ANTISENSE OLIGONUCLEOTIDES TARGETING UNC13A

Abstract
The present invention relates to antisense oligonucleotide splice modulators Unc-13 homolog A (UNC13A). These antisense oligonucleotide splice modulators are complementary, such as fully complementary, to the UNC13A precursor-mRNA, and are capable of increasing or restoring expression of UNC13A in TDP-43 depleted cells, such as for use in conditions and medical indications where TDP-43 is functionally depleted.
Description

The present invention relates to antisense oligonucleotide splice modulators of Unc-13 homolog A (UNC13A). These antisense oligonucleotide splice modulators are complementary, such as fully complementary, to the UNC13A precursor-mRNA, and are capable of increasing or restoring expression of UNC13A in TDP-43 depleted cells, such as for use in conditions and medical indications where TDP-43 is functionally depleted.


SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in XML format and is hereby incorporated by reference in its entirety. Said XML copy, created on Jun. 14, 2024, is named 51551-020001_Sequence_Listing_6_14_24.xml and is 838,143 bytes in size.


BACKGROUND

TAR DNA binding protein 43 (TDP-43) is a versatile RNA/DNA binding protein involved in RNA-related metabolism. Dysregulation of TDP-43 deposits act as inclusion bodies in the brain and spinal cord of patients with the motor neuron diseases: amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) (Prasad et al., Front. Mol. Neurosci., 2019).


TDP-43 depletion is indicated in a range of diseases, referred to as TDP-43 pathologies, and including for example diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Progressive supranuclear palsy (PSP), Primary lateral sclerosis, Progressive muscular atrophy, Alzheimer's disease, Parkinson's disease, autism, Hippocampal sclerosis dementia, Down syndrome, Huntington's disease, polyglutamine diseases, such as spinocerebellar ataxia 3, myopathies and Chronic Traumatic Encephalopathy.


UNC13A proteins bind to phorbol esters and diacylglycerol and are involved in release of neurotransmitters at synapses.


We show that splicing of UNC13A is controlled, at least in part, by TDP-43 due a to a TDP-43 binding site present within the UNC13A pre-mRNA sequence.


SUMMARY OF INVENTION

The present inventors have surprisingly determined that UNC13A mRNA splicing changes if TDP-43 is depleted in a cell.


The inventors therefore hypothesised that modifying UNC13A splicing patterns, may be able to ameliorate the detrimental effects of TDP-43 depletion on neuronal cells.


Here the inventors have used antisense oligonucleotide UNC13A splice modulators to increase expression of UNC13A.


In one aspect the invention provides an antisense oligonucleotide Unc-13 homolog A (UNC13A) splice modulator, wherein said antisense oligonucleotide splice modulator is 8 to 40 nucleotides in length and comprises a contiguous nucleotide sequence of at least 8 nucleotides in length which is complementary to the UNC13A precursor-mRNA.


In some embodiments, the antisense oligonucleotide splice modulator may be capable of increasing the expression of Unc-13 homolog A ( ) in a TDP-43 depleted cell.


In some embodiments, the antisense oligonucleotide splice modulator may be capable of decreasing expression of an UNC13A mutant polypeptide, such as a splice variant of UNC13A, in a TDP-43 depleted cell.


The inventors have surprisingly determined that in TDP-43 depleted cells, increased expression of an UNC13A splice variant including an additional exon is observed. This leads to a decrease in production of the functionally active wild-type (WT) UNC13A polypeptide. In some embodiments the splice variant may therefore comprise a polypeptide sequence encoded by an additional exon, when compared to the wild-type UNC13A polypeptide sequence.


In some embodiments, the mutant UNC13A splice variant may comprise an insertion, such as an insertion of about 128 or/and 178 nucleotides, when compared to the conventionally spliced UNC13A mature mRNA.


In some embodiments the insertion may lead to a frameshift.


In some embodiments the insertion may lead to a premature stop codon, premature stop codons may target transcripts for nonsense mediated decay (NMD).


In some embodiments the contiguous nucleotide sequence of the antisense oligonucleotide splice modulator may be complementary to a splice enhancer site in the UNC13A precursor-mRNA.


In some embodiments the contiguous nucleotide sequence of the antisense oligonucleotide splice modulator may be complementary to a sequence selected from SEQ ID NOs: 554 to 558.


In some embodiments, the contiguous nucleotide sequence of the antisense oligonucleotide splice modulator may be complementary to a sequence selected from SEQ ID NOs: 8-279.


