaaaggacttgaatgggtcgccgt





MNSLRAEDTAVYYCAREG

gatcagccacgacggcaacaacaagtactacgtggacagcgtgaa





IDFWSGLNWEDPWGQGT

gggcagattcaccatcagccgggacaacagcaagaacaccctgta





LVTVSSAGGGGSGGGGSG

cctgcagatgaacagcctgagagccgaggacaccgccgtgtactat





GGGSEIVLTQSPGTLSLSP

tgtgccagagagggcatcgacttttggagcggcctgaattggttcga





GERATLSCRASQSITQSYL

cccttggggacagggcaccctggttacagtttcttctgccggtggag





AWYQQKPGQAPRLLICGA

gtggctccggtggcggtggcagcggcggtggcggctctgagatcg





SSWATGIPDRFSGSGSGTD

tgctgacacagagccctggcacactgtcactgtctccaggcgaaag





FILTISRLEPEDFAVYYCQ

agccacactgagctgtagagccagccagagcatcaccggctcttac





QYSSSPITFGQGTRLEIKR

ctggcttggtatcagcagaagcctggacaggcccctagactgctgat





GGGGSEVQLVESGGGLVQ

ttgtcgcgcctcttcttgggccaccggcattcccgatagattttctggc





PGGSLRISCAASGFTISDY

agcggctccggcaccgacttcaccctgacaatcagcagactggaac





WIHWVRQAPGKGLEWVA

ccgaggacttcgccgtgtactactgccagcagtacagcagcagccc





GITPAGGYTYYADSVKGR

catcacctttggccagggcacaagactggaaatcaagcggggcgg





FTISADTSKNTAYLQMNSL

agggggctctgaggtgcagctggtggagagcggaggaggactgc





RAEDTAVYYCARFVFFLP

tgcagccaggaggctccctgcggctgtcttgcgccgccagcggctt





YAMDYWGQGTLVTVSS

taccatctccgactactggattcactgggtgagacaggcacctggca







agggactggagtggctggcaggaatcaccccagcaggaggctac







acatactatgccgacagcgtgaagggccggttcaccatctccgccg







atacctctaagaacacagcctatctgcagatgaactccctgcgggcc







gaggacacagccgtgtactattgcgccagattcgtgttcttcctgcca







tacgccatggattattggggccagggcaccctggtgacagtgagct









Example 6. Preparation and Identification of Recombinant AAV Virus

The XMVA09 construct and ssAAV plasmid were double digested with BamH I/EcoR V, and ssAAV-XMVA09 vector was constructed by conventional molecular biology operations such as ligation, transformation, cloning screening and identification, and the vector information is shown in FIG. 2B. High-quality plasmid DNA was obtained for later use by using an endotoxin-free plasmid extraction kit (MN), and recombinant AAV virus was prepared by using a three-plasmid packaging system, a helper plasmid (phelper), a Cap and Rep protein expression plasmid of AAV, a plasmid expressing the target gene (ssAAV-XMVA09) in a mass ratio of 2:1:1 were used to form a transfection complex with PEI transfection promoter, and were transfected into HEK293T cells to conduct AAV-XMVA09 packaging. The supernatant was collected twice at day 3 and day 7 after transfection to obtain AAV particles containing the target gene. Density gradient centrifugation (Beckman's ultracentrifuge) was performed with different gradients of iodoxanol (15%, 25%, 40% and 60%) to obtain purified AAV virans. The AAV quality was identified by transmission electron microscopy and the AAV virus titer was quantified by qPCR.


Example 7. Inhibitory Effect of XMVA09 on Laser-Induced CNV in wAMD Model Mice the Animal Model of CNV Induced by Retinal High-Energy Laser Photocoagulation is a Commonly Used Animal

model at home and abroad, and is a standard animal model in most treatment evaluation experiments at present. It selectively destroys the photoreceptor outer segment disc membrane, Bruch membrane, retinal pigment epithelium and part of the anterior choroidal capillary network are selectively damaged, followed by a damage repair reaction, including invasion and growth of fibroblast, retinal pigment epithelial cell and vascular endothelial cell, and finally, neovascularization is formed in a photocoagulation area.


