This application relates to alignment and attachment systems and methods for medical instruments. In some embodiments, the alignment and attachment systems and methods can be used with robotic medical systems and instruments.
Medical procedures, such as laparoscopy, may involve accessing and visualizing an internal region of a patient. In a laparoscopic procedure, a medical instrument can be inserted into the internal region through a laparoscopic access port.
In certain procedures, a robotically-enabled medical system may be used to control the insertion and/or manipulation of the medical instrument. The robotically-enabled medical system may include a robotic arm, or other instrument positioning device, to which the medical instrument can be attached.
Alignment and attachment systems for medical instruments are described herein. In some embodiments, the alignment systems are configured to align a medical instrument with a corresponding adapter, and the attachment systems are configured to attach the medical instrument to the adapter. The adapter can be positioned on an instrument drive mechanism. The instrument drive mechanism can be positioned on a robotic arm.
In a first aspect, a medical system can include a medical instrument comprising an instrument handle and an elongated body, wherein the instrument handle is configured to attach to an adapter on an instrument drive mechanism. The system can also include an alignment mechanism configured to provide rotational alignment between the medical instrument and the adapter.
The medical system can include one or more of the following features in any combination: (a) wherein the alignment mechanism extends through a longitudinal axis of the instrument handle; (b) wherein the alignment mechanism comprises an alignment structure on the elongated body; (c) wherein the alignment structure comprises a spiral surface on the elongated body; (d) wherein, when the instrument handle is attached to the adapter, a distal surface on the instrument handle opposes a proximal surface on the adapter; (e) wherein the instrument drive mechanism is positioned on a robotic arm; (f) wherein the robotic arm extends from a bed or a cart; (g) wherein the rotational alignment results in at least one locking element being aligned with and inserted into a corresponding pocket; (h) wherein the locking element is positioned on the adapter and the pocket is positioned on the handle; (i) wherein the locking element comprises a ball bearing; and/or (j) wherein the rotational alignment is passive.
In another aspect, a medical system can include a medical instrument configured for use during a robotically-enabled medical procedure. The medical instrument can include an elongated body extending between a distal end and a proximal end, the distal end configured to be inserted into a patient during a robotically-enabled medical procedure, and an instrument handle including a proximal face and a distal face, wherein the elongated body extends through the proximal face and the distal face. The distal face can be configured to attach to an adapter on an instrument drive mechanism. The medical system can also include an alignment mechanism configured to provide rotational alignment between the medical instrument and the adapter. The alignment mechanism can include a first alignment structure on the medical instrument, and a second alignment structure on the adapter. As the medical instrument is attached to the adapter, the first alignment structure can engage the second alignment structure to provide the rotational alignment.
The medical system can include one or more of the following features in any combination: (a) wherein, when the instrument handle is attached to the adapter, the alignment mechanism extends through a longitudinal axis of the instrument handle; (b) wherein the first alignment structure comprises a spiral surface on the elongated body, and the second attachment structure comprises a bearing surface within an opening of the adapter; (c) wherein the bearing surface comprises a ball bearing; (d) wherein the instrument drive mechanism is positioned on a robotic arm; (e) wherein the robotic arm extends from a bed or a cart; (f) wherein the rotational alignment results in at least one locking element being aligned with and inserted into a corresponding pocket; (g) wherein the locking element is positioned on the adapter and the pocket is positioned on the handle; (h) wherein the locking element is positioned on the handle and the pocket is positioned on the adapter; (i) wherein the locking element comprises a ball bearing; and/or (j) wherein the rotational alignment is passive.
In another aspect, a robotic system can include a medical instrument comprising an instrument handle and an elongated body, wherein the instrument handle is configured to attach to an adapter on an instrument drive mechanism, and an attachment mechanism configured to secure the instrument handle to the adapter, wherein, when the instrument handle is secured to the adapter, the elongated body of the medical instrument extends through an opening in the adapter.
The robotic system can include one or more of the following features in any combination: (a) wherein the attachment mechanism comprises at least three locking elements that are circumferentially positioned about the instrument handle; (b) wherein the attachment mechanism comprises at least one locking element positioned on the instrument handle that is configured to extend into a pocket on the adapter; (c) wherein the attachment mechanism comprises at least one locking element positioned on the adapter that is configured to extend into a pocket on the instrument handle; (d) wherein the locking element comprises a protruding member; (e) wherein the protruding member comprises a ball bearing; (f) wherein the protruding member comprises hook; (g) wherein the protruding member engages a spring-loaded surface in a pocket; and/or (h) wherein the instrument handle is configured to be top loaded onto the adaptor, such that the elongated body of the instrument extends through the opening in the adapter.
In another aspect, a medical system can include a medical instrument configured for use during a robotically-enabled medical procedure, the medical instrument comprising an elongated body extending between a distal end and a proximal end, the distal end configured to be inserted into a patient during a robotically-enabled medical procedure, and an instrument handle including a proximal face and a distal face, wherein the elongated body extends through the proximal face and the distal face, and wherein the distal face is configured to attach to an adapter on an instrument drive mechanism. The medical system can also include an attachment mechanism configured to secure the medical instrument to the adapter, wherein, when the instrument handle is secured to the adapter, the elongated body of the medical instrument extends along an axis from the distal face through an opening in the adapter, wherein the attachment mechanism comprises at least three locking elements positioned circumferentially about the axis.
The medical system can include one or more of the following features in any combination: (a) wherein at least one of the locking elements comprises a protruding member; (b) wherein the protruding member comprises a ball bearing; (c) wherein the protruding member comprises hook; and/or (d) wherein the protruding member engages a spring-loaded surface in a pocket.
In another aspect, a method includes inserting an elongated body of a medical instrument through an opening of an adapter attached to an instrument drive mechanism; advancing a handle of the medical instrument toward the adapter such that an alignment mechanism provides rotational alignment between the medical instrument and the adapter; and attaching the handle of the medical instrument to the adapter.
The medical system can include one or more of the following features in any combination: (a) wherein the medical instrument includes a spiral surface on the elongated body and the adapter includes a bearing surface in the adapter, and wherein the rotational alignment occurs as the bearing surface contacts the spiral surface; (b) wherein attaching the handle of the medical instrument to the adapter comprises engaging an attachment mechanism between the handle and the adapter; (c) wherein engaging an attachment mechanism comprises receiving a protruding member of the attachment mechanism in a pocket of the attachment mechanism; (d) wherein the protruding member is on the handle and the pocket is on the adapter; (e) wherein the protruding member comprises a ball bearing; (f) wherein the protruding member comprises hook; and/or (g) wherein the protruding member engages a spring-loaded surface in the pocket.
The disclosed aspects will hereinafter be described in conjunction with the appended drawings, provided to illustrate and not to limit the disclosed aspects, wherein like designations denote like elements.
Aspects of the present disclosure may be integrated into a robotically-enabled medical system capable of performing a variety of medical procedures, including both minimally invasive, such as laparoscopy, and non-invasive, such as endoscopy, procedures. Among endoscopy procedures, the system may be capable of performing bronchoscopy, ureteroscopy, gastroscopy, etc.
In addition to performing the breadth of procedures, the system may provide additional benefits, such as enhanced imaging and guidance to assist the physician. Additionally, the system may provide the physician with the ability to perform the procedure from an ergonomic position without the need for awkward arm motions and positions. Still further, the system may provide the physician with the ability to perform the procedure with improved ease of use such that one or more of the instruments of the system can be controlled by a single user.
Various embodiments will be described below in conjunction with the drawings for purposes of illustration. It should be appreciated that many other implementations of the disclosed concepts are possible, and various advantages can be achieved with the disclosed implementations. Headings are included herein for reference and to aid in locating various sections. These headings are not intended to limit the scope of the concepts described with respect thereto. Such concepts may have applicability throughout the entire specification.
A. Robotic System—Cart.
The robotically-enabled medical system may be configured in a variety of ways depending on the particular procedure.
With continued reference to
The endoscope 13 may be directed down the patient's trachea and lungs after insertion using precise commands from the robotic system until reaching the target destination or operative site. In order to enhance navigation through the patient's lung network and/or reach the desired target, the endoscope 13 may be manipulated to telescopically extend the inner leader portion from the outer sheath portion to obtain enhanced articulation and greater bend radius. The use of separate instrument drivers 28 also allows the leader portion and sheath portion to be driven independent of each other.
For example, the endoscope 13 may be directed to deliver a biopsy needle to a target, such as, for example, a lesion or nodule within the lungs of a patient. The needle may be deployed down a working channel that runs the length of the endoscope to obtain a tissue sample to be analyzed by a pathologist. Depending on the pathology results, additional tools may be deployed down the working channel of the endoscope for additional biopsies. After identifying a nodule to be malignant, the endoscope 13 may endoscopically deliver tools to resect the potentially cancerous tissue. In some instances, diagnostic and therapeutic treatments may need to be delivered in separate procedures. In those circumstances, the endoscope 13 may also be used to deliver a fiducial to “mark” the location of the target nodule as well. In other instances, diagnostic and therapeutic treatments may be delivered during the same procedure.