In some embodiments the contiguous nucleotide sequence of the antisense oligonucleotide splice modulator may be complementary to a sequence selected from SEQ ID NO: 62; SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 122, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 134, SEQ ID NO: 135, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 141, SEQ ID NO: 142, SEQ ID NO: 143, SEQ ID NO: 146, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153, SEQ ID NO: 154, SEQ ID NO: 155, SEQ ID NO: 156, SEQ ID NO: 162, SEQ ID NO: 163, SEQ ID NO: 178, SEQ ID NO: 179, SEQ ID NO: 183, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 192, SEQ ID NO: 193, SEQ ID NO: 214, SEQ ID NO: 247, SEQ ID NO: 252, SEQ ID NO: 254, SEQ ID NO: 258, SEQ ID NO: 273, SEQ ID NO: 276, SEQ ID NO: 277, SEQ ID NO: 278 and SEQ ID NO: 279.


In some embodiments the contiguous nucleotide sequence of the antisense oligonucleotide splice modulator may be complementary to a sequence selected from SEQ ID NO: 66, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 122, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 134, SEQ ID NO: 135, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 141, SEQ ID NO: 142, SEQ ID NO: 143, SEQ ID NO: 146, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID NO: 155, SEQ ID NO: 156, SEQ ID NO: 162, SEQ ID NO: 163, SEQ ID NO: 273, SEQ ID NO: 276, SEQ ID NO: 277 and SEQ ID NO: 279.


In some embodiments, the contiguous nucleotide sequence of the antisense oligonucleotide splice modulator may be a sequence selected from SEQ ID Nos 280-551, or at least 10 contiguous nucleotides thereof.


In some embodiments, the contiguous nucleotide sequence of the antisense oligonucleotide splice modulator may be a sequence selected from the group consisting of SEQ ID NO: 334; SEQ ID NO: 338; SEQ ID NO: 340; SEQ ID NO: 342; SEQ ID NO: 344; SEQ ID NO: 345; SEQ ID NO: 346; SEQ ID NO: 348; SEQ ID NO: 384; SEQ ID NO: 386; SEQ ID NO: 387; SEQ ID NO: 389; SEQ ID NO: 394; SEQ ID NO: 397; SEQ ID NO: 398; SEQ ID NO: 399; SEQ ID NO: 400; SEQ ID NO: 401; SEQ ID NO: 402; SEQ ID NO: 403; SEQ ID NO: 405; SEQ ID NO: 406; SEQ ID NO: 407; SEQ ID NO: 408; SEQ ID NO: 409; SEQ ID NO: 410; SEQ ID NO: 411; SEQ ID NO: 412; SEQ ID NO: 413; SEQ ID NO: 414; SEQ ID NO: 415; SEQ ID NO: 418; SEQ ID NO: 423; SEQ ID NO: 424; SEQ ID NO: 425; SEQ ID NO: 426, SEQ ID NO: 427, SEQ ID NO: 428, SEQ ID NO: 434, SEQ ID NO: 435, SEQ ID NO: 450, SEQ ID NO: 451, SEQ ID NO: 455, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 464, SEQ ID NO: 465, SEQ ID NO: 486, SEQ ID NO: 519, SEQ ID NO: 524, SEQ ID NO: 526, SEQ ID NO: 530, SEQ ID NO: 545, SEQ ID NO: 548, SEQ ID NO: 549, SEQ ID NO: 550 and SEQ ID NO: 551, or at least 10 contiguous nucleotides thereof.


In some embodiments, the contiguous nucleotide sequence of the antisense oligonucleotide splice modulator may be a sequence selected from the group consisting of SEQ ID NO: 338, SEQ ID NO: 342, SEQ ID NO: 344, SEQ ID NO: 345, SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 394, SEQ ID NO: 397, SEQ ID NO: 398, SEQ ID NO: 399, SEQ ID NO: 400, SEQ ID NO: 401, SEQ ID NO: 402, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 406, SEQ ID NO: 407, SEQ ID NO: 408, SEQ ID NO: 409, SEQ ID NO: 410, SEQ ID NO: 411, SEQ ID NO: 412, SEQ ID NO: 413, SEQ ID NO: 414, SEQ ID NO: 415, SEQ ID NO: 418, SEQ ID NO: 423, SEQ ID NO: 424, SEQ ID NO: 426, SEQ ID NO: 427, SEQ ID NO: 428, SEQ ID NO: 434, SEQ ID NO: 435, SEQ ID NO: 545, SEQ ID NO: 548, SEQ ID NO: 549, and SEQ ID NO: 551, or at least 10 contiguous nucleotides thereof.


