High speed communication for networking and other communication infrastructure is constantly improving for facilitation of cloud computing, cloud storage, video conferencing, streaming and other applications. Transfer rates for today's infrastructure is commonly measured in Gigabits per second (Gb/s), for example. In order to meet these high bandwidth capabilities, the Physical (PHY) layer must be designed to facilitate the data exchange through the routing pathways.
Despite the advances in transfer rates, the ecosystems for networking and storage remain cost-sensitive, which limits the material and design choices of components for high-speed networking and storage systems. In particular, printed circuit boards (PCBs) are used extensively in networking and storage systems to route signals and data to the proper circuitry. However, the market will not tolerate increasing the PCB cost and/or complexities even as the requirements for high-speed data transfer increases.
The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same becomes better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein like reference numerals refer to like parts throughout the various views unless otherwise specified:
Embodiments of methods and apparatus for utilizing flexible (flex) circuit technology and/or axial cable to facilitate routing of high-speed data channels are described herein. In the following description, numerous specific details are set forth to provide a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that the invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring aspects of the invention.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, the appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
For clarity, individual components in the Figures herein may also be referred to by their labels in the Figures, rather than by a particular reference number. Additionally, reference numbers referring to a particular type of component (as opposed to a particular component) may be shown with a reference number followed by “(typ)” meaning “typical.” It will be understood that the configuration of these components will be typical of similar components that may exist but are not shown in the drawing Figures for simplicity and clarity or otherwise similar components that are not labeled with separate reference numbers. Conversely, “(typ)” is not to be construed as meaning the component, element, etc. is typically used for its disclosed function, implement, purpose, etc.
As discussed above, PCBs are used in networking and storage components. PCBs are subject to cost constraints while also being required to meet high-speed data requirements. High-speed Ethernet protocols are examples of networking protocols with high-speed data requirement. Some Integrated Circuits (IC) have integrated Ethernet that is designed to comply with IEEE 802.3 standards to achieve 10 Gb/s, 25 Gb/s, and 50 Gb/s per lane over copper Ethernet, for example. Multi-lane Ethernet standards have also been defined, including IEEE 802.3bj-2014 100 Gb/s Ethernet that employs four 25 Gb/s lanes operated in parallel. Host PCBs (that host the ICs) can have relatively long distances (e.g., greater than 3 inches) from where the IC is positioned to where a data connector (e.g. Ethernet connector) is located. Example ICs includes central processing units (CPUs), system-on-chip (SoC) chips, including processors with SoC architectures, and Platform Controller Hubs (PCH).
As depicted in various drawing figures herein, the use of one or more BGAs are used. A ball grid array is a type of packaging under which an array of pads arranged in a grid (the grid array) on the underside of an integrated circuit (commonly referred to as an IC or chip) are electrically coupled to a similar array of pads having the same grid configuration and patterned on an outer layer on a PCB, wherein respective pairs of pads on the IC and PCB are coupled via a solder ball. During a manufacturing process, the solder balls are melted (e.g., via a reflow operation), resulting in the respective pairs of pads being electrically coupled, enabling signals to pass from the IC to “wiring” on one or more PCB layers connected to the array of pads patterned on the surface of the PCB. For example, in the example of
It will also be recognized by those of skill in the art that the terms “wiring,” “traces,” and “wiring traces” are commonly referred to electric pathways patterns formed on a layer in a PCB. For example, such electric pathways are generally patterned on a PCB by etching a copper layer or through a similar manufacturing process that selectively removes portions of the copper layer, leaving a pattern of “wiring” or “traces” that is used to interconnect components mounted to the PCB.
Pads and/or traces on different layers in a multilayer PCB may be electrically coupled using vias. A via is generally formed by drilling or punching a small hole in the PCB or otherwise forming a similar hole using a manufacturing process. During subsequent processes, a conductive material is formed on the surface of the hole forming a conductive tube or “barrel,” such as via a plating processes. As such, a via that passes completely through a PCB is commonly referred to as a “plated-through hole”, “plated-through hole via,” or through-hole via. In addition to through-hole vias, blind vias and buried vias may also be used. A blind via is similar to a through-hole via, except that the hole only passes through one surface of the PCB. A buried via has a hole that is internal to a PCB that doesn't pass through either of the surfaces of the PCB. For simplicity, the terms “via” and “vias” are used in the following description to encompass these various types of vias.