Thirty SPF grade 6˜8 weeks male C57 BL/6J mice (purchased from Beijing Vital River Laboratories Experimental Animal Technology Co., Ltd.), weighing 22-25 g were used, and the specific administration scheme is shown in Table 4 below:









TABLE 4







Administration scheme















medicine
administration
administration





medicine
concentration
volume
dosage
administration
number of


group
administered
(vg/mL)
(μL)
(vg/eye)
route
animals
















control
PBS

2.5

intravitreal
15







injection


XMVA09
AAV-
2.5 × 1012
2.5
6.25 × 109
intravitreal
15



XMVA09



injection









Since the expression of the target gene reached a stable level after a certain period of time after AA V injection, intravitreal injection was performed on day 1, and binocular funduslaser photocoagulation was performed on the successfully injected animals on day 22 to induce CNV model.


Establishment of mouse CNV model: The pupils of both eyes of the mice were dilated with 1-2 drops of topicamide eye drops, and 5% chloral hydrate was injected intramuscularly for anesthesia. After anesthesia, carbomer eye drops were dropped in both eyes, a fundus laser scope was placed, and photocoagulation was performed around the optic papilla at a distance of about 1.5-2 PD from the optic disc avoiding blood vessels. Laser parameters were as follows: wavelength 532 nm, energy 80 mW, spot size 50 μm, exposure time 100 ms, and erythromycin eye ointement were applied to both eyes of the animal after photocoagulation.


On day 29, fluorescein fundus angiography (FFA) detection was performed on mice: fluorescein sodium injection (15 mg/mL, 10 mL/kg) was intraperitoneally injected, several clear pictures of both eyes were collected at early (within 1.5 minutes) and late (after 3 minutes) stages after the fluorescein sodium injection, the fluorescence leakage degree of the effective light spots were rated, and the percentage of grade 3 leakage light spots and the mean score of leakage light spots were calculated. The results are shown in FIG. 12 and FIG. 13. In the laser-induced wAMD model mice, the formation of CNV was significantly inhibited after a single intravitreal injection of AAV- XMVA09.


Effective light spot refers to a light spot that has no severe retinal hemorrhage nearby and can be completely displayed in the FFA. The grading standards of spots fluorescence leakage are as follows: grade 0 (no fluorescence leakage), grade 1 (mild fluorescence leakage, with a leakage area of 1-50% of the laser spot size), grade 2 (moderate fluorescence leakage, with a leakage area of 50-100% of the laser spot size), grade 3 (severe fluorescence leakage, with a leakage area larger than the laser spot size).





Percentage (%) of light spots of each grade=total number of light spots of the corresponding grade÷total number of 4 types of light spots×100%.





Mean score of leakage light spot=[(number of grade 0 light spots×0)+(number of grade 1 light spots×1)+(number of grade 2 light spots×2)+(number of grade 3 light spots×3)]÷total number of 4 types of light spots.


Example 8. Inhibitory Effect of XMVA09 on CNV in Laser-Induced wAMD Model Rhesus Monkeys

Seven male rhesus monkeys (purchased from Ya'an Primed Bio-tech Co., Ltd.) with a common grade (qualified in quarantine before test) of 5-6 years old were used, and the specific administration scheme is shown in table 5 below:









TABLE 5







Administration scheme















medicine
administration
administration





medicine
concentration
volume
dosage
administration
number of


group
administered
(vg/mL)
(μL)
(vg/eye)
route
animals
















control
PBS

50

intravitreal
3







injection


XMVA09
AAV-
1.94 × 1012
50
9.7 × 1010
intravitreal
4



XMVA09



injection









XMVA09 Group: AAV-XMVA09 (50 L/eye) was administered by intravitreal injection in both eyes on day 21 before laser modeling, and CNV was induced in both eyes by fundus laser on days 0.


Control group: CNV was induced in both eyes by fundus laser on day 0, and PBS (50 μL/eye) was administered by intravitreal injection in both eyes on day 21.