In some embodiments, the antisense oligonucleotide splice modulator may be at least 12 nucleotides in length, such as at least 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 or 32 nucleotides in length.


In some embodiments, the contiguous nucleotide sequence of the antisense oligonucleotide splice modulator may be the same length as the antisense oligonucleotide splice modulator.


In some embodiments, the antisense oligonucleotide splice modulator may comprise one or more modified nucleosides, such as a 2′ sugar modified nucleoside, which may be independently selected from the group consisting of 2′-O-alkyl-RNA; 2′-O-methyl RNA (2′-OMe); 2′-alkoxy-RNA; 2′-O-methoxyethyl-RNA (2′-MOE); 2′-amino-DNA; 2′-fluro-RNA; 2′-fluoro-DNA; arabino nucleic acid (ANA); 2′-fluoro-ANA; locked nucleic acid (LNA), or any combination thereof.


In some embodiments, the contiguous nucleotide sequence of the antisense oligonucleotide splice modulator may comprise 2′-O-methoxyethyl-RNA (2′-MOE) nucleosides, optionally linked by phosphorothioate internucleoside linkages.


In some embodiments, one or more of the modified nucleosides may be a locked nucleic acid nucleoside (LNA), such as an LNA nucleoside selected from the group consisting of constrained ethyl nucleoside (cEt), and B-D-oxy-LNA.


In some embodiments, the contiguous nucleotide sequence of the antisense oligonucleotide splice modulator may be at least 75%, such as at least 80%, at least 85%, at least 90% or at least 95%, complementary to the UNC13A precursor-mRNA sequence.


In other embodiments, the contiguous nucleotide sequence contiguous nucleotide sequence of the may be fully complementary to the UNC13A precursor-mRNA.


In some embodiments, the antisense oligonucleotide splice modulator may not comprise a region of more than 3, or more than 4, contiguous DNA nucleosides, and may not be capable of mediating RNAseH cleavage.


In some embodiments, one or more, or all, of the internucleoside linkages within the antisense oligonucleotide splice modulator may be modified. For examples, the modified internucleoside linkages may comprise a phosphorothioate linkage.


In some embodiments, the antisense oligonucleotide splice modulator may be covalently attached to at least one conjugate moiety.


In some embodiments, the antisense oligonucleotide splice modulator may be in the form of a pharmaceutically acceptable salt, such as a sodium salt or a potassium salt.


In another aspect there is provided a pharmaceutical composition comprising the antisense oligonucleotide splice modulator of the invention, and a pharmaceutically acceptable diluent, solvent, carrier, salt and/or adjuvant.


In another aspect there is provided a method, such as an in vivo or in vitro method, for increasing UNC13A expression in a cell, said method comprising administering an antisense oligonucleotide splice modulator or pharmaceutical composition of the invention, in an effective amount to said cell, which may express aberrant or exhibits depleted levels of TDP-43.


In another aspect the invention provides a method for treating or preventing a disease in a subject comprising administering a therapeutically or prophylactically effective amount of an antisense oligonucleotide splice modulator or pharmaceutical composition of the invention to a subject suffering from or susceptible to the disease.


In another aspect there is provided an antisense oligonucleotide splice modulator or a pharmaceutical composition of the invention for use as a medicament.


In another aspect there is provided an antisense oligonucleotide splice modulator or pharmaceutical composition of the invention for use in the treatment or prevention of disease in a subject.


In another aspect there is provided an antisense oligonucleotide splice modulator or pharmaceutical composition of the invention for the preparation of a medicament for treatment or prevention of a disease in a subject.


In all aspects of the invention, the disease may be a neurological disorder selected from the group consisting of amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Progressive supranuclear palsy (PSP), Primary lateral sclerosis, Progressive muscular atrophy, Alzheimer's disease, Parkinsons disease, Autism, Hippocampal sclerosis dementia, Down syndrome, Huntington's disease, polyglutamine diseases, such as spinocerebellar ataxia 3, myopathies and Chronic Traumatic Encephalopathy.


In particular embodiments, the disease may be a neurological disorder selected from the group consisting of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD).