BGA 112 and BGA connectors 206 and 208 are respectively coupled to BGA pad arrays patterned on the outer layers of multilayer PCB 204, which include a top layer 210 and a bottom layer 212. Selective BGA pads patterned on top layer 210 and used for BGA 112 are electrically coupled to BGA pads patterned on bottom layer 212 for BGA connector 206 using a plurality of vias 214. Meanwhile, BGA pads patterned on bottom layer 212 for BGA connector 208 are electrically coupled to wiring in a routing layer L2 formed on the surface of top layer 210 using a plurality of vias 216. Wiring in routing layer L2 is connected to pins on connector 104.
Under a circuit assembly 200, the high-speed data channel is routed from IC 102 through BGA 112, vias 215, BGA 206, flex circuit 202, BGA 208, vias 216, routing layer L2, to high-speed data connector 104.
In one embodiment, IC 102 has an integrated high-speed data transceiver (e.g. Ethernet) for sending and receiving data. Other examples of high-speed data interfaces that may make use of this disclosure include UltraPath Interconnect (UPI), Peripheral Component Interconnect Express (PCIe), Serial AT Attachment (SATA), Serial Attached SCSI (SAS), Universal Serial Bus (USB), Fiber Channel, InfiniBand, and memory. Single ended busses such as double data rate (DDR) busses may use the embodiments of the disclosure.
Generally, the high-speed data may be 1 Gb/s or greater. In some embodiments, the high-speed data channel has a bandwidth of 25 Gb/s, while in other embodiments the bandwidth may be 50 Gb/s or greater per lane and 100 Gb/s or greater for a multi-lane link. The high-speed data channel in
Under circuit assembly 800, a high-speed data channel is routed from IC 102 through first BGA 806, chip carrier/interposer board 808, BGA 814, flex circuit 804, BGA 816, and wiring in routing layer L2 of multilayer PCB 812 to connector 104.
In circuit assembly 900, a high-speed data channel is routed from an IC 102 through BGA 112 to vias 920 in multilayer PCB 914, a routing layer 922 (layer L1a of PCB 914), vias 924, BGA 916, flexible twin axial attachment 902, BGA 918, and a layer L2 of PCB 914 to a connector 104.
In circuit assembly 1000, the high-speed data channel is routed from IC 102 through the substrate of BGA 112, to BGA 1014, flex circuit 1010, axial port 1006, twin axial cable 1004, axial port 1008, flex circuit 1012, BGA 1016, layer L2 of PCB 1020, and then to connector 104.
In circuit assembly 1100, the high-speed data channel is routed from IC 102 through BGA 112 to vias 1120, BGA 1114, flex circuit 1110, axial port 1106, twin axial cable 1104, axial port 1108, flex circuit 1112, BGA 1118, vias 1122, layer L2, and then to connector 104.
For
In Further detail, CBGA 1200 includes a die 1202 comprising the IC that is mounted to a multi-layer ceramic substrate 1204 by means of a flip-chip attach 1206. A plurality of solder balls 1208 are coupled in a grid pattern of eutectic solder 1210 on the underside of multi-layer ceramic substrate 1204. As further shown, a CPGA package may further include a cap 1212, thermal grease 1214, and underfill 1216.
Further aspects of the subject matter described herein are set out in the following numbered clauses:
1. A circuit assembly comprising:
a multilayer printed circuit board (PCB);
an integrated circuit (IC) coupled to the printed circuit board;
a high-speed data connector coupled to the printed circuit board, the high-speed data connector being disposed at a distance greater than 3 inches from the integrated circuit (IC); and
a signal pathway coupled between the high-speed data connector and the integrated circuit, the signal pathway providing a high-speed data channel from the integrated circuit to the high-speed data connector having a bandwidth of at least 25 Gigabits per second (Gb/s), wherein a portion of the signal pathway includes a flexible (flex) circuit or axial cable having a length of at least 3 inches.