All animals were examined by optical coherence tomography (OCT) prior to laser modeling and fundus photography (FP), FFA and OCT examinations were performed on day 19 and day 77 of laser modeling; and the number, leakage area and retinal thickness of grade IV light spots were used as main efficacy evaluation indicators. Establishment of the rhesus monkey CNV model: animals were anesthetized by intramuscular injection of ketamine hydrochloride (20 mg/kg) and dexmedetomidine hydrochloride (0.03 mg/kg), and the pupils of both eyes were dilated with Midori (compound tropicamide eye drops) drops. After the pupils of both eyes were larger than 6 mm, the head of the animal was fixed in front of an ophthalmic laser photocoagulator, and after the retinal structure was peculated through a fundus scope, laser photocoagulating was carried out at an optic disc distance around the center of the macula, with 9 points in each eye. The laser parameters were: wavelength 532 nm, energy 650 mW-700 mW, spot size 50 μm, exposure time 0.1 second. Fluorescein leakage area was measured by FP and FFA, and the specific examination method was as follows: (1) animals were anesthetized by intramuscular injection of ketamine hydrochloride (20 mg/kg) and dexmedetomidine hydrochloride (0.03 mg/kg). (2) The pupils of both eyes were dilated with 1-2 drops of compound tropicamide eye drops. (3) The pupil of the animal was observed after pupil dilation, if the pupil was greater than 6 mm under light, a colour photograph of the fundus centered on the macula was taken by a fundus camera. (4) After that, a 0.075 mL/kg dose of 10% fluorescein sodium injection (Fluorescite, Alcon) was rapidly injected from the saphenous vein of the lower limb. FFA photographs centered on the macula were taken by fundus cameras at early (within 1 minute), medium (5 minutes) and late (10 minutes) stages after fluorescein injection. (6) The fluorescein leakage area of the grade IV spot in the late stage (10 min) of FFA photo was automatically measured by Image J software (version 1.53e, NIH, Wayne, Raband, USA) as an evaluation indicator of the efficacy of FFA. The fluorescein leakage grading standard of the laser spot is: grade I (the light spot has no high fluorescence), grade II (the light spot has high fluorescence without leakage), grade III (the light spot has high fluorescence with slight fluorescein leakage, but leakage does not exceed the edge of the light spot), grade IV (the light spot has high fluorescence with significant fluorescein leakage, and leakage exceeds the edge of the light spot).


Retinal thickness changes were measured by OCT, and the specific examination method is as follows: (1) after completing the FP and FFA examination, the animals were placed in front of an OCT instrument, and the animal's eyes were adjusted to look directly at the scanning lens. (2) Multi-layer linear scanning was performed by adopting a follow-up mode centered on the macula, with the scanning area covered all laser points. (3) A layer with the most obvious retinal thickness change and clear retinal boundary after modeling was selected, and the maximum retinal thickness value of the region was measured by using measurement software carried by the instrument to serve as an OCT efficacy evaluation indicator.


The results are shown in FIG. 14, FIG. 15, FIG. 16 and FIG. 17. On the day 19 and day 77 of the laser modeling in each group of animals, FFA examination showed that different fluorescence leakage performance at the laser spots in the fundus. Compared with the control group, a single intravitreal injection of AAV-XMVA09 has an obvious improvement effect on the number, leakage area and retinal thickness of grade IV light spots of CNV in laser-induced wAMD rhesus monkey model.


Example 9. High Glucose-Induced Increase in HRMECs Permeability Model

The 24-well plate was pre-treated with 0.1% gelatin at 37° C. for 1-2 bouts and then dried for several minutes; then the HRMECs were resuspended in complete culture medium of ECM (Sciencell) containing 10% FBS+1% PS+1% ECGS, and spread evenly in the well plate according to the standard of 3×105/well; on the next day, starvation treatment was initiated with a low-serum culture medium containing 0.5% FBS for 7 hours; then the HRMECs were exposed to 30 mM high glucose environment overnight; the control group was not treated with high glucose, on the next day, immunofluorescence co-staining of cells for membrane protein with VE-cadherin and nuclear with DAPI was performed, for fluorescence microscope observation and photography. The results are shown in FIG. 18. The cell membrane continuity of HRMECs treated with high glucose was disrupted, resulting in intercellular enlargement and increased permeability.


Steps of immunofluorescence staining: discarding the supernatant of the culture medium so that the remaining volume was 200 μL, and adding 200 μL of 4% PFA to start the gradient fixation for 20 minutes at room temperature; after discarding the supernatant, directly adding 200 μL of PFA, and continuing to fix at room temperature for 10 minutes; after discarding the fixation solution, washing with PBS for 3 times, each time for 5 minutes; diluting VE-cadherin (Santa Cruz Biotechnology Inc) at 1:150 with PBS, then adding 300 μL/well, and incubating at room temperature for 2 hours; discarding the supernatant, washing with PBS for 3 times, each time for 5 minutes; diluting the Donkey anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor™ 488 (Invitrogen) at 1:200 with PBS, adding 200 μL per well, and incubating at 37° C. for 1 hour; discarding the supernatant, washing with PBS for 3 times, each time for 5 minutes; and finally adding DAPI-containing mounting agent (Beyotime), 100 μL/well, and observing and photographing under a fluorescence microscope.