The system 10 may also include a movable tower 30, which may be connected via support cables to the cart 11 to provide support for controls, electronics, fluidics, optics, sensors, and/or power to the cart 11. Placing such functionality in the tower 30 allows for a smaller form factor cart 11 that may be more easily adjusted and/or re-positioned by an operating physician and his/her staff. Additionally, the division of functionality between the cart/table and the support tower 30 reduces operating room clutter and facilitates improving clinical workflow. While the cart 11 may be positioned close to the patient, the tower 30 may be stowed in a remote location to stay out of the way during a procedure.
In support of the robotic systems described above, the tower 30 may include component(s) of a computer-based control system that stores computer program instructions, for example, within a non-transitory computer-readable storage medium such as a persistent magnetic storage drive, solid state drive, etc. The execution of those instructions, whether the execution occurs in the tower 30 or the cart 11, may control the entire system or sub-system(s) thereof. For example, when executed by a processor of the computer system, the instructions may cause the components of the robotics system to actuate the relevant carriages and arm mounts, actuate the robotics arms, and control the medical instruments. For example, in response to receiving the control signal, the motors in the joints of the robotics arms may position the arms into a certain posture.
The tower 30 may also include a pump, flow meter, valve control, and/or fluid access in order to provide controlled irrigation and aspiration capabilities to system that may be deployed through the endoscope 13. These components may also be controlled using the computer system of tower 30. In some embodiments, irrigation and aspiration capabilities may be delivered directly to the endoscope 13 through separate cable(s).
The tower 30 may include a voltage and surge protector designed to provide filtered and protected electrical power to the cart 11, thereby avoiding placement of a power transformer and other auxiliary power components in the cart 11, resulting in a smaller, more moveable cart 11.
The tower 30 may also include support equipment for the sensors deployed throughout the robotic system 10. For example, the tower 30 may include opto-electronics equipment for detecting, receiving, and processing data received from the optical sensors or cameras throughout the robotic system 10. In combination with the control system, such opto-electronics equipment may be used to generate real-time images for display in any number of consoles deployed throughout the system, including in the tower 30. Similarly, the tower 30 may also include an electronic subsystem for receiving and processing signals received from deployed electromagnetic (EM) sensors. The tower 30 may also be used to house and position an EM field generator for detection by EM sensors in or on the medical instrument.
The tower 30 may also include a console 31 in addition to other consoles available in the rest of the system, e.g., console mounted on top of the cart. The console 31 may include a user interface and a display screen, such as a touchscreen, for the physician operator. Consoles in system 10 are generally designed to provide both robotic controls as well as pre-operative and real-time information of the procedure, such as navigational and localization information of the endoscope 13. When the console 31 is not the only console available to the physician, it may be used by a second operator, such as a nurse, to monitor the health or vitals of the patient and the operation of system, as well as provide procedure-specific data, such as navigational and localization information. In other embodiments, the console 30 is housed in a body that is separate from the tower 30.
The tower 30 may be coupled to the cart 11 and endoscope 13 through one or more cables or connections (not shown). In some embodiments, the support functionality from the tower 30 may be provided through a single cable to the cart 11, simplifying and de-cluttering the operating room. In other embodiments, specific functionality may be coupled in separate cabling and connections. For example, while power may be provided through a single power cable to the cart, the support for controls, optics, fluidics, and/or navigation may be provided through a separate cable.
The carriage interface 19 is connected to the column 14 through slots, such as slot 20, that are positioned on opposite sides of the column 14 to guide the vertical translation of the carriage 17. The slot 20 contains a vertical translation interface to position and hold the carriage at various vertical heights relative to the cart base 15. Vertical translation of the carriage 17 allows the cart 11 to adjust the reach of the robotic arms 12 to meet a variety of table heights, patient sizes, and physician preferences. Similarly, the individually configurable arm mounts on the carriage 17 allow the robotic arm base 21 of robotic arms 12 to be angled in a variety of configurations.
In some embodiments, the slot 20 may be supplemented with slot covers that are flush and parallel to the slot surface to prevent dirt and fluid ingress into the internal chambers of the column 14 and the vertical translation interface as the carriage 17 vertically translates. The slot covers may be deployed through pairs of spring spools positioned near the vertical top and bottom of the slot 20. The covers are coiled within the spools until deployed to extend and retract from their coiled state as the carriage 17 vertically translates up and down. The spring-loading of the spools provides force to retract the cover into a spool when carriage 17 translates towards the spool, while also maintaining a tight seal when the carriage 17 translates away from the spool. The covers may be connected to the carriage 17 using, for example, brackets in the carriage interface 19 to ensure proper extension and retraction of the cover as the carriage 17 translates.
The column 14 may internally comprise mechanisms, such as gears and motors, that are designed to use a vertically aligned lead screw to translate the carriage 17 in a mechanized fashion in response to control signals generated in response to user inputs, e.g., inputs from the console 16.
The robotic arms 12 may generally comprise robotic arm bases 21 and end effectors 22, separated by a series of linkages 23 that are connected by a series of joints 24, each joint comprising an independent actuator, each actuator comprising an independently controllable motor. Each independently controllable joint represents an independent degree of freedom available to the robotic arm. Each of the arms 12 have seven joints, and thus provide seven degrees of freedom. A multitude of joints result in a multitude of degrees of freedom, allowing for “redundant” degrees of freedom. Redundant degrees of freedom allow the robotic arms 12 to position their respective end effectors 22 at a specific position, orientation, and trajectory in space using different linkage positions and joint angles. This allows for the system to position and direct a medical instrument from a desired point in space while allowing the physician to move the arm joints into a clinically advantageous position away from the patient to create greater access, while avoiding arm collisions.
The cart base 15 balances the weight of the column 14, carriage 17, and arms 12 over the floor. Accordingly, the cart base 15 houses heavier components, such as electronics, motors, power supply, as well as components that either enable movement and/or immobilize the cart. For example, the cart base 15 includes rollable wheel-shaped casters 25 that allow for the cart to easily move around the room prior to a procedure. After reaching the appropriate position, the casters 25 may be immobilized using wheel locks to hold the cart 11 in place during the procedure.
Positioned at the vertical end of column 14, the console 16 allows for both a user interface for receiving user input and a display screen (or a dual-purpose device such as, for example, a touchscreen 26) to provide the physician user with both pre-operative and intra-operative data. Potential pre-operative data on the touchscreen 26 may include pre-operative plans, navigation and mapping data derived from pre-operative computerized tomography (CT) scans, and/or notes from pre-operative patient interviews. Intra-operative data on display may include optical information provided from the tool, sensor and coordinate information from sensors, as well as vital patient statistics, such as respiration, heart rate, and/or pulse. The console 16 may be positioned and tilted to allow a physician to access the console from the side of the column 14 opposite carriage 17. From this position, the physician may view the console 16, robotic arms 12, and patient while operating the console 16 from behind the cart 11. As shown, the console 16 also includes a handle 27 to assist with maneuvering and stabilizing cart 11.
After insertion into the urethra, using similar control techniques as in bronchoscopy, the ureteroscope 32 may be navigated into the bladder, ureters, and/or kidneys for diagnostic and/or therapeutic applications. For example, the ureteroscope 32 may be directed into the ureter and kidneys to break up kidney stone build up using laser or ultrasonic lithotripsy device deployed down the working channel of the ureteroscope 32. After lithotripsy is complete, the resulting stone fragments may be removed using baskets deployed down the ureteroscope 32.
B. Robotic System—Table.
Embodiments of the robotically-enabled medical system may also incorporate the patient's table. Incorporation of the table reduces the amount of capital equipment within the operating room by removing the cart, which allows greater access to the patient.
The arms 39 may be mounted on the carriages through a set of arm mounts 45 comprising a series of joints that may individually rotate and/or telescopically extend to provide additional configurability to the robotic arms 39. Additionally, the arm mounts 45 may be positioned on the carriages 43 such that, when the carriages 43 are appropriately rotated, the arm mounts 45 may be positioned on either the same side of table 38 (as shown in
The column 37 structurally provides support for the table 38, and a path for vertical translation of the carriages. Internally, the column 37 may be equipped with lead screws for guiding vertical translation of the carriages, and motors to mechanize the translation of said carriages based the lead screws. The column 37 may also convey power and control signals to the carriage 43 and robotic arms 39 mounted thereon.
The table base 46 serves a similar function as the cart base 15 in cart 11 shown in
Continuing with
In some embodiments, a table base may stow and store the robotic arms when not in use.
In a laparoscopic procedure, through small incision(s) in the patient's abdominal wall, minimally invasive instruments may be inserted into the patient's anatomy. In some embodiments, the minimally invasive instruments comprise an elongated rigid member, such as a shaft, which is used to access anatomy within the patient. After inflation of the patient's abdominal cavity, the instruments may be directed to perform surgical or medical tasks, such as grasping, cutting, ablating, suturing, etc. In some embodiments, the instruments can comprise a scope, such as a laparoscope.
To accommodate laparoscopic procedures, the robotically-enabled table system may also tilt the platform to a desired angle.