BRIEF DESCRIPTION OF FIGURES


FIG. 1 displays a screenshot from the CLC Genomics Workbench software where the NGS read mapping from the UNC13A gene can be seen. The inclusion of the new exons in the sample treated with compound A (SEQ ID 553) is shown. The arrows show the two possible uses of splice acceptor sites giving the inclusion of either a 128 or 178 bp exon both resulting in a frameshift and a transcript targeted for nonsense mediated decay.



FIG. 2 shows a graphical presentation of the position of the screen ASOs binding site on the UNC13A pre mRNA and the ASO ability to restore the expression of UNC13A, by repressing the inclusion of the two novel exons. The position of the two novel exons which are being included in the UNC13A transcript is shown in the bottom with black bars. The position of the exon is shown according to the hg38 gene annotation and the UNC13A gene is expressed from the minus strand.





DETAILED DESCRIPTION

The inventors have identified that the splicing of UNC13A is affected by TDP-43. This is thought to lead to the production of non-functional, or less functional, UNC13A in TDP-43 cells.


Without wishing to be bound by theory, it is considered that in TDP-43 depleted cells UNC13A may be spliced such that one or more additional exons, such as one or two additional exons, is included. This additional exon may be 128 or 178 nucleotides in length. The inclusion of one or more additional exons may lead to a frameshift. This may lead to a premature stop codon which may target the transcript for nonsense mediated decay. This would result in less wild-type UNC13A polypeptide. Such an alternatively spliced mRNA transcript is referred to herein as a “mutant UNC13A mRNA”, a “mutant UNC13A transcript”, a “splicing variant of UNC13A” or an “UNC13A splice variant”.


The inventors have also determined that production of an UNC13A splicing variant can be reduced using an antisense oligonucleotide splice modulator. Herein an antisense oligonucleotide splice modulator of the invention may also be referred to as an oligonucleotide of the invention or an antisense oligonucleotide of the invention.


The oligonucleotide splice modulators of the invention may target a splice enhancer site in the UNC13A precursor-mRNA. This may reduce alternative splicing, thereby increasing conventional splicing and the production of wild-type UNC13A protein.


Enhanced wild-type UNC13A expression is desirable to treat a range of disorders which are characterised by, or caused by, reduced expression of UNC13A. These include amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Progressive supranuclear palsy (PSP), Primary lateral sclerosis, Progressive muscular atrophy, Alzheimer's disease, Parkinsons disease, Autism, Hippocampal sclerosis dementia, Down syndrome, Huntington's disease, polyglutamine diseases, such as spinocerebellar ataxia 3, myopathies and Chronic Traumatic Encephalopathy.


Splice Modulation

The antisense oligonucleotides of the invention are UNC13A splice modulators, that is they affect the splicing of UNC13A pre-mRNA. Herein the oligonucleotides of the invention may be referred to as “antisense oligonucleotide splice modulators”.


In some embodiments, the antisense oligonucleotide splice modulators of the invention may be complementary to the UNC13A precursor-mRNA.


In some embodiments, the UNC13A precursor-mRNA may have the sequence of SEQ ID NO 1. SEQ ID NO 1 is provided herein as a reference sequence and it will be understood that the target precursor-mRNA may be an allelic variant of SEQ ID NO 1, such as an allelic variant which comprises one or more polymorphisms.


In some embodiments, the antisense oligonucleotide splice modulator may be capable of increasing the expression of UNC13A in a TDP-43 depleted cell. Herein, it is anticipated that expression of wild-type, i.e. conventionally spliced, UNC13A which will be increased by exposure to the antisense oligonucleotide splice modulator of the invention.


Without wishing to be bound by theory, it is thought that the antisense oligonucleotide splice modulators of the invention may increase conventional splicing of UNC13A precursor-mRNA. This is thought to lead to an increase in the amount of conventionally spliced mature UNC13A mRNA, which in turn is thought to lead to an increase in the amount of wild-type UNC13A protein.


Herein the terms “wild-type” and “conventionally spliced” will be used interchangeably.


In some embodiments the wild-type (i.e. conventionally spliced) mature UNC13A mRNA sequence may have the sequence of SEQ ID NO: 2, or a fragment or variant thereof. SEQ ID NO 2 is provided herein as a reference sequence and it will be understood that the conventionally spliced UNC13A mRNA may be an allelic variant of SEQ ID NO 2, such as an allelic variant which comprises one or more polymorphisms.