Example 10. Determining the Regulatory Effect of XMVA09 Protein on the Permeability of HRMECs Based on VE-Cadherin Indicator

The 24-well plate was pre-coated with 0.1% gelatin at 4° C. overnight or at 37° C. for 2 hours; the coating solution was discarded, and HRMECs cells were inoculated 3×105/well; on the next day, when the monolayer cells reached a certain confluence, starvation treatment was initiated with a low-serum medium containing 0.5% FBS for 7 hours; the supernatant of untransfected HEK293T cells and the supernatant of HEK293T cells transfected with ssAAV-XMVA09 plasmid were co-incubated with high glucose (30 mM glucose), respectively. HRMECs were treated overnight, and the control group was a non-modeling group without high glucose treatment. Immunofluorescence staining of VE-cadherin was performed, and the detailed steps were as in Example 9, and photographic analysis was performed under a fluorescence microscope. The results are shown in FIG. 19. The protein expressed by ssAAV-XMVA09 has a significant inhibitory effect on the increase of permeability of HRMECs after high glucose treatment.


Example 11. Determining the Regulatory Effect of XMVA09 Protein on the Permeability of HRMECs Based on Biotin-Avidin System Indicator

Gelatin was treated with EZ-Link™ NHS-LC-LC-biotin to obtain biotinylated gelatin; the biotinylated gelatin was used to coat a cell culture plate at 4° C. overnight of 37° C. for 2 hours; HRMECs were directly inoculated in the culture plate, and the inoculation amount of cells was 3×105/well; on the next day, starvation treatment was first initiated with a low-serum medium containing 0.5% FBS for 7 hours; then the supernatant of untransfected HEK293T cells and the supernatant of HEK293T cells transfected with ssAAV-XMVA09 plasmid were co-incubated with high glucose (30 mM glucose), respectively, HRMECs were treated for 17 hours, and the control group was a non-modeling group without high glucose treatment. After staining with FITC-avidin and fixation with 4% PFA, staining with AF594-phaloidin (Invitrogen A12381) was started, then an anti-fluorescence quencher containing DAPI was added, and photographical analysis was performed under a fluorescence microscope. The results are shown in FIG. 20. The protein expressed by ssAAV-XMVA09 has a significant inhibitory effect on the increase of permeability of HRMECs after high glucose treatment.


Example 12. Construction of Diabetic Mouse Model

Drug induction is one of the current methods for establishing diabetic animal models, which can better simulate clinical pathological manifestations and clinical characteristics of diabetes. Streptozotocin (STZ) is the most commonly used medicament for inducing diabetes, and it mainly causes hyperglycemia by destroying pancreatic beta cells, which in turn causes pericapillary cell loss, vascular layer thinning and blood-retinal barrier destruction, further causes vessel leakage, and it is a good model for studying DME.


Establishment of Diabetic Mouse Model:

Eighty SPF grade 6˜8 weeks male C57 BL/6J mice (purchased from Zhejiang Vital River Laboratories Experimental Animal Technology Co., Ltd.), weighing 20-25 g, were randomly divided into blank group, DME model control group, and DME modeling group. Before modeling, fasting blood glucose and body weight of three groups of mice were measured; after fasting for 6 hours (with free access to water), blood was collected at the tail tip for blood glucose measurement and the mice were weighed, on day 0 of modeling. Modeling was started on day 1, and mice were fasted (with free access to water) for 6 hours. The Blank group was not treated, the DME model control group recieved a single intraperitoneal injection of 50 mM sodium citrate solution (Sigma) 60 mg/kg for 5 continuous days, and the DME model group recieved a single intraperitoneal injection of STZ (Sigma) 60 mg/kg for 5 continuous days. The mice were free to eat and drink, blood glucose and body weight were measured and recorded regularly, and the modeling lasted for 135 days.


Results are shown in FIG. 21. On day 19 after modeling, the fasting blood glucose values of mice were higher than 16.7 mmol/L for about three weeks, indicating the diabetic mice model was successfully constructed.