For example, pitch adjustments are particularly useful when trying to position the table in a Trendelenburg position, i.e., position the patient's lower abdomen at a higher position from the floor than the patient's lower abdomen, for lower abdominal surgery. The Trendelenburg position causes the patient's internal organs to slide towards his/her upper abdomen through the force of gravity, clearing out the abdominal cavity for minimally invasive tools to enter and perform lower abdominal surgical or medical procedures, such as laparoscopic prostatectomy.
C. Instrument Driver & Interface.
The end effectors of the system's robotic arms comprise (i) an instrument driver (alternatively referred to as “instrument drive mechanism” or “instrument device manipulator”) that incorporate electro-mechanical means for actuating the medical instrument and (ii) a removable or detachable medical instrument, which may be devoid of any electro-mechanical components, such as motors. This dichotomy may be driven by the need to sterilize medical instruments used in medical procedures, and the inability to adequately sterilize expensive capital equipment due to their intricate mechanical assemblies and sensitive electronics. Accordingly, the medical instruments may be designed to be detached, removed, and interchanged from the instrument driver (and thus the system) for individual sterilization or disposal by the physician or the physician's staff. In contrast, the instrument drivers need not be changed or sterilized, and may be draped for protection.
For procedures that require a sterile environment, the robotic system may incorporate a drive interface, such as a sterile adapter connected to a sterile drape, that sits between the instrument driver and the medical instrument. The chief purpose of the sterile adapter is to transfer angular motion from the drive shafts of the instrument driver to the drive inputs of the instrument while maintaining physical separation, and thus sterility, between the drive shafts and drive inputs. Accordingly, an example sterile adapter may comprise of a series of rotational inputs and outputs intended to be mated with the drive shafts of the instrument driver and drive inputs on the instrument. Connected to the sterile adapter, the sterile drape, comprised of a thin, flexible material such as transparent or translucent plastic, is designed to cover the capital equipment, such as the instrument driver, robotic arm, and cart (in a cart-based system) or table (in a table-based system). Use of the drape would allow the capital equipment to be positioned proximate to the patient while still being located in an area not requiring sterilization (i.e., non-sterile field). On the other side of the sterile drape, the medical instrument may interface with the patient in an area requiring sterilization (i.e., sterile field).
D. Medical Instrument.
The elongated shaft 71 is designed to be delivered through either an anatomical opening or lumen, e.g., as in endoscopy, or a minimally invasive incision, e.g., as in laparoscopy. The elongated shaft 71 may be either flexible (e.g., having properties similar to an endoscope) or rigid (e.g., having properties similar to a laparoscope) or contain a customized combination of both flexible and rigid portions. When designed for laparoscopy, the distal end of a rigid elongated shaft may be connected to an end effector extending from a jointed wrist formed from a clevis with at least one degree of freedom and a surgical tool or medical instrument, such as, for example, a grasper or scissors, that may be actuated based on force from the tendons as the drive inputs rotate in response to torque received from the drive outputs 74 of the instrument driver 75. When designed for endoscopy, the distal end of a flexible elongated shaft may include a steerable or controllable bending section that may be articulated and bent based on torque received from the drive outputs 74 of the instrument driver 75.
Torque from the instrument driver 75 is transmitted down the elongated shaft 71 using tendons along the shaft 71. These individual tendons, such as pull wires, may be individually anchored to individual drive inputs 73 within the instrument handle 72. From the handle 72, the tendons are directed down one or more pull lumens along the elongated shaft 71 and anchored at the distal portion of the elongated shaft 71, or in the wrist at the distal portion of the elongated shaft. During a surgical procedure, such as a laparoscopic, endoscopic or hybrid procedure, these tendons may be coupled to a distally mounted end effector, such as a wrist, grasper, or scissor. Under such an arrangement, torque exerted on drive inputs 73 would transfer tension to the tendon, thereby causing the end effector to actuate in some way. In some embodiments, during a surgical procedure, the tendon may cause a joint to rotate about an axis, thereby causing the end effector to move in one direction or another. Alternatively, the tendon may be connected to one or more jaws of a grasper at distal end of the elongated shaft 71, where tension from the tendon cause the grasper to close.
In endoscopy, the tendons may be coupled to a bending or articulating section positioned along the elongated shaft 71 (e.g., at the distal end) via adhesive, control ring, or other mechanical fixation. When fixedly attached to the distal end of a bending section, torque exerted on drive inputs 73 would be transmitted down the tendons, causing the softer, bending section (sometimes referred to as the articulable section or region) to bend or articulate. Along the non-bending sections, it may be advantageous to spiral or helix the individual pull lumens that direct the individual tendons along (or inside) the walls of the endoscope shaft to balance the radial forces that result from tension in the pull wires. The angle of the spiraling and/or spacing there between may be altered or engineered for specific purposes, wherein tighter spiraling exhibits lesser shaft compression under load forces, while lower amounts of spiraling results in greater shaft compression under load forces, but also exhibits limits bending. On the other end of the spectrum, the pull lumens may be directed parallel to the longitudinal axis of the elongated shaft 71 to allow for controlled articulation in the desired bending or articulable sections.
In endoscopy, the elongated shaft 71 houses a number of components to assist with the robotic procedure. The shaft may comprise of a working channel for deploying surgical tools (or medical instruments), irrigation, and/or aspiration to the operative region at the distal end of the shaft 71. The shaft 71 may also accommodate wires and/or optical fibers to transfer signals to/from an optical assembly at the distal tip, which may include of an optical camera. The shaft 71 may also accommodate optical fibers to carry light from proximally-located light sources, such as light emitting diodes, to the distal end of the shaft.
At the distal end of the instrument 70, the distal tip may also comprise the opening of a working channel for delivering tools for diagnostic and/or therapy, irrigation, and aspiration to an operative site. The distal tip may also include a port for a camera, such as a fiberscope or a digital camera, to capture images of an internal anatomical space. Relatedly, the distal tip may also include ports for light sources for illuminating the anatomical space when using the camera.
In the example of
Like earlier disclosed embodiments, an instrument 86 may comprise an elongated shaft portion 88 and an instrument base 87 (shown with a transparent external skin for discussion purposes) comprising a plurality of drive inputs 89 (such as receptacles, pulleys, and spools) that are configured to receive the drive outputs 81 in the instrument driver 80. Unlike prior disclosed embodiments, instrument shaft 88 extends from the center of instrument base 87 with an axis substantially parallel to the axes of the drive inputs 89, rather than orthogonal as in the design of
When coupled to the rotational assembly 83 of the instrument driver 80, the medical instrument 86, comprising instrument base 87 and instrument shaft 88, rotates in combination with the rotational assembly 83 about the instrument driver axis 85. Since the instrument shaft 88 is positioned at the center of instrument base 87, the instrument shaft 88 is coaxial with instrument driver axis 85 when attached. Thus, rotation of the rotational assembly 83 causes the instrument shaft 88 to rotate about its own longitudinal axis. Moreover, as the instrument base 87 rotates with the instrument shaft 88, any tendons connected to the drive inputs 89 in the instrument base 87 are not tangled during rotation. Accordingly, the parallelism of the axes of the drive outputs 81, drive inputs 89, and instrument shaft 88 allows for the shaft rotation without tangling any control tendons.
E. Navigation and Control.
Traditional endoscopy may involve the use of fluoroscopy (e.g., as may be delivered through a C-arm) and other forms of radiation-based imaging modalities to provide endoluminal guidance to an operator physician. In contrast, the robotic systems contemplated by this disclosure can provide for non-radiation-based navigational and localization means to reduce physician exposure to radiation and reduce the amount of equipment within the operating room. As used herein, the term “localization” may refer to determining and/or monitoring the position of objects in a reference coordinate system. Technologies such as pre-operative mapping, computer vision, real-time EM tracking, and robot command data may be used individually or in combination to achieve a radiation-free operating environment. In other cases, where radiation-based imaging modalities are still used, the pre-operative mapping, computer vision, real-time EM tracking, and robot command data may be used individually or in combination to improve upon the information obtained solely through radiation-based imaging modalities.
As shown in
The various input data 91-94 are now described in greater detail. Pre-operative mapping may be accomplished through the use of the collection of low dose CT scans. Pre-operative CT scans are reconstructed into three-dimensional images, which are visualized, e.g. as “slices” of a cutaway view of the patient's internal anatomy. When analyzed in the aggregate, image-based models for anatomical cavities, spaces and structures of the patient's anatomy, such as a patient lung network, may be generated. Techniques such as center-line geometry may be determined and approximated from the CT images to develop a three-dimensional volume of the patient's anatomy, referred to as model data 91 (also referred to as “preoperative model data” when generated using only preoperative CT scans). The use of center-line geometry is discussed in U.S. patent application Ser. No. 14/523,760, the contents of which are herein incorporated in its entirety. Network topological models may also be derived from the CT-images, and are particularly appropriate for bronchoscopy.
In some embodiments, the instrument may be equipped with a camera to provide vision data 92. The localization module 95 may process the vision data to enable one or more vision-based location tracking. For example, the preoperative model data may be used in conjunction with the vision data 92 to enable computer vision-based tracking of the medical instrument (e.g., an endoscope or an instrument advance through a working channel of the endoscope). For example, using the preoperative model data 91, the robotic system may generate a library of expected endoscopic images from the model based on the expected path of travel of the endoscope, each image linked to a location within the model. Intra-operatively, this library may be referenced by the robotic system in order to compare real-time images captured at the camera (e.g., a camera at a distal end of the endoscope) to those in the image library to assist localization.