In some embodiments, the wild-type UNC13A protein may have the sequence of SEQ ID NO: 3, or a fragment or variant thereof. SEQ ID NO 3 is provided herein as a reference sequence and it will be understood that the wild-type UNC13A protein may be an allelic variant of SEQ ID NO 3, such as an allelic variant which comprises one or more polymorphisms.


Herein, the term “increasing the expression of wild-type UNC13A” is understood to mean increasing conventionally spliced UNC13A mRNA levels, increasing wild-type UNC13A protein levels or increasing conventionally spliced UNC13A mRNA levels and wild-type UNC13A protein levels.


In certain embodiments, the antisense oligonucleotide splice modulators of the present invention may increase conventional splicing of UNC13A precursor-mRNA by at least about 10% compared to a control. More preferably the antisense oligonucleotide splice modulators of the present invention may increase conventional splicing of UNC13A precursor-mRNA by at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, at least about 200%, at least about 300%, at least about 400%, at least about 500%, at least about 600%, or more compared to a control.


In certain embodiments, the antisense oligonucleotide splice modulators of the present invention may increase the amount of wild-type UNC13A protein by at least about 10% compared to a control. More preferably the antisense oligonucleotide splice modulators of the present invention may increase the amount of wild-type UNC13A protein by at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, at least about 200%, at least about 300%, at least about 400%, at least about 500%, at least about 600%, or more compared to a control.


In certain embodiments, the antisense oligonucleotide splice modulators of the present invention may increase conventional splicing of UNC13A precursor-mRNA and increase the amount of wild-type UNC13A protein by at least about 10% compared to a control. More preferably the antisense oligonucleotide splice modulators of the present invention may increase conventional splicing of UNC13A precursor-mRNA and increase the amount of wild-type UNC13A protein by at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, at least about 200%, at least about 300%, at least about 400%, at least about 500%, at least about 600%, or more compared to a control.


Preferably, the antisense oligonucleotide splice modulators of the present invention increase the amount of wild-type UNC13A by decreasing expression of a UNC13A mutant mRNA in a TDP-43 depleted cell.


The UNC13A mutant mRNA may be a splicing variant of UNC13A. Herein, the term “splicing variant” or “splice variant” includes, but is not limited to, a variant mature mRNA which includes one or more additional exons relative to the wild-type UNC13A mature mRNA sequence. The wild-type UNC13A mature mRNA sequence may be SEQ ID NO 2.


In some embodiments the inclusion of an additional exon within the UNC13A mature mRNA sequence may lead to a frameshift. This may lead to a premaute stop codon and nonsense mediated decay.


In some embodiments the inclusion of an additional exon may lead to the translation of an UNC13A mutant polypeptide.


In some embodiments, the UNC13A mutant polypeptide may be encoded by the nucleotide sequence of SEQ ID NO: 4, or a fragment or variant thereof. SEQ ID NO 4 is provided herein as a reference sequence and it will be understood that the nucleic acid sequence encoding the mutant UNC13A polypeptide may be an allelic variant of SEQ ID NO 4, such as an allelic variant which comprises one or more polymorphisms.


In other embodiments, the UNC13A mutant polypeptide may have the sequence of SEQ ID NO: 5, or a fragment or variant thereof. SEQ ID NO 5 is provided herein as a reference sequence and it will be understood that the mutant UNC13A polypeptide may be an allelic variant of SEQ ID NO 5, such as an allelic variant which comprises one or more polymorphisms.


In some embodiments, the UNC13A mutant polypeptide may be encoded by the nucleotide sequence of SEQ ID NO: 6, or a fragment or variant thereof. SEQ ID NO 6 is provided herein as a reference sequence and it will be understood that the nucleic acid sequence encoding the mutant UNC13A polypeptide may be an allelic variant of SEQ ID NO 6, such as an allelic variant which comprises one or more polymorphisms.


In other embodiments, the UNC13A mutant polypeptide may have the sequence of SEQ ID NO: 7, or a fragment or variant thereof. SEQ ID NO 7 is provided herein as a reference sequence and it will be understood that the mutant UNC13A polypeptide may be an allelic variant of SEQ ID NO 7, such as an allelic variant which comprises one or more polymorphisms.


Herein, the term “decreasing expression of an UNC13A mutant” is understood to mean decreasing alternatively spliced UNC13A mature mRNA levels, decreasing mutant UNC13A polypeptide levels, or decreasing alternatively spliced UNC13A mature mRNA levels and decreasing mutant UNC13A polypeptide levels. This term also encompasses decreasing the production of alternatively spliced UNC13A mRNA, even if the alternatively spliced mature mRNA is ultimately degraded through nonsense-mediated degradation.