Example 13. Phenotypic Validation of DME in Diabetic Mouse Model

On day 81 after modeling, a portion of mice in each of the three groups of mice in Example 12 were injected with Evans Blue by tail vein injection, the retinas were dissected and separated, and vascular leakage was observed under a fluorescence microscope. The specific operations are as follows: 50 mg/mL of Evans blue (Sigma) was injected 50 μL/mouse into the tail vein; after 1.5 hours of blood circulation, the mice were euthanized, both eyes were enucleated and fixed for 45 minutes in 4% paraformaldehyde (Biosharp), the retina of the eyeball was peeled off and spread, and observed and photographed under a fluorescence microscope.


Results are shown in FIG. 22. The retinal vessel leakage of the DME model group was obviously increased compared with the DME model control group and the Blank group, there was no obvious difference between the retinas of the DME model control group and the Blank group, and the diabetic mouse models had a DME phenotype.


Example 14. Inhibitory Effect of XMVA09 on Retinal Vascular Leakage in Diabetic Mouse Model

The DME model mice in Example 12 were administered by injection on day 95 after molding, and the specific administration scheme is shown in Table 6 below:









TABLE 6







Administration Scheme















medicine
administration
administration





medicine
concentration
volume
dosage
administration
number of


group
administered
(vg/mL)
(μL)
(vg/eye)
route
animals
















Control
PBS

2.5

intravitreal
6







injection


XMVA09
AAV-
2.5 × 1012
2.5
6.25 × 109
intravitreal
6



XMVA09



injection









On day 29 after injection, mice in the above XMVA09 group, Control group and mice in the DME model control group in Example 12 were injected with Evans blue by tail vein injection and dissect the retina to observe blood vessel leakage under fluorescence microscope.


The results are shown in FIG. 23. The percentage of retinal vascular leakage in the DME model control group is significantly lower than that in the Control group, and the percentage of retinal vascular leakage in the XMVA09 group is significantly lower than that in the Control group, which indicates that a single intravitreal injection of AAV-XMVA09 has a significant inhibition effect on retinal vascular leakage in the diabetic mouse model.


Statistical Analysis

GraphPad Prism 8.0 software was used for data processing and statistical analysis. The statistical level was set to 5% or p≤0.05, and the average number and standard error (Mean±SEM) of each analysis indicator were calculated, where p≤0.05 means the difference is statistically significant.