2. The circuit assembly of clause 1, wherein the high-speed data connector is disposed at least 10 inches from the IC.
3. The circuit assembly of clause 1 or 2, wherein the high-speed data channel has a bandwidth of at least 50 Gb/s.
4. The circuit assembly of clause 1 or 2, wherein the high-speed data channel employs a multi-lane link having a bandwidth of at least 100 Gigabits per second.
5. The circuit assembly of any of the preceding clauses, wherein the high-speed data connector comprises a small form-factor pluggable (SFP) connector.
6. The circuit assembly of any of the preceding clauses, wherein the high-speed data channels conforms to the transmitter signal specification defined by IEEE Std. 802.3 Clause 110 (25 GBASE-CR).
7. The circuit assembly of any of the preceding clauses, wherein the multilayer PCB comprises a first set of ball grid array (BGA) pads disposed on a first side of the PCB, a second set of BGA pads disposed on a second side of the PCB, a third set of BGA pads disposed on the second side of the PCB at least 3 inches away from the second set of BGA pads and a routing layer having a plurality of circuit paths formed on the first side of the multilayer PCB, wherein a portion of the first set of PGA pads are electronically coupled to the second set of BGA pads by a first plurality of vias passing through the multilayer PCB, and wherein the third set of BGA pads is coupled to first ends of circuit paths in the routing layer by a second plurality of vias passing through the multilayer PCB, and second ends of the circuit paths in the routing layer are coupled to a high-speed data connector mounted to the first side of the multilayer PCB;
wherein the IC is mounted to the multilayer PCB via a first BGA coupling the integrated circuit to the first side of the multilayer PCB via the first set of BGA pads,
the circuit assembly further comprising a BGA flex circuit having second and third BGAs disposed at opposing ends, the second BGA mounted to the second side of the multilayer PCB via the second set of BGA pads, the third BGA mounted to the second side of the multilayer PCB via the third set of BGA pads.
8. The circuit assembly of any of clauses 1-6, wherein the multilayer PCB comprises a first set of ball grid array (BGA) pads disposed on a first side of the PCB, a second set of BGA pads disposed on the first side of the PCB, and a third set of BGA pads disposed on the first side of the PCB at least 3 inches away from the second set of BGA pads and a first routing layer having a plurality of circuit paths formed on a second side of the multilayer PCB, the multilayer PCB further having first and second sets of vias passing through from the first side to the second side, wherein vias among the first and second sets of vias are electrically connected via circuit paths in the second routing layer, wherein a portion of the first set of PGA pads are electronically coupled to the first set of vias, and wherein the third set of BGA pads is coupled to circuit paths in the routing layer to a high-speed data connector mounted to the first side of the multilayer PCB; and
wherein the IC is mounted to the multilayer PCB via a first BGA coupling the integrated circuit to the first side of the multilayer PCB via the first set of BGA pads,
the circuit assembly further comprising a BGA flex circuit having second and third BGAs disposed at opposing ends, the second BGA mounted to the first side of the multilayer PCB via the second set of BGA pads, and the third BGA mounted to the first side of the multilayer PCB via the third set of BGA pads.
9. The circuit assembly of any of clauses 1-6, wherein the multilayer PCB comprises first and second sets of ball grid array (BGA) pads disposed on a first side of the multilayer PCB, and a routing layer having a plurality of circuit paths formed on the first side of the multilayer PCB connected at first ends to BGA pads in the second set of BGA pads;
wherein the high-speed data connector is mounted to the first side of the multilayer PCB and coupled to second ends of the plurality of circuit paths in the routing layer; and
wherein the IC is mounted to or integrated in a BGA/chip carrier including a first BGA mounted to a chip carrier/interposer board comprising a substrate that is interposed between the first BGA and a second BGA that is mounted to the multilayer PCB via the first set of BGA pads, wherein the chip carrier/interposer board includes a third set of BGA pads to which the first BGA is coupled and a fourth set of BGA pads,
the circuit assembly further comprising a BGA flex circuit having third and fourth BGAs disposed at opposing ends, the third BGA mounted to the chip carrier/interposer board via the fourth set of BGA pads, and the fourth BGA mounted to the first side of the multilayer PCB via the second set of BGA pads.