In some embodiments the antisense oligonucleotide splice modulators of the invention are capable of decreasing the level of alternatively spliced UNC13A mature mRNA by at least 10% compared to a control. More preferably the antisense oligonucleotide splice modulators of the invention are capable of decreasing the level of alternatively spliced UNC13A mature mRNA by at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, at least about 200%, at least about 300%, at least about 400%, at least about 500%, at least about 600%, or more compared to a control.


In some embodiments the antisense oligonucleotide splice modulators of the invention are capable of decreasing mutant UNC13A polypeptide levels by at least 10% compared to a control. More preferably the antisense oligonucleotide splice modulators of the invention are capable of decreasing mutant UNC13A polypeptide levels by at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, at least about 200%, at least about 300%, at least about 400%, at least about 500%, at least about 600%, or more compared to a control.


In some embodiments the antisense oligonucleotide splice modulators of the invention are capable of decreasing alternatively spliced UNC13A mature mRNA levels and decreasing mutant UNC13A polypeptide levels by at least 10% compared to a control. More preferably the antisense oligonucleotide splice modulators of the invention are capable of decreasing alternatively spliced mature UNC13A mRNA levels and decreasing mutant UNC13A polypeptide levels by at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 100%, at least about 200%, at least about 300%, at least about 400%, at least about 500%, at least about 600%, or more compared to a control.


Control

By the term “control”, when used in relation to measurements of the effect of an antisense oligonucleotide splice modulator, it is generally understood that the control is a cell that has not been exposed to the antisense oligonucleotide splice modulator of the invention.


Alternatively, an increase in the expression of wild-type UNC13A or a decrease in the expression of a UNC13A mutant may be determined by reference to the amount of wild-type and/or mutant UNC13A mRNA and/or polypeptide expressed before exposure to the antisense oligonucleotide splice modulator of the invention.


In other embodiments, the control may be a cell treated with a non-targeting oligonucleotide.


In some embodiments, the control may be a mock transfection, for example wherein cells are treated with PBS.


Oligonucleotides

The term “oligonucleotide” as used herein is defined as it is generally understood by the skilled person as a molecule comprising two or more covalently linked nucleosides. Such covalently bound nucleosides may also be referred to as nucleic acid molecules or oligomers.


Oligonucleotides are commonly made in the laboratory by solid-phase chemical synthesis followed by purification and isolation. When referring to a sequence of the oligonucleotide, reference is made to the sequence or order of nucleobase moieties, or modifications thereof, of the covalently linked nucleotides or nucleosides. The antisense oligonucleotide splice modulators of the invention are man-made, and are chemically synthesised, and are typically purified or isolated. The antisense oligonucleotide splice modulators of the invention may comprise one or more modified nucleosides such as 2′ sugar modified nucleosides. The antisense oligonucleotide splice modulators of the invention may comprise one or more modified internucleoside linkages, such as one or more phosphorothioate internucleoside linkages.


In some embodiments, the antisense oligonucleotide splice modulators of the invention are single stranded oligonucleotides.


In some embodiments, the antisense oligonucleotide splice modulators of the invention are 8 to 40 nucleotides in length.


In some embodiments, the antisense oligonucleotide splice modulators of the invention are 8 to 40 nucleotides in length and comprise a contiguous nucleotide sequence of 8 to 40 nucleotides.


In some embodiments, the antisense oligonucleotide splice modulators of the invention are 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 nucleotides in length.


In some embodiments the antisense oligonucleotide splice modulators of the invention are at least 12 nucleotides in length.


In some embodiments the antisense oligonucleotide splice modulators of the invention are at least 14 nucleotides in length.


In some embodiments the antisense oligonucleotide splice modulators of the invention are at least 16 nucleotides in length.


In some embodiments the antisense oligonucleotide splice modulators of the invention are at least 18 nucleotides in length.


Preferably, the antisense oligonucleotide splice modulators of the invention are 16 to 20 nucleotides in length.


More preferably, the antisense oligonucleotide splice modulators of the invention are 18 to 20 nucleotides in length.