Other computer vision-based tracking techniques use feature tracking to determine motion of the camera, and thus the endoscope. Some features of the localization module 95 may identify circular geometries in the preoperative model data 91 that correspond to anatomical lumens and track the change of those geometries to determine which anatomical lumen was selected, as well as the relative rotational and/or translational motion of the camera. Use of a topological map may further enhance vision-based algorithms or techniques.
Optical flow, another computer vision-based technique, may analyze the displacement and translation of image pixels in a video sequence in the vision data 92 to infer camera movement. Examples of optical flow techniques may include motion detection, object segmentation calculations, luminance, motion compensated encoding, stereo disparity measurement, etc. Through the comparison of multiple frames over multiple iterations, movement and location of the camera (and thus the endoscope) may be determined.
The localization module 95 may use real-time EM tracking to generate a real-time location of the endoscope in a global coordinate system that may be registered to the patient's anatomy, represented by the preoperative model. In EM tracking, an EM sensor (or tracker) comprising of one or more sensor coils embedded in one or more locations and orientations in a medical instrument (e.g., an endoscopic tool) measures the variation in the EM field created by one or more static EM field generators positioned at a known location. The location information detected by the EM sensors is stored as EM data 93. The EM field generator (or transmitter), may be placed close to the patient to create a low intensity magnetic field that the embedded sensor may detect. The magnetic field induces small currents in the sensor coils of the EM sensor, which may be analyzed to determine the distance and angle between the EM sensor and the EM field generator. These distances and orientations may be intra-operatively “registered” to the patient anatomy (e.g., the preoperative model) in order to determine the geometric transformation that aligns a single location in the coordinate system with a position in the pre-operative model of the patient's anatomy. Once registered, an embedded EM tracker in one or more positions of the medical instrument (e.g., the distal tip of an endoscope) may provide real-time indications of the progression of the medical instrument through the patient's anatomy.
Robotic command and kinematics data 94 may also be used by the localization module 95 to provide localization data 96 for the robotic system. Device pitch and yaw resulting from articulation commands may be determined during pre-operative calibration. Intra-operatively, these calibration measurements may be used in combination with known insertion depth information to estimate the position of the instrument. Alternatively, these calculations may be analyzed in combination with EM, vision, and/or topological modeling to estimate the position of the medical instrument within the network.
As
The localization module 95 may use the input data 91-94 in combination(s). In some cases, such a combination may use a probabilistic approach where the localization module 95 assigns a confidence weight to the location determined from each of the input data 91-94. Thus, where the EM data may not be reliable (as may be the case where there is EM interference) the confidence of the location determined by the EM data 93 can be decrease and the localization module 95 may rely more heavily on the vision data 92 and/or the robotic command and kinematics data 94.
As discussed above, the robotic systems discussed herein may be designed to incorporate a combination of one or more of the technologies above. The robotic system's computer-based control system, based in the tower, bed and/or cart, may store computer program instructions, for example, within a non-transitory computer-readable storage medium such as a persistent magnetic storage drive, solid state drive, or the like, that, upon execution, cause the system to receive and analyze sensor data and user commands, generate control signals throughout the system, and display the navigational and localization data, such as the position of the instrument within the global coordinate system, anatomical map, etc.
Medical instruments, such as those described above, can include alignment and attachment mechanisms as described in this section. In some embodiments, the alignment and attachment mechanisms provide novel and efficient mechanisms for aligning and attaching an instrument (see, e.g.,
The alignment mechanisms can be configured to facilitate correctly orienting the medical instrument to the component to which the medical instrument will attach. For example, the alignment mechanism can provide proper rotational alignment between the medical instrument and the instrument drive mechanism and/or the adapter. In some embodiments, the alignment mechanism also provides proper translational alignment. Proper alignment between the instrument and the instrument drive mechanism and/or the adapter can facilitate connection of the attachment mechanism. For example, proper alignment can facilitate proper engagement between locking features of the attachment mechanism on the instrument with corresponding locking features of the attachment mechanism on the instrument drive mechanism and/or the adapter.
The attachment mechanisms can be configured to provide a secure and stable connection between the medical instrument and the instrument drive mechanism and/or the adapter. As will be described in more detail below with reference to certain example embodiments illustrated in the figures, the attachment mechanisms can provide circumferential locking with multiple points of connection. For example, in some embodiments, the attachment mechanism comprises two, three, four, five, or more locking features that can be positioned circumferentially around an axis of the instrument, instrument drive mechanism, and/or the adapter. In some embodiments, the instrument comprises a through-loaded instrument that includes an elongated body that extends along an axis that is through-loaded through a channel, bore, or other opening in the instrument drive mechanism and/or the adapter. The attachment mechanism can include locking features positioned on a handle of the instrument circumferentially around the axis of the elongated body. The attachment mechanism can also include corresponding locking features positioned on the instrument drive mechanism and/or the adapter circumferentially around the channel, bore, or other opening.
As will become more fully apparent from the following description, in some embodiments, an advantage of the alignment and attachment mechanisms described herein is that the mechanisms provide improved or increased attachment strength for the instruments. In some embodiments, the mechanisms described herein provide that the instrument is very securely attached and the attachment is stable and/or stiff. Further, in some embodiments, the mechanisms are configured to provide this stable attachment using a limited or minimal number of machined and metal components. This can reduce manufacturing cost and simplify manufacturing processes.
In addition, in some embodiments, the alignment and attachment mechanisms described herein can advantageously require a relatively low force to attach and/or release the instrument to and/or from the instrument drive mechanism or adapter when desired. For example, in some embodiments, the instruments can advantageously be removed or attached with one hand. In some embodiments, the instruments can advantageously be removed or attached when the robotic arm is in any position or orientation. Accordingly, attachment and detachment of the instrument can be performed in a controlled and/or ergonomic manner.
In many of the examples described herein, the alignment and attachment mechanisms are described as providing alignment and attachment between the medical instrument and the adapter. However, in some embodiments, the adapter can be omitted, and the alignment and attachment mechanisms can provide alignment and attachment between the medical instrument and the instrument drive mechanism directly, for example, with no intermediary adapter. Further, in some embodiments, the alignment and attachment mechanisms can be configured to provide alignment and attachment between the medical instrument (or even other non-medical instruments) and any other components to which the instrument can be attached. Thus, the illustrated and described embodiments should be understood as merely providing certain non-limiting examples.
As shown, an end effector 108, which in the illustrated embodiment is configured as a grasper, can be positioned at the distal end 103 of the elongated body 102. In other embodiments, the instrument may include other types of end effectors, such as scissors, clippers, ligation tools, cauterizing tools, basketing tools, etc. In some embodiments, for example, as illustrated, the end effector 108 is connected to the distal end of the elongated body 102 by a wrist 106. The wrist 106 can be configured to allow one or more degrees of freedom for the instrument 100. For example, the wrist 106 can be a two degree-of-freedom wrist. As an example, a two degree-of-freedom wrist can allow the end effector 108 to pivot or rotate around a pitch axis and a yaw axis. In some embodiments, the wrist 106 can be fixed, so as to provide zero degrees of freedom. In some embodiments, the wrist 106 may allow one, two, three, or more degrees of freedom.
As shown in
The elongated body 102 can extend through the handle 104 as illustrated in
As illustrated in
As noted above,
In some embodiments, the instrument 100 is configured to be through loaded onto the instrument drive mechanism 124. For example, the instrument drive mechanism 124 can include a channel, bore, or other opening (not visible) extending through the instrument drive mechanism 124 from the proximal face 130 to the distal face 128, and the instrument can be through-loaded (or top loaded) onto the instrument drive mechanism by inserting the distal end 103 of the elongated body 102 through the proximal face 130, through the channel, and out through the distal face 128. The instrument 100 can be then be moved distally until the distal face 109 of the handle 104 contacts and engages with the proximal face 130 of the instrument drive mechanism 124. In some embodiments, the system 120 includes the adapter 126 positioned on the proximal face 130 of the instrument drive mechanism 124. In such embodiments, the distal face 109 of the handle 104 can contact and engage with the adapter 126. As mentioned previously, the adapter 126 may be a sterile adapter configured to maintain sterility between the instrument 100 and the instrument drive mechanism 124. Through-loading or top-loading the instrument 100 in this manner advantageously allows the instrument 100 to be detached from the instrument drive mechanism 124 in a proximal direction, by pulling the instrument 100 away from the patient. This can advantageously improve patient safety as the instrument 100 can be removed in a direction that is away from the patient.