10. The circuit assembly of any of clauses 1-6, wherein the multilayer PCB comprises a first set of ball grid array (BGA) pads disposed on a first side of the PCB, a second set of BGA pads disposed on the first side of the PCB, and a third set of BGA pads disposed on the first side of the PCB at least 3 inches away from the second set of BGA pads and a first routing layer having a plurality of circuit paths formed on a second side of the multilayer PCB, the multilayer PCB further having first and second sets of vias passing through from the first side to the second side, wherein vias among the first and second sets of vias are electrically connected via circuit paths in the second routing layer, wherein a portion of the first set of PGA pads are electronically coupled to the first set of vias, and wherein the third set of BGA pads is coupled to circuit paths in the routing layer to a high-speed data connector mounted to the first side of the multilayer PCB; and
wherein the IC is mounted to the multilayer PCB via a first BGA coupling the integrated circuit to the first side of the multilayer PCB via the first set of BGA pads,
the circuit assembly further comprising a top flexible twin axial attachment including a twin axial cable coupled at a first end to a first axial port and coupled at a second end to a second axial port, the first axial port operatively coupled to a second BGA mounted to the first side of the multilayer PCB via the second set of BGA pads, and the second axial port operatively coupled to a third BGA mounted to the first side of the multilayer PCB via the third set of BGA pads.
11. The circuit assembly of clause 10, wherein the first axial port is operatively coupled to the second BGA by a first flex circuit, and wherein the second axial port is operatively coupled to the third BGA by a second flex circuit.
12. The circuit assembly of any of clauses 1-6, wherein the multilayer PCB comprises first and second sets of ball grid array (BGA) pads disposed on a first side of the multilayer PCB, and a routing layer having a plurality of circuit paths formed on the first side of the multilayer PCB connected at first ends to BGA pads in the second set of BGA pads;
wherein the high-speed data connector is mounted to the first side of the multilayer PCB and coupled to second ends of the plurality of circuit paths in the routing layer; and
wherein the IC is mounted to a first BGA mounted to the multilayer PCB via the first set of BGA pads, the first BGA including a substrate having a third set of BGA pads patterned on a top surface thereof,
the circuit assembly further comprising a top flexible twin axial attachment including a twin axial cable coupled at a first end to a first axial port and coupled at a second end to a second axial port, the first axial port operatively coupled to a second BGA mounted to the BGA substrate via the third set of BGA pads, and the second axial port operatively coupled to a third BGA mounted to the first side of the multilayer PCB via the second set of BGA pads.
13. The circuit assembly of clause 12, wherein the first axial port is operatively coupled to the second BGA by a first flex circuit, and wherein the second axial port is operatively coupled to the third BGA by a second flex circuit.
14. The circuit assembly of any of clauses 1-6, wherein the multilayer PCB comprises a first set of ball grid array (BGA) pads disposed on a first side of the PCB, a second set of BGA pads disposed on a second side of the PCB, a third set of BGA pads disposed on the second side of the PCB at least 3 inches away from the second set of BGA pads and a routing layer having a plurality of circuit paths formed on the first side of the multilayer PCB, wherein a portion of the first set of PGA pads are electronically coupled to the second set of BGA pads by a first plurality of vias passing through the multilayer PCB, and wherein the third set of BGA pads is coupled to first ends of circuit paths in the routing layer by a second plurality of vias passing through the multilayer PCB, and second ends of the circuit paths in the routing layer are coupled to a high-speed data connector mounted to the first side of the multilayer PCB;
wherein the IC is mounted to the multilayer PCB via a first BGA coupling the integrated circuit to the first side of the multilayer PCB via the first set of BGA pads,
the circuit assembly further comprising a bottom flexible twin axial attachment including a twin axial cable coupled at a first end to a first axial port and coupled at a second end to a second axial port, the first axial port operatively coupled to a second BGA mounted to the second side of the multilayer PCB via the second set of BGA pads, and the second axial port operatively coupled to a third BGA mounted to the second side of the multilayer PCB via the third set of BGA pads.
15. The circuit assembly of clause 15, wherein the first axial port is operatively coupled to the second BGA by a first flex circuit, and wherein the second axial port is operatively coupled to the third BGA by a second flex circuit.