Contiguous Nucleotide Sequence

The term “contiguous nucleotide sequence” as used herein refers to the region of the antisense oligonucleotide splice modulator of the invention which is complementary to a target nucleic acid, which may be or may comprise an oligonucleotide motif sequence. The term is used interchangeably herein with the term “contiguous nucleobase sequence”.


The antisense oligonucleotide splice modulator comprises the contiguous nucleotide sequence, and may optionally comprise further nucleotide(s), for example a nucleotide linker region which may be used to attach a functional group (e.g. a conjugate group) to the contiguous nucleotide sequence. The nucleotide linker region may or may not be complementary to the target nucleic acid.


It is understood that the contiguous nucleotide sequence of the antisense oligonucleotide splice modulator cannot be longer than the antisense oligonucleotide splice modulator as such and that the antisense oligonucleotide splice modulator cannot be shorter than the contiguous nucleotide sequence.


In some embodiments, the entire nucleotide sequence of the antisense oligonucleotide splice modulator of the invention is the contiguous nucleotide sequence.


The contiguous nucleotide sequence is the sequence of nucleotides in the antisense oligonucleotide splice modulator of the invention which are complementary to, and in some instances fully complementary to, the target nucleic acid, target sequence, or target site sequence.


In some embodiments, the contiguous nucleotide sequence is 8 to 40 nucleotides in length.


In some embodiments, the contiguous nucleotide sequence is 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 nucleotides in length.


In some embodiments the contiguous nucleotide sequence is at least 12 nucleotides in length.


In some embodiments the contiguous nucleotide sequence is at least 14 nucleotides in length.


In some embodiments the contiguous nucleotide sequence is at least 16 nucleotides in length.


In some embodiments the contiguous nucleotide sequence is at least 18 nucleotides in length.


In a preferred embodiment the contiguous nucleotide sequence is 16 to 20 nucleotides in length.


More preferably, the contiguous nucleotide sequence is 18 to 20 nucleotides in length.


In some embodiments the antisense oligonucleotide splice modulator of the invention consists of the contiguous nucleotide sequence.


In some embodiments the antisense oligonucleotide splice modulator of the invention is the contiguous nucleotide sequence.


Antisense Oligonucleotide Splice Modulator Targeting UNC13A Precursor-mRNA

The antisense oligonucleotide splice modulators of the invention comprise a contiguous nucleotide sequence which is complementary to the UNC13A precursor-mRNA.


The UNC13A precursor-mRNA may be described as the target for the contiguous nucleotide sequence or for the antisense oligonucleotide splice modulator. Put another way, the antisense oligonucleotide splice modulator targets the UNC13A precursor-mRNA.


In some embodiments the target sequence may have the sequence of SEQ ID NO 1, or a fragment thereof. SEQ ID NO 1 is provided herein as a reference sequence and it will be understood that the UNC13A precursor-mRNA sequence may be an allelic variant of SEQ ID NO 1, such as an allelic variant which comprises one or more polymorphisms. This applies equally to all sequences identified as target sequences herein.


In one aspect, the invention relates to an antisense oligonucleotide splice modulator wherein said antisense oligonucleotide splice modulator is 8 to 40 nucleotides in length and comprises a contiguous nucleotide sequence of at least 8 nucleotides in length which is complementary to SEQ ID NO 1.


In some embodiments, the antisense oligonucleotide splice modulator of the invention comprises a contiguous sequence which is at least about 75% complementary, at least about 80% complementary, at least about 85% complementary, at least about 90% complementary, at least about 95% complementary, or fully complementary (i.e. 100% complementary) to SEQ ID NO 1. Here, complementarity is determined across the length of the contiguous nucleotide sequence.


In some embodiments the antisense oligonucleotide splice modulator of the invention comprises a contiguous sequence which is at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99% complementary or fully complementary (i.e. 100% complementary) to SEQ ID NO 1.


In some embodiments, the antisense oligonucleotide splice modulator of the invention comprises a contiguous sequence which may comprise one, two or three mismatches between the contiguous nucleotide sequence and the target nucleic acid.


In a preferred embodiment the oligonucleotide of the invention, or contiguous nucleotide sequence thereof is fully complementary (100% complementary) to SEQ ID NO 1, across the length of the contiguous nucleotide sequence.


In one embodiment the contiguous nucleotide sequence is complementary to a splice enhancer site in the UNC13A precursor-mRNA.


An aspect of the present invention relates to an antisense oligonucleotide splice modulator, which comprises a contiguous nucleotide sequence of 8 to 40 nucleotides in length which is complementary to SEQ ID NO 554.