Further, as will be described below, the alignment mechanism 140 on the instrument 100 and the adapter 126 and/or instrument drive mechanism 124 can provide alignment as the instrument is through loaded onto the instrument drive mechanism 124. For example, as the instrument 100 is lowered distally through the instrument drive mechanism 124, alignment features on the instrument 100 engage with alignment features on the adapter 126 or instrument drive mechanism 124. These features can automatically cause the instrument 100 to rotate into the correct rotational alignment with the adapter 126 or instrument drive mechanism 124. In some embodiments, alignment occurs automatically. In some embodiments, alignment occurs passively. Passive alignment can include alignment that occurs naturally as the instrument 100 and adapter 126 or instrument drive mechanism 124 are brought together. In some embodiments, the alignment mechanism 140 also provides translational alignment between the instrument 100 and the adapter 126 or instrument drive mechanism 124. For example, the alignment mechanism 140 can coaxially align an axis of the instrument 100 with an axis of the adapter 126 or instrument drive mechanism 124.
Alignment, provided by the alignment mechanism 140, can facilitate proper orientation of the attachment mechanism 160. For example, the alignment can ensure that locking features of the attachment mechanism 160 on the distal face 109 of the instrument 100 align with corresponding locking features of the attachment mechanism 160 on the proximal face 130 of the adapter 126 or instrument drive mechanism 124 such that these features can engage when the distal face 109 is brought into contact with the proximal face 130. In some embodiments, engagement of these features can occur automatically or passively. As noted above, a more detailed example of the alignment mechanism 140 and the attachment mechanism 160 will be described in greater detail below with reference to
In the illustrated embodiment of
B. Example Alignment Mechanisms
As shown in
As best seen in
The first alignment structure 142 also comprises an alignment surface 149 formed on an exterior surface of the shaft 146. As will be described below, the alignment surface 149 engages and contacts the second alignment structure 144 as the instrument 100 is through loaded onto the instrument drive mechanism 124 to provide alignment. In some embodiments, the alignment surface 149 is configured as an angled surface. The angled surface may be formed as a surface that lies in a plane that is not orthogonal to a longitudinal axis of the shaft 146. In some embodiments, the alignment surface 149 is configured as a spiral surface. The spiraled surface may spiral around the longitudinal axis of the shaft 146 in a helical or spiral manner.
In the illustrated embodiment, the first alignment structure 142 also includes an alignment groove 150. The alignment groove 150 is also configured to contact and engage with the second alignment structure 144 to provide alignment between the instrument 100 and the adapter 126 or instrument drive mechanism 124. The alignment groove 150 may extend along and be formed into the exterior surface of the shaft 146. In some embodiments, the alignment groove 150 may extend along the shaft 146 toward the handle 104 starting from the distal most point of the alignment surface 149 (i.e., a point along the alignment surface 149 that is closest to the handle 104). For example, in some embodiments, the alignment surface 149 is angled with respect to the longitudinal axis of the shaft 146 such that a first portion of the alignment surface 149 is positioned proximally relative to a second portion of the alignment surface 149 that is positioned distally. The groove 150 may extend toward the handle 104 from the second portion of the alignment surface 149.
As illustrated in
For example, the adapter 126 can be attached to the proximal face of the instrument drive mechanism 124. The distal end 103 of the elongated body 102 of the instrument 100 can be inserted into the channel 148 through the proximal face 130 in the adapter. The instrument 100 is moved in a distal direction bringing the distal face 109 of the handle 104 toward the proximal face 130 of the adapter 126. Eventually, the shaft 146 of the first alignment structure 142 enters the channel 148. Inserting the shaft 146 of the first alignment structure 142 into the channel 148 can provide translational alignment between the instrument 100 and the adapter 126; however, at this stage, the instrument 100 may not be properly rotationally aligned with the adapter 126. As the instrument 100 is moved further in the distal direction, the protrusion 152 of the second alignment structure 144 is brought into contact with the alignment surface 149 of the first alignment structure 142. The protrusion 152 rides along the alignment surface 149 causing the instrument 100 to rotate into the correct orientation. In some embodiments, the causes passive, automatic, or natural alignment. The protrusion 152 eventually reaches the distally lowest most point of the alignment surface 149. At this point the instrument 100 is in the proper rotationally aligned position. This allows the protrusion 152 to enter the alignment groove 150. The alignment groove 150 is sufficiently narrow such that further rotation of the instrument 100 is limited or prohibited. The instrument 100 can then be moved all the way in the distal direction until the distal face 109 of the handle 104 contacts the proximal face 130 of the adapter.
In the aligned position, various features of the instrument handle 104 are aligned with corresponding features of the adapter 126 (and/or instrument drive mechanism 124). These features can include, for example, the corresponding locking features of the attachment mechanism 160 described in greater detail below. The aligned features can also include, for example, drive outputs 156 (see
The aligned features can also include, for example, a computer-readable tag, such as RFID tag 161 (see
In some embodiments, the first alignment structure 142 and the second alignment structure 144 can be reversed. For example, the alignment surface 149 and alignment groove 150 can be included within the channel 148 on the adapter 126, and the protrusion 152 can be included on the shaft 146 of the instrument handle 104. Other suitable alignment structures are also possible. For example, other suitable alignment sensors can include key tabs, which may or may not be passive, but will only engage when aligned properly.
As described herein, the instrument handle 104 can include the alignment mechanism 140 to enable the instrument handle 104 to quickly attach to the adapter 126, thereby aligning the attachment mechanism 160 and other components. The alignment mechanism 140 can be in the form of a spiral alignment formed on the instrument shaft. In some embodiments, the alignment mechanism 140 is in the form of a double spiral. The alignment mechanism 140 can quickly align the instrument handle 104 to the adapter 126, thereby providing a quick connect feature that allows for easy exchange of instruments 100 on the robotic arms 122.
B. Example Attachment Mechanisms
As shown in
As shown in
Advantageously, the locking elements 166 can be positioned circumferentially around the longitudinal axis of the adapter 126. For example, the locking elements 166 can be positioned circumferentially around the channel 148. The locking elements 166, when arranged circumferentially, can provide locking around the perimeter of the adapter 126. This can provide a connection with improved stability over embodiments that includes only a single locking element or locking elements only on a single side of the device. In some embodiments, circumferentially positioned locking elements 166 can be evenly spaced. In some embodiments, the spacing need not be even.
In some embodiments, the locking elements 166 of the adapter 126 comprise radial locking elements. For example, the locking elements 166 can protrude outwardly from the proximal surface of the adapter, and can be configured to engage a spring loaded surface before being received in the pockets 168. Engagement between the locking elements 166 and the pockets can include a radial force that maintains the connection.
In the illustrated embodiment of
As shown in
In some embodiments, the attachment mechanism 160 not only allows a quick connection between the instrument handle 104 and the adapter 126, but it also allow for easy separation or removal, simply by pulling the instrument handle 104 away from the adapter 126. As mentioned above, the handle 104 is pulled away from the adapter 126 in a proximal direction (away from the patient), which can be advantageous, as there is little to no likelihood that the patient may be accidentally stabbed by a sharp instrument.
While the embodiments described above show the adapter 126 as having locking elements 166 protruding therefrom and pockets 168 formed on the instrument handle 104, in other embodiments, these features can be reversed. For example, the instrument handle 104 can include protruding locking elements 166 and the adapter 126 can include pockets. In some embodiments, each of the instrument handle 104 and the adapter 126 include both locking elements 166 and pockets 168.
As illustrated in
The pocket 168 can also include a collar 176. The collar 176 can include a ramped or sloped surface 178 as illustrated. The collar 176 can be moveable in the proximal and distal direction (e.g., right and left relative to the orientation of the figures). The collar 176 can be biased in the distal direction (e.g., toward the right in the figure), for example, by a spring (not illustrated). Interaction of the ball bearing 172, retaining surface 174, and collar 176 can allow for connection and disconnection of the locking element 166 to and from the pocket 168.
Example attachment will be described with reference to
To detach, the collar 176 and the instrument handle 104 can be pulled proximally concurrently. When the collar 176 is retracted far enough for the slope or ramp surface 178 of the collar 176 to allow the ball bearing 172 to escape from the cup feature of the retaining surface 174, the locking element 166 disengages with the pocket 168 allowing the instrument 100 to be smoothly disconnected.
As shown in
The distal plate 192 can include a backstop 193, formed as a projection extending from the distal plate 192. When assembled, as shown in
To engage the attachment mechanism 160, the instrument handle is moved towards the adapter 126. The outer surface of the cantilever hooks 186 deflects the pinch levers 180 inward allowing the hooked ends 184 to pass and engage the cantilever hooks 186. To disengage, the pinch levers 180 can be pressed inwardly to such that the hooked ends 184 move free of the cantilever hooks 186.
Implementations disclosed herein provide systems, methods and apparatus for robotically-enabled medical systems. Various implementations described herein include robotically-enabled medical systems with high force instruments.
It should be noted that the terms “couple,” “coupling,” “coupled” or other variations of the word couple as used herein may indicate either an indirect connection or a direct connection. For example, if a first component is “coupled” to a second component, the first component may be either indirectly connected to the second component via another component or directly connected to the second component.
The position estimation and robotic motion actuation functions described herein may be stored as one or more instructions on a processor-readable or computer-readable medium. The term “computer-readable medium” refers to any available medium that can be accessed by a computer or processor. By way of example, and not limitation, such a medium may comprise random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory, compact disc read-only memory (CD-ROM) or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer. It should be noted that a computer-readable medium may be tangible and non-transitory. As used herein, the term “code” may refer to software, instructions, code or data that is/are executable by a computing device or processor.