16. A method of routing signals for a high-speed data channel between an integrated circuit (IC) mounted to a multilayer printed circuit board (PCB) and a high-speed data connector mounted to the multilayer PCB, the method comprising:
routing the signals from the IC to the high-speed data connector through a signal pathway supporting a bandwidth of at least 25 Gigabits per second (Gb/s), wherein a portion of the signal pathway includes a flexible (flex) circuit or axial cable having a length of at least 3 inches.
17. The method of clause 16, wherein the multilayer PCB comprises a first set of ball grid array (BGA) pads disposed on a first side of the PCB, a second set of BGA pads disposed on a second side of the PCB, a third set of BGA pads disposed on the second side of the PCB at least 3 inches away from the second set of BGA pads and a routing layer having a plurality of circuit paths formed on the first side of the multilayer PCB, wherein a portion of the first set of PGA pads are electronically coupled to the second set of BGA pads by a first plurality of vias passing through the multilayer PCB, and wherein the third set of BGA pads is coupled to first ends of circuit paths in the routing layer by a second plurality of vias passing through the multilayer PCB, and second ends of the circuit paths in the routing layer are coupled to a high-speed data connector mounted to the first side of the multilayer PCB;
wherein the IC is mounted to the multilayer PCB via a first BGA coupling the integrated circuit to the first side of the multilayer PCB via the first set of BGA pads,
the circuit assembly further comprising a BGA flex circuit having second and third BGAs disposed at opposing ends, the second BGA mounted to the second side of the multilayer PCB via the second set of BGA pads, the third BGA mounted to the second side of the multilayer PCB via the third set of BGA pads,
wherein the high-speed data channel is routed from the IC through the first BGA, through vias in the first set of vias, through the second BGA, through the flex circuit, through the third BGA, through vias in the second set of vias, and through the routing layer to high-speed data connector 104
18. The method of clause 16, wherein the multilayer PCB comprises a first set of ball grid array (BGA) pads disposed on a first side of the PCB, a second set of BGA pads disposed on the first side of the PCB, and a third set of BGA pads disposed on the first side of the PCB at least 3 inches away from the second set of BGA pads and a first routing layer having a plurality of circuit paths formed on a second side of the multilayer PCB, the multilayer PCB further having first and second sets of vias passing through from the first side to the second side, wherein vias among the first and second sets of vias are electrically connected via circuit paths in the second routing layer, wherein a portion of the first set of PGA pads are electronically coupled to the first set of vias, and wherein the third set of BGA pads is coupled to circuit paths in the routing layer to a high-speed data connector mounted to the first side of the multilayer PCB; and
wherein the IC is mounted to the multilayer PCB via a first BGA coupling the integrated circuit to the first side of the multilayer PCB via the first set of BGA pads,
the circuit assembly further comprising a BGA flex circuit having second and third BGAs disposed at opposing ends, the second BGA mounted to the first side of the multilayer PCB via the second set of BGA pads, and the third BGA mounted to the first side of the multilayer PCB via the third set of BGA pads,
wherein the high-speed data channel is routed from the IC through the first BGA, through vias in the first set of vias, through wiring in the second routing layer, through vias in the second set of vias, through the BGA flex circuit, through the first routing layer to the high-speed data connector.
19. The method of clause 16, wherein the multilayer PCB comprises first and second sets of ball grid array (BGA) pads disposed on a first side of the multilayer PCB, and a routing layer having a plurality of circuit paths formed on the first side of the multilayer PCB connected at first ends to BGA pads in the second set of BGA pads;
wherein the high-speed data connector is mounted to the first side of the multilayer PCB and coupled to second ends of the plurality of circuit paths in the routing layer; and
wherein the IC is mounted to or integrated in a BGA/chip carrier including a first BGA mounted to a chip carrier/interposer board comprising a substrate that is interposed between the first BGA and a second BGA that is mounted to the multilayer PCB via the first set of BGA pads, wherein the chip carrier/interposer board includes a third set of BGA pads to which the first BGA is coupled and a fourth set of BGA pads,
the circuit assembly further comprising a BGA flex circuit having third and fourth BGAs disposed at opposing ends, the third BGA mounted to the chip carrier/interposer board via the fourth set of BGA pads, and the fourth BGA mounted to the first side of the multilayer PCB via the second set of BGA pads,
wherein the high-speed data channel is routed from the IC through the first BGA, the chip carrier/interposer board, the second BGA, through the flex circuit, through the third BGA, through the routing layer to the high-speed data connector.