Claims
  • 1. A bispecific antibody comprising anti-VEGF-A and anti-ANG-2 binding domains, the heavy chain variable regions (VH) and light chain variable regions (VL) of the bispecific antibody are arranged from N-terminus to C-terminus in the following order: 1) VHanti-VEGF-A-VLanti-VEGF-A-VHanti-ANG-2-VLanti-ANG-2;2) VLanti-ANG-2-VHanti-VEGF-A-VLanti-VEGF-A-VHanti-ANG-2; or3) VLanti-VEGF-A-VHanti-ANG-2-VLanti-ANG-2-VHanti-VEGF-A;wherein the VHanti-VEGF-A comprises a CDR1 as depicted in SEQ ID NO: 1, a CDR2 as depicted in SEQ ID NO: 2, and a CDR3 as depicted in SEQ ID NO: 3;the VLanti-VEGF-A comprises a CDR1 as depicted in SEQ ID NO: 4, a CDR2 as depicted in SEQ ID NO: 5, and a CDR3 as depicted in SEQ ID NO: 6 or SEQ ID NO: 47;the VHanti-ANG-2 comprises a CDR1 as depicted in SEQ ID NO: 7, a CDR2 as depicted in SEQ ID NO: 8, and a CDR3 as depicted in SEQ ID NO: 9;the VLanti-ANG-2 comprises a CDR1 as depicted in SEQ ID NO: 10, a CDR2 as depicted in SEQ ID NO: 11, and a CDR3 as depicted in SEQ ID NO: 12.
  • 2. The bispecific antibody of claim 1, wherein the VHanti-VEGF-A comprises a sequence as depicted in SEQ ID NO: 13 or a sequence that is 70%, 80%, 90%, 95% or 99% identical to the sequence of SEQ ID NO: 13;the VLanti-VEGF-A comprises a sequence as depicted in SEQ ID NO: 14 or a sequence that is 70%, 80%, 90%, 95% or 99% identical to the sequence of SEQ ID NO: 14 or SEQ ID NO: 48;the VHanti-ANG-2 comprises a sequence as depicted in SEQ ID NO: 15 or a sequence that is 70%, 80%, 90%, 95% or 99% identical to the sequence of SEQ ID NO: 15;the VLanti-ANG-2 comprises a sequence as depicted in SEQ ID NO: 16 or a sequence that is 70%, 80%, 90%, 95% or 99% identical to the sequence of SEQ ID NO: 16.
  • 3. The bispecific antibody of claim 1, wherein the antibody comprises a sequence as depicted in SEQ ID NO: 17, 18, 19, 49, 51 or 53 or a sequence that is 70%, 80%, 90%, 95% or 99% identical to the sequence of SEQ ID NO: 17, 18, 19, 49, 51 or 53.
  • 4. The bispecific antibody of claim 1, wherein the N-terminus of the bispecific antibody comprises a signal peptide sequence or a tag sequence, preferably the signal peptide sequence is a CD5-sp signal peptide as depicted in SEQ ID NO: 23.
  • 5. The bispecific antibody of claim 4, wherein the antibody comprises a sequence as depicted in SEQ ID NO: 20, 21, 22, 50, 52 or 54 or a sequence that is 70%, 80%, 90%, 95% or 99% identical to the sequence of SEQ ID NO: 20, 21, 22, 50, 52 or 54.
  • 6. The bispecific antibody of claim 1, wherein the heavy chain variable region (VH) and the light chain variable region (VL) are linked by (G4S)n, wherein n=any integer between 1 and 4.
  • 7. The bispecific antibody of claim 1, wherein the structure of the bispecific antibody is: VHanti-VEGF-A-(G4S)3-VLanti-VEGF-A-G4S-VHanti-ANG-2-(G4S)3-VLanti-ANG-2;VLanti-ANG-2-G4S-VHanti-VEGF-A-(G4S)3-VLanti-VEGF-A-G4S-VHanti-ANG-2;VLanti-VEGF-A-G4S-VHanti-ANG-2-(G4S)3-VLanti-ANG-2-G4S-VHanti-VEGF-A;CD5-sp-VHanti-VEGF-A-(G4S)3-VLanti-VEGF-A-G4S-VHanti-ANG-2-(G4S)3-VLanti-ANG-2;CD5-sp-VLanti-ANG-2-G4S-VHanti-VEGF-A-(G4S)3-VLanti-VEGF-A-G4S-VHanti-ANG-2; orCD5-sp-VLanti-VEGF-A-G4S-VHanti-ANG-2-(G4S)3-VLanti-ANG-2-G4S-VHanti-VEGF-A.
  • 8. A nucleic acid sequence encoding the bispecific antibody of claims 1-7.
  • 9. A vector comprising a nucleic acid sequence encoding the bispecific antibody of claims 1-7, wherein the vector is preferably an AAV virus vector.
  • 10. The AAV virus vector of claim 9, further comprising: a 5′ ITR and a 3′ ITR, a promoter, a polyA sequence.
  • 11. An AAV virus particle comprising the AAV virus vector of claim 9 or 10 and a capsid protein.
  • 12. The AAV virus particle of claim 11, wherein the serotype of the capsid protein is AAV1, AAV2, AAV4, AAV5, AAV6, AAV7, AAV8, or AAV9.
  • 13. A pharmaceutical composition comprising at least one of the bispecific antibody of claims 1-7, the nucleic acid sequence of claim 8, the vector of claim 9 or 10, the AAV virus particle of claim 11 or 12, and a pharmaceutically acceptable carrier.
  • 14. Use of the bispecific antibody of claims 1-7, the nucleic acid sequence of claim 8, the vector of claim 9 or 10, the AAV virus particle of claim 11 or 12 or the pharmaceutical composition of claim 13 in the preparation of a medicament for treating or preventing cancer, intraocular neovascularization syndrome, rheumatoid arthritis, psoriasis, proliferative retinopathy, age-related macular degeneration or diabetic macular edema.
  • 15. The use of claim 14, wherein the age-related macular degeneration is wet age-related macular degeneration.
  • 16. The use of claim 14 or 15, wherein the medicament is administered by intravitreal, subretinal or suprachoroidal injection.
Priority Claims (1)
Number Date Country Kind
202210356939.6 Apr 2022 CN national
PCT Information
Filing Document Filing Date Country Kind
PCT/CN2023/085610 3/31/2023 WO