The methods disclosed herein comprise one or more steps or actions for achieving the described method. The method steps and/or actions may be interchanged with one another without departing from the scope of the claims. In other words, unless a specific order of steps or actions is required for proper operation of the method that is being described, the order and/or use of specific steps and/or actions may be modified without departing from the scope of the claims.
As used herein, the term “plurality” denotes two or more. For example, a plurality of components indicates two or more components. The term “determining” encompasses a wide variety of actions and, therefore, “determining” can include calculating, computing, processing, deriving, investigating, looking up (e.g., looking up in a table, a database or another data structure), ascertaining and the like. Also, “determining” can include receiving (e.g., receiving information), accessing (e.g., accessing data in a memory) and the like. Also, “determining” can include resolving, selecting, choosing, establishing and the like.
The phrase “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase “based on” describes both “based only on” and “based at least on.”
As used herein, the term “approximately” or “about” refers to a range of measurements of a length, thickness, a quantity, time period, or other measurable value. Such range of measurements encompasses variations of +/−10% or less, preferably +/−5% or less, more preferably +/−1% or less, and still more preferably +/−0.1% or less, of and from the specified value, in so far as such variations are appropriate in order to function in the disclosed devices, systems, and techniques.
The previous description of the disclosed implementations is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these implementations will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other implementations without departing from the scope of the invention. For example, it will be appreciated that one of ordinary skill in the art will be able to employ a number corresponding alternative and equivalent structural details, such as equivalent ways of fastening, mounting, coupling, or engaging tool components, equivalent mechanisms for producing particular actuation motions, and equivalent mechanisms for delivering electrical energy. Thus, the present invention is not intended to be limited to the implementations shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
This application claims priority to U.S. Provisional Application No. 62/690,744, filed Jun. 27, 2018, which is incorporated herein by reference. Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.
Number | Name | Date | Kind |
---|---|---|---|
2556601 | Schofield | Jun 1951 | A |
2566183 | Forss | Aug 1951 | A |
2623175 | Finke | Dec 1952 | A |
2730699 | Gratian | Jan 1956 | A |
2884808 | Mueller | May 1959 | A |
3294183 | Riley et al. | Dec 1966 | A |
3472083 | Schnepel | Oct 1969 | A |
3513724 | Box | May 1970 | A |
3595074 | Johnson | Jul 1971 | A |
3734207 | Fishbein | May 1973 | A |
3739923 | Totsuka | Jun 1973 | A |
3784031 | Nitu | Jan 1974 | A |
3921536 | Savage | Nov 1975 | A |
3926386 | Stahmann | Dec 1975 | A |
4141245 | Brandstetter | Feb 1979 | A |
4241884 | Lynch | Dec 1980 | A |
4243034 | Brandt | Jan 1981 | A |
4351493 | Sonnek | Sep 1982 | A |
4357843 | Peck et al. | Nov 1982 | A |
4384493 | Grunbaum | May 1983 | A |
4507026 | Lund | Mar 1985 | A |
4530471 | Inoue | Jul 1985 | A |
4555960 | King | Dec 1985 | A |
4688555 | Wardle | Aug 1987 | A |
4745908 | Wardle | May 1988 | A |
4784150 | Voorhies et al. | Nov 1988 | A |
4857058 | Payton | Aug 1989 | A |
4907168 | Boggs | Mar 1990 | A |
4945790 | Golden | Aug 1990 | A |
5207128 | Albright | May 1993 | A |
5234428 | Kaufman | Aug 1993 | A |
5256150 | Quiachon et al. | Oct 1993 | A |
5277085 | Tanimura et al. | Jan 1994 | A |
5350101 | Godlewski | Sep 1994 | A |
5426687 | Goodall et al. | Jun 1995 | A |
5507725 | Savage et al. | Apr 1996 | A |
5524180 | Wang et al. | Jun 1996 | A |
5559294 | Hoium et al. | Sep 1996 | A |
5709661 | Van Egmond | Jan 1998 | A |
5767840 | Selker | Jun 1998 | A |
5779623 | Bonnell | Jul 1998 | A |
5792135 | Madhani et al. | Aug 1998 | A |
5855583 | Wang et al. | Jan 1999 | A |
5921968 | Lampropoulos et al. | Jul 1999 | A |
5967934 | Ishida et al. | Oct 1999 | A |
6077219 | Viebach | Jun 2000 | A |
6084371 | Kress et al. | Jul 2000 | A |
6154000 | Rastegar et al. | Nov 2000 | A |
6171234 | White et al. | Jan 2001 | B1 |
6185478 | Koakutsu et al. | Feb 2001 | B1 |
6272371 | Shlomo | Aug 2001 | B1 |
6289579 | Viza et al. | Sep 2001 | B1 |
6394998 | Wallace et al. | May 2002 | B1 |
6401572 | Provost | Jun 2002 | B1 |
6413264 | Jensen et al. | Jul 2002 | B1 |
6436107 | Wang et al. | Aug 2002 | B1 |
6451027 | Cooper et al. | Sep 2002 | B1 |
6487940 | Hart et al. | Dec 2002 | B2 |
6491701 | Tierney et al. | Dec 2002 | B2 |
6695818 | Wollschlager | Feb 2004 | B2 |
6726675 | Beyar | Apr 2004 | B1 |
6786896 | Madhani et al. | Sep 2004 | B1 |
6827712 | Tovey et al. | Dec 2004 | B2 |
7044936 | Harding | May 2006 | B2 |
7172580 | Hruska et al. | Feb 2007 | B2 |
7276044 | Ferry et al. | Oct 2007 | B2 |
7615042 | Beyar et al. | Nov 2009 | B2 |
7635342 | Ferry et al. | Dec 2009 | B2 |
7766856 | Ferry et al. | Aug 2010 | B2 |
7938809 | Lampropoulos et al. | May 2011 | B2 |
7974674 | Hauck et al. | Jul 2011 | B2 |
7998020 | Kidd et al. | Aug 2011 | B2 |
8052636 | Moll et al. | Nov 2011 | B2 |
8157308 | Pedersen | Apr 2012 | B2 |
8182415 | Larkin et al. | May 2012 | B2 |
8277417 | Fedinec et al. | Oct 2012 | B2 |
8291791 | Light et al. | Oct 2012 | B2 |
8414505 | Weitzner | Apr 2013 | B1 |
8425465 | Nagano | Apr 2013 | B2 |
8671817 | Bogusky | Mar 2014 | B1 |
8720448 | Reis et al. | May 2014 | B2 |
8746252 | McGrogan et al. | Jun 2014 | B2 |
8870815 | Bhat et al. | Oct 2014 | B2 |
8961533 | Stahler et al. | Feb 2015 | B2 |
8968333 | Yu et al. | Mar 2015 | B2 |
8992542 | Hagag et al. | Mar 2015 | B2 |
9173713 | Hart et al. | Nov 2015 | B2 |
9204933 | Reis et al. | Dec 2015 | B2 |
9326822 | Lewis et al. | May 2016 | B2 |
9408669 | Kokish et al. | Aug 2016 | B2 |
9446177 | Millman et al. | Sep 2016 | B2 |
9452018 | Yu | Sep 2016 | B2 |
9457168 | Moll et al. | Oct 2016 | B2 |
9498601 | Tanner et al. | Nov 2016 | B2 |
9504604 | Alvarez | Nov 2016 | B2 |
9561083 | Yu et al. | Feb 2017 | B2 |
9622827 | Yu et al. | Apr 2017 | B2 |
9636184 | Lee et al. | May 2017 | B2 |
9636483 | Hart et al. | May 2017 | B2 |
9668814 | Kokish | Jun 2017 | B2 |
9713509 | Schuh et al. | Jul 2017 | B2 |