20. The method of clause 16, wherein the multilayer PCB comprises a first set of ball grid array (BGA) pads disposed on a first side of the PCB, a second set of BGA pads disposed on the first side of the PCB, and a third set of BGA pads disposed on the first side of the PCB at least 3 inches away from the second set of BGA pads and a first routing layer having a plurality of circuit paths formed on a second side of the multilayer PCB, the multilayer PCB further having first and second sets of vias passing through from the first side to the second side, wherein vias among the first and second sets of vias are electrically connected via circuit paths in the second routing layer, wherein a portion of the first set of PGA pads are electronically coupled to the first set of vias, and wherein the third set of BGA pads is coupled to circuit paths in the routing layer to a high-speed data connector mounted to the first side of the multilayer PCB; and
wherein the IC is mounted to the multilayer PCB via a first BGA coupling the integrated circuit to the first side of the multilayer PCB via the first set of BGA pads,
the circuit assembly further comprising a top flexible twin axial attachment including a twin axial cable coupled at a first end to a first axial port and coupled at a second end to a second axial port, the first axial port operatively coupled to a second BGA mounted to the first side of the multilayer PCB via the second set of BGA pads, and the second axial port operatively coupled to a third BGA mounted to the first side of the multilayer PCB via the third set of BGA pads,
wherein the high-speed data channel is routed from the IC through the first BGA, through vias in the first set of vias, through the second routing layer, through vias in the second set of vias, through the top flexible twin axial attachment to the routing layer to the high-speed data connector.
21. The method of clause 16, wherein the multilayer PCB comprises first and second sets of ball grid array (BGA) pads disposed on a first side of the multilayer PCB, and a routing layer having a plurality of circuit paths formed on the first side of the multilayer PCB connected at first ends to BGA pads in the second set of BGA pads;
wherein the high-speed data connector is mounted to the first side of the multilayer PCB and coupled to second ends of the plurality of circuit paths in the routing layer; and
wherein the IC is mounted to a first BGA mounted to the multilayer PCB via the first set of BGA pads, the first BGA including a substrate having a third set of BGA pads patterned on a top surface thereof,
the circuit assembly further comprising a top flexible twin axial attachment including a twin axial cable coupled at a first end to a first axial port and coupled at a second end to a second axial port, the first axial port operatively coupled to a second BGA mounted to the BGA substrate via the third set of BGA pads, and the second axial port operatively coupled to a third BGA mounted to the first side of the multilayer PCB via the second set of BGA pads,
wherein the high-speed data channel is routed from the IC through the first BGA, through the top flexible twin axial attachment, through the routing layer to the high-speed data connector.
22. The method of clause 16, wherein the multilayer PCB comprises a first set of ball grid array (BGA) pads disposed on a first side of the PCB, a second set of BGA pads disposed on a second side of the PCB, a third set of BGA pads disposed on the second side of the PCB at least 3 inches away from the second set of BGA pads and a routing layer having a plurality of circuit paths formed on the first side of the multilayer PCB, wherein a portion of the first set of PGA pads are electronically coupled to the second set of BGA pads by a first plurality of vias passing through the multilayer PCB, and wherein the third set of BGA pads is coupled to first ends of circuit paths in the routing layer by a second plurality of vias passing through the multilayer PCB, and second ends of the circuit paths in the routing layer are coupled to a high-speed data connector mounted to the first side of the multilayer PCB;
wherein the IC is mounted to the multilayer PCB via a first BGA coupling the integrated circuit to the first side of the multilayer PCB via the first set of BGA pads,
the circuit assembly further comprising a bottom flexible twin axial attachment including a twin axial cable coupled at a first end to a first axial port and coupled at a second end to a second axial port, the first axial port operatively coupled to a second BGA mounted to the second side of the multilayer PCB via the second set of BGA pads, and the second axial port operatively coupled to a third BGA mounted to the second side of the multilayer PCB via the third set of BGA pads,
wherein the high-speed data channel is routed from the IC through the first BGA, through vias in the first set of vias, through the bottom flexible twin axial attachment, through vias in the second set of vias, through the routing layer to the high-speed data connector.
23. The method of any of clauses 16-22, wherein the high-speed data connector is disposed at least 10 inches from the IC.
24. The method of any of clauses 16-23, wherein the high-speed data channel has a bandwidth of at least 50 Gb/s.
25. The method of any of clauses 16-23, wherein the high-speed data channels conforms to the transmitter signal specification defined by IEEE Std. 802.3 Clause 110 (25 GBASE-CR).
26. The circuit assembly of any of clauses 1-15, wherein the multilayer PCB comprises a server board.
27. The circuit assembly of any of clauses 1-15 and 26, wherein the IC comprises a processor with an integrated high-speed transceiver.
28. The circuit assembly of any of clauses 1-15, and 26, wherein the IC comprises a high-speed communication chip with an integrated high-speed transceiver.
29. The circuit assembly of any of clauses 1-15, 27 and 28, wherein the integrated high-speed transceiver is configured as one of an UltraPath Interconnect (UPI), Peripheral Component Interconnect Express (PCIe), Serial AT Attachment (SATA), Serial Attached SCSI (SAS), Universal Serial Bus (USB), Fiber Channel, and InfiniBand high-speed data interface.
30. The method of any of clauses 16-23, wherein the multilayer PCB comprises a server board.
31. The method of any of clauses 16-23 and 30, wherein the IC comprises a processor with an integrated high-speed transceiver.
32. The method of any of clauses 16-23, and 30, wherein the IC comprises a high-speed communication chip with an integrated high-speed transceiver.
33. The method of any of clauses 16-23, 31, and 32, wherein the integrated high-speed transceiver is configured as one of an UltraPath Interconnect (UPI), Peripheral Component Interconnect Express (PCIe), Serial AT Attachment (SATA), Serial Attached SCSI (SAS), Universal Serial Bus (USB), Fiber Channel, and InfiniBand high-speed data interface.
Although some embodiments have been described in reference to particular implementations, other implementations are possible according to some embodiments. Additionally, the arrangement and/or order of elements or other features illustrated in the drawings and/or described herein need not be arranged in the particular way illustrated and described. Many other arrangements are possible according to some embodiments.
In each system shown in a figure, the elements in some cases may each have a same reference number or a different reference number to suggest that the elements represented could be different and/or similar. However, an element may be flexible enough to have different implementations and work with some or all of the systems shown or described herein. The various elements shown in the figures may be the same or different. Which one is referred to as a first element and which is called a second element is arbitrary.
In the description and claims, the terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical or electrical contact with each other. “Coupled” may mean that two or more elements are in direct physical or electrical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
An embodiment is an implementation or example of the inventions. Reference in the specification to “an embodiment,” “one embodiment,” “some embodiments,” or “other embodiments” means that a particular feature, structure, or characteristic described in connection with the embodiments is included in at least some embodiments, but not necessarily all embodiments, of the inventions. The various appearances “an embodiment,” “one embodiment,” or “some embodiments” are not necessarily all referring to the same embodiments.
Not all components, features, structures, characteristics, etc. described and illustrated herein need be included in a particular embodiment or embodiments. If the specification states a component, feature, structure, or characteristic “may”, “might”, “can” or “could” be included, for example, that particular component, feature, structure, or characteristic is not required to be included. If the specification or claim refers to “a” or “an” element, that does not mean there is only one of the element. If the specification or claims refer to “an additional” element, that does not preclude there being more than one of the additional element.
The above description of illustrated embodiments of the invention, including what is described in the Abstract, is not intended to be exhaustive or to limit the invention to the precise forms disclosed. While specific embodiments of, and examples for, the invention are described herein for illustrative purposes, various equivalent modifications are possible within the scope of the invention, as those skilled in the relevant art will recognize.
These modifications can be made to the invention in light of the above detailed description. The terms used in the following claims should not be construed to limit the invention to the specific embodiments disclosed in the specification and the drawings. Rather, the scope of the invention is to be determined entirely by the following claims, which are to be construed in accordance with established doctrines of claim interpretation.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/052210 | 9/19/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62396329 | Sep 2016 | US |