9727963 | Mintz et al. | Aug 2017 | B2 |
9737371 | Romo et al. | Aug 2017 | B2 |
9737373 | Schuh | Aug 2017 | B2 |
9744335 | Jiang | Aug 2017 | B2 |
9763741 | Alvarez et al. | Sep 2017 | B2 |
9788910 | Schuh | Oct 2017 | B2 |
9844412 | Bogusky et al. | Dec 2017 | B2 |
9867635 | Alvarez et al. | Jan 2018 | B2 |
9918681 | Wallace et al. | Mar 2018 | B2 |
9931025 | Graetzel et al. | Apr 2018 | B1 |
9949749 | Noonan et al. | Apr 2018 | B2 |
9955986 | Shah | May 2018 | B2 |
9962228 | Schuh et al. | May 2018 | B2 |
9980785 | Schuh | May 2018 | B2 |
9993313 | Schuh et al. | Jun 2018 | B2 |
10016900 | Meyer et al. | Jul 2018 | B1 |
10022192 | Ummalaneni | Jul 2018 | B1 |
10046140 | Kokish et al. | Aug 2018 | B2 |
10080576 | Romo et al. | Sep 2018 | B2 |
10136959 | Mintz et al. | Nov 2018 | B2 |
10143360 | Roelle et al. | Dec 2018 | B2 |
10145747 | Lin et al. | Dec 2018 | B1 |
10149720 | Romo | Dec 2018 | B2 |
10159532 | Ummalaneni | Dec 2018 | B1 |
10159533 | Moll et al. | Dec 2018 | B2 |
10169875 | Mintz et al. | Jan 2019 | B2 |
10213264 | Tanner et al. | Feb 2019 | B2 |
10219874 | Yu et al. | Mar 2019 | B2 |
10231793 | Romo | Mar 2019 | B2 |
10231867 | Alvarez et al. | Mar 2019 | B2 |
10405939 | Romo et al. | Sep 2019 | B2 |
10405940 | Romo | Sep 2019 | B2 |
10426661 | Kintz | Oct 2019 | B2 |
10434660 | Meyer | Oct 2019 | B2 |
10464209 | Ho et al. | Nov 2019 | B2 |
10470830 | Hill | Nov 2019 | B2 |
10482599 | Mintz et al. | Nov 2019 | B2 |
10517692 | Eyre et al. | Dec 2019 | B2 |
10524866 | Srinivasan | Jan 2020 | B2 |
10539478 | Lin | Jan 2020 | B2 |
10555778 | Ummalaneni et al. | Feb 2020 | B2 |
20010042643 | Krueger et al. | Nov 2001 | A1 |
20020045905 | Gerbi et al. | Apr 2002 | A1 |
20020098938 | Milbourne et al. | Jul 2002 | A1 |
20020100254 | Dharssi | Aug 2002 | A1 |
20020107573 | Steinberg | Aug 2002 | A1 |
20020111635 | Jensen et al. | Aug 2002 | A1 |
20020117017 | Bernhardt et al. | Aug 2002 | A1 |
20020161355 | Wollschlager | Oct 2002 | A1 |
20020161426 | Lancea | Oct 2002 | A1 |
20020177789 | Ferry et al. | Nov 2002 | A1 |
20030056561 | Butscher et al. | Mar 2003 | A1 |
20030212308 | Bendall | Nov 2003 | A1 |
20040015053 | Bieger | Jan 2004 | A1 |
20040152972 | Hunter | Aug 2004 | A1 |
20040243147 | Lipow | Dec 2004 | A1 |
20040254566 | Plicchi | Dec 2004 | A1 |
20050004579 | Schneider et al. | Jan 2005 | A1 |
20050177026 | Hoeg et al. | Aug 2005 | A1 |
20050183532 | Najafi et al. | Aug 2005 | A1 |
20050222554 | Wallace et al. | Oct 2005 | A1 |
20060041245 | Ferry | Feb 2006 | A1 |
20060111692 | Hlavka et al. | May 2006 | A1 |
20060146010 | Schneider | Jul 2006 | A1 |
20060201688 | Jenner et al. | Sep 2006 | A1 |
20060229587 | Beyar et al. | Oct 2006 | A1 |
20060237205 | Sia et al. | Oct 2006 | A1 |
20070000498 | Glynn et al. | Jan 2007 | A1 |
20070013336 | Nowlin et al. | Jan 2007 | A1 |
20070060879 | Weitzner et al. | Mar 2007 | A1 |
20070100201 | Komiya et al. | May 2007 | A1 |
20070100254 | Murakami | May 2007 | A1 |
20070112355 | Salahieh | May 2007 | A1 |
20070119274 | Devengenzo et al. | May 2007 | A1 |
20070149946 | Viswanathan | Jun 2007 | A1 |
20070191177 | Nagai et al. | Aug 2007 | A1 |
20070239028 | Houser | Oct 2007 | A1 |
20070245175 | Zheng et al. | Oct 2007 | A1 |
20070299427 | Yeung et al. | Dec 2007 | A1 |
20080039255 | Jinno et al. | Feb 2008 | A1 |
20080046122 | Manzo et al. | Feb 2008 | A1 |
20080065103 | Cooper et al. | Mar 2008 | A1 |
20080147011 | Urmey | Jun 2008 | A1 |
20080177285 | Brock et al. | Jul 2008 | A1 |
20080214925 | Wilson et al. | Sep 2008 | A1 |
20080243064 | Stahler et al. | Oct 2008 | A1 |
20080249536 | Stahler et al. | Oct 2008 | A1 |
20080253108 | Yu et al. | Oct 2008 | A1 |
20080262301 | Gibbons et al. | Oct 2008 | A1 |
20080287963 | Rogers et al. | Nov 2008 | A1 |
20080302200 | Tobey | Dec 2008 | A1 |
20090000626 | Quaid et al. | Jan 2009 | A1 |
20090082722 | Munger et al. | Mar 2009 | A1 |
20090098971 | Ho et al. | Apr 2009 | A1 |
20090105645 | Kidd et al. | Apr 2009 | A1 |
20090112060 | Sugiyama et al. | Apr 2009 | A1 |
20090163948 | Sunaoshi | Jun 2009 | A1 |
20090171371 | Nixon | Jul 2009 | A1 |
20090247944 | Kirschenman et al. | Oct 2009 | A1 |
20090248039 | Cooper et al. | Oct 2009 | A1 |
20090292298 | Lin et al. | Nov 2009 | A1 |
20100030023 | Yoshie | Feb 2010 | A1 |
20100069833 | Wenderow et al. | Mar 2010 | A1 |
20100073150 | Olson et al. | Mar 2010 | A1 |
20100130923 | Cleary et al. | May 2010 | A1 |
20100130987 | Wenderow et al. | May 2010 | A1 |
20100175701 | Reis et al. | Jul 2010 | A1 |
20100204646 | Plicchi et al. | Aug 2010 | A1 |
20100210923 | Li et al. | Aug 2010 | A1 |
20100248177 | Mangelberger et al. | Sep 2010 | A1 |
20100249506 | Prisco et al. | Sep 2010 | A1 |
20100274078 | Kim et al. | Oct 2010 | A1 |
20110015484 | Alvarez et al. | Jan 2011 | A1 |
20110015648 | Alvarez et al. | Jan 2011 | A1 |
20110015650 | Choi et al. | Jan 2011 | A1 |
20110028991 | Ikeda et al. | Feb 2011 | A1 |
20110130718 | Kidd et al. | Jun 2011 | A1 |
20110147030 | Blum et al. | Jun 2011 | A1 |
20110152880 | Alvarez et al. | Jun 2011 | A1 |
20110238083 | Moll et al. | Sep 2011 | A1 |
20110261183 | Ma et al. | Oct 2011 | A1 |
20110277775 | Holop et al. | Nov 2011 | A1 |
20110288573 | Yates et al. | Nov 2011 | A1 |
20110306836 | Ohline et al. | Dec 2011 | A1 |
20120071821 | Yu | Mar 2012 | A1 |
20120071894 | Tanner et al. | Mar 2012 | A1 |
20120071895 | Stahler et al. | Mar 2012 | A1 |
20120118088 | Smith et al. | May 2012 | A1 |
20120143226 | Belson et al. | Jun 2012 | A1 |
20120150154 | Brisson et al. | Jun 2012 | A1 |
20120186194 | Schlieper | Jul 2012 | A1 |
20120191107 | Tanner et al. | Jul 2012 | A1 |
20120232476 | Bhat et al. | Sep 2012 | A1 |
20120239012 | Laurent et al. | Sep 2012 | A1 |
20120277730 | Salahieh | Nov 2012 | A1 |
20120283747 | Popovic | Nov 2012 | A1 |
20120289973 | Prisco et al. | Nov 2012 | A1 |
20130018400 | Milton et al. | Jan 2013 | A1 |
20130144116 | Cooper et al. | Jun 2013 | A1 |
20130231678 | Wenderow | Sep 2013 | A1 |
20130304084 | Beira et al. | Nov 2013 | A1 |
20130317519 | Romo et al. | Nov 2013 | A1 |
20130345519 | Piskun et al. | Dec 2013 | A1 |
20140000411 | Shelton, IV et al. | Jan 2014 | A1 |
20140066944 | Taylor et al. | Mar 2014 | A1 |
20140069437 | Reis et al. | Mar 2014 | A1 |
20140142591 | Alvarez et al. | May 2014 | A1 |
20140151430 | Scheib et al. | Jun 2014 | A1 |
20140166023 | Kishi | Jun 2014 | A1 |
20140171778 | Tsusaka | Jun 2014 | A1 |
20140222019 | Brudnick | Aug 2014 | A1 |
20140243849 | Saglam et al. | Aug 2014 | A1 |
20140276233 | Murphy | Sep 2014 | A1 |
20140276389 | Walker | Sep 2014 | A1 |
20140276394 | Wong et al. | Sep 2014 | A1 |
20140276594 | Tanner et al. | Sep 2014 | A1 |
20140276935 | Yu | Sep 2014 | A1 |
20140276936 | Kokish et al. | Sep 2014 | A1 |
20140277334 | Yu et al. | Sep 2014 | A1 |
20140357984 | Wallace et al. | Dec 2014 | A1 |
20140364870 | Alvarez et al. | Dec 2014 | A1 |
20150012134 | Robinson | Jan 2015 | A1 |
20150038981 | Kilroy et al. | Feb 2015 | A1 |
20150051592 | Kintz | Feb 2015 | A1 |
20150090063 | Lantermann et al. | Apr 2015 | A1 |
20150133963 | Barbagli | May 2015 | A1 |
20150142013 | Tanner et al. | May 2015 | A1 |
20150144514 | Brennan et al. | May 2015 | A1 |
20150148600 | Ashinuma et al. | May 2015 | A1 |
20150164594 | Romo et al. | Jun 2015 | A1 |
20150164596 | Romo | Jun 2015 | A1 |
20150182250 | Conlon et al. | Jul 2015 | A1 |
20150231364 | Blanchard | Aug 2015 | A1 |
20150327939 | Kokish et al. | Nov 2015 | A1 |
20150335480 | Alvarez et al. | Nov 2015 | A1 |
20150374445 | Gombert et al. | Dec 2015 | A1 |
20160000512 | Gombert et al. | Jan 2016 | A1 |
20160001038 | Romo et al. | Jan 2016 | A1 |
20160157945 | Madhani | Jun 2016 | A1 |
20160166234 | Zhang | Jun 2016 | A1 |
20160184037 | Cooper et al. | Jun 2016 | A1 |
20160235946 | Lewis et al. | Aug 2016 | A1 |
20160270865 | Landey et al. | Sep 2016 | A1 |
20160287279 | Bovay et al. | Oct 2016 | A1 |
20160338783 | Romo et al. | Nov 2016 | A1 |
20160338785 | Kokish et al. | Nov 2016 | A1 |
20160346049 | Allen et al. | Dec 2016 | A1 |
20160354582 | Yu et al. | Dec 2016 | A1 |
20160374541 | Agrawal et al. | Dec 2016 | A1 |
20170007337 | Dan | Jan 2017 | A1 |
20170007343 | Yu | Jan 2017 | A1 |
20170071684 | Kokish et al. | Mar 2017 | A1 |
20170100199 | Yu et al. | Apr 2017 | A1 |
20170105804 | Yu | Apr 2017 | A1 |
20170119481 | Romo et al. | May 2017 | A1 |
20170151028 | Ogawa et al. | Jun 2017 | A1 |
20170165011 | Bovay et al. | Jun 2017 | A1 |
20170172673 | Yu et al. | Jun 2017 | A1 |
20170202627 | Sramek et al. | Jul 2017 | A1 |
20170209073 | Sramek et al. | Jul 2017 | A1 |
20170209672 | Hart et al. | Jul 2017 | A1 |
20170252540 | Weitzner et al. | Sep 2017 | A1 |
20170281049 | Yamamoto | Oct 2017 | A1 |
20170290631 | Lee et al. | Oct 2017 | A1 |
20170296784 | Kokish | Oct 2017 | A1 |
20170312481 | Covington et al. | Nov 2017 | A1 |
20170333679 | Jiang | Nov 2017 | A1 |
20170340396 | Romo et al. | Nov 2017 | A1 |
20170367782 | Schuh et al. | Dec 2017 | A1 |
20180025666 | Ho et al. | Jan 2018 | A1 |
20180042464 | Arai | Feb 2018 | A1 |
20180049792 | Eckert | Feb 2018 | A1 |
20180056044 | Choi et al. | Mar 2018 | A1 |
20180104820 | Troy et al. | Apr 2018 | A1 |
20180116735 | Tierney et al. | May 2018 | A1 |
20180177383 | Noonan et al. | Jun 2018 | A1 |
20180177556 | Noonan et al. | Jun 2018 | A1 |
20180214011 | Graetzel et al. | Aug 2018 | A1 |
20180221038 | Noonan et al. | Aug 2018 | A1 |
20180221039 | Shah | Aug 2018 | A1 |
20180250083 | Schuh et al. | Sep 2018 | A1 |
20180271616 | Schuh et al. | Sep 2018 | A1 |
20180279852 | Rafii-Tari et al. | Oct 2018 | A1 |
20180280660 | Landey et al. | Oct 2018 | A1 |
20180289243 | Landey et al. | Oct 2018 | A1 |
20180289431 | Draper et al. | Oct 2018 | A1 |
20180296299 | Iceman | Oct 2018 | A1 |
20180325499 | Landey et al. | Nov 2018 | A1 |
20180326181 | Kokish et al. | Nov 2018 | A1 |
20180333044 | Jenkins | Nov 2018 | A1 |
20180360435 | Romo | Dec 2018 | A1 |
20190000559 | Berman et al. | Jan 2019 | A1 |
20190000560 | Berman et al. | Jan 2019 | A1 |
20190000566 | Graetzel et al. | Jan 2019 | A1 |
20190000568 | Connolly et al. | Jan 2019 | A1 |
20190000576 | Mintz et al. | Jan 2019 | A1 |
20190083183 | Moll et al. | Mar 2019 | A1 |
20190110839 | Rafii-Tari et al. | Apr 2019 | A1 |
20190151148 | Alvarez et al. | Apr 2019 | A1 |
20190142537 | Covington et al. | May 2019 | A1 |
20190167366 | Ummalaneni | Jun 2019 | A1 |
20190175009 | Mintz | Jun 2019 | A1 |
20190175062 | Rafii-Tari et al. | Jun 2019 | A1 |
20190175799 | Hsu | Jun 2019 | A1 |
20190183585 | Rafii-Tari et al. | Jun 2019 | A1 |
20190183587 | Rafii-Tari et al. | Jun 2019 | A1 |
20190216548 | Ummalaneni | Jul 2019 | A1 |
20190216576 | Eyre | Jul 2019 | A1 |
20190223974 | Romo | Jul 2019 | A1 |
20190228525 | Mintz et al. | Jul 2019 | A1 |
20190246882 | Graetzel et al. | Aug 2019 | A1 |
20190262086 | Connolly et al. | Aug 2019 | A1 |
20190269468 | Hsu et al. | Sep 2019 | A1 |
20190274764 | Romo | Sep 2019 | A1 |
20190290109 | Agrawal et al. | Sep 2019 | A1 |
20190298160 | Ummalaneni et al. | Oct 2019 | A1 |
20190298460 | Al-Jadda | Oct 2019 | A1 |
20190298465 | Chin | Oct 2019 | A1 |
20190328213 | Landey et al. | Oct 2019 | A1 |
20190336238 | Yu | Nov 2019 | A1 |
20190365209 | Ye et al. | Dec 2019 | A1 |
20190365479 | Rafii-Tari | Dec 2019 | A1 |
20190365486 | Srinivasan et al. | Dec 2019 | A1 |
20190374297 | Wallace et al. | Dec 2019 | A1 |
20190375383 | Alvarez | Dec 2019 | A1 |
20190380787 | Ye | Dec 2019 | A1 |
20190380797 | Yu | Dec 2019 | A1 |
20200000530 | DeFonzo | Jan 2020 | A1 |
20200000533 | Schuh | Jan 2020 | A1 |
20200022767 | Hill | Jan 2020 | A1 |
20200039086 | Meyer | Feb 2020 | A1 |
20200046434 | Graetzel | Feb 2020 | A1 |
20200054405 | Schuh | Feb 2020 | A1 |
20200054408 | Schuh et al. | Feb 2020 | A1 |
20200060516 | Baez | Feb 2020 | A1 |
20200086087 | Hart et al. | Mar 2020 | A1 |
20200091799 | Covington et al. | Mar 2020 | A1 |
20200093549 | Chin | Mar 2020 | A1 |
20200093554 | Schuh | Mar 2020 | A1 |
20200100845 | Julian | Apr 2020 | A1 |
20200100853 | Ho | Apr 2020 | A1 |
20200101264 | Jiang | Apr 2020 | A1 |
Number | Date | Country |
---|---|---|
103037799 | Apr 2011 | CN |
102665590 | Sep 2012 | CN |
102015759 | Apr 2013 | CN |
19649082 | Jan 1998 | DE |
102004020465 | Sep 2005 | DE |
1 442 720 | Aug 2004 | EP |
2 567 670 | Mar 2013 | EP |
3 025 630 | Jun 2016 | EP |
07-136173 | May 1995 | JP |
2009-139187 | Jun 2009 | JP |
2010-046384 | Mar 2010 | JP |
WO 0274178 | Sep 2002 | WO |
WO 07146987 | Dec 2007 | WO |
WO 09092059 | Jul 2009 | WO |
WO 11005335 | Jan 2011 | WO |
WO 12037506 | Mar 2012 | WO |
WO 13179600 | Dec 2013 | WO |
WO 15127231 | Aug 2015 | WO |
WO 17059412 | Apr 2017 | WO |
WO 170151993 | Sep 2017 | WO |
Entry |
---|
Mayo Clinic, Robotic Surgery, https://www.mayoclinic.org/tests-procedures/robotic-surgery/about/pac-20394974?p=1, downloaded from the internet on Jul. 12, 2018, 2 pp. |
International search report and written opinion dated Jul. 22, 2019 for PCT/US2019/23016. |
Number | Date | Country | |
---|---|---|---|
20200000537 A1 | Jan 2020 | US |
Number | Date | Country | |
---|---|---|---|
62690744 | Jun 2018 | US |