In some embodiments, the antisense oligonucleotide splice modulator of the invention comprises a contiguous sequence which is at least 90% complementary, such as at least 91%, such as at least 92%, such as at least 93%, such as at least 94%, such as at least 95%, such as at least 96%, such as at least 97%, such as at least 98%, or 100% complementary to SEQ ID NO 554.


In a preferred embodiment the antisense oligonucleotide splice modulator of the invention comprises a contiguous sequence which is fully complementary (i.e. 100% complementary) to SEQ ID NO 554.


An aspect of the present invention relates to an antisense oligonucleotide splice modulator, which comprises a contiguous nucleotide sequence of 8 to 40 nucleotides in length which is complementary to SEQ ID NO 555.


In some embodiments, the antisense oligonucleotide splice modulator of the invention comprises a contiguous sequence which is at least 90% complementary, such as at least 91%, such as at least 92%, such as at least 93%, such as at least 94%, such as at least 95%, such as at least 96%, such as at least 97%, such as at least 98%, or 100% complementary to SEQ ID NO 555.


In a preferred embodiment the antisense oligonucleotide splice modulator of the invention comprises a contiguous sequence which is fully complementary (i.e. 100% complementary) to SEQ ID NO 555.


An aspect of the present invention relates to an antisense oligonucleotide splice modulator, which comprises a contiguous nucleotide sequence of 8 to 40 nucleotides in length which is complementary to SEQ ID NO 556.


In some embodiments, the antisense oligonucleotide splice modulator of the invention comprises a contiguous sequence which is at least 90% complementary, such as at least 91%, such as at least 92%, such as at least 93%, such as at least 94%, such as at least 95%, such as at least 96%, such as at least 97%, such as at least 98%, or 100% complementary to SEQ ID NO 556.


In a preferred embodiment the antisense oligonucleotide splice modulator of the invention comprises a contiguous sequence which is fully complementary (i.e. 100% complementary) to SEQ ID NO 556.


An aspect of the present invention relates to an antisense oligonucleotide splice modulator, which comprises a contiguous nucleotide sequence of 8 to 40 nucleotides in length which is complementary to SEQ ID NO 557.


In some embodiments, the antisense oligonucleotide splice modulator of the invention comprises a contiguous sequence which is at least 90% complementary, such as at least 91%, such as at least 92%, such as at least 93%, such as at least 94%, such as at least 95%, such as at least 96%, such as at least 97%, such as at least 98%, or 100% complementary to SEQ ID NO 557.


In a preferred embodiment the antisense oligonucleotide splice modulator of the invention comprises a contiguous sequence which is fully complementary (i.e. 100% complementary) to SEQ ID NO 557.


An aspect of the present invention relates to an antisense oligonucleotide splice modulator, which comprises a contiguous nucleotide sequence of 8 to 40 nucleotides in length which is complementary to SEQ ID NO 558.


In some embodiments, the antisense oligonucleotide splice modulator of the invention comprises a contiguous sequence which is at least 90% complementary, such as at least 91%, such as at least 92%, such as at least 93%, such as at least 94%, such as at least 95%, such as at least 96%, such as at least 97%, such as at least 98%, or 100% complementary to SEQ ID NO 558.


In a preferred embodiment the antisense oligonucleotide splice modulator of the invention comprises a contiguous sequence which is fully complementary (i.e. 100% complementary) to SEQ ID NO 558.


In one embodiment the target sequence is SEQ ID NO 554. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 554.


In one embodiment the target sequence is SEQ ID NO 555. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 555.


In one embodiment the target sequence is SEQ ID NO 556. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 556.


In one embodiment the target sequence is SEQ ID NO 557. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 557.


In one embodiment the target sequence is SEQ ID NO 558. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 558.


In some embodiments, the antisense oligonucleotide splice modulator of the invention comprises a contiguous nucleotide sequence of 8 to 40 nucleotides in length with at least 75% complementary, such as at least 80%, at least 85%, at least 90% or at least 95% or 100% complementarity, to a target nucleic acid region selected from the group consisting of SEQ ID NO 8, SEQ ID NO 9, SEQ ID NO 10, SEQ ID NO 11, SEQ ID NO 12, SEQ ID NO 13, SEQ ID NO 14, SEQ ID NO 15, SEQ ID NO 16, SEQ ID NO 17, SEQ ID NO 18, SEQ ID NO 19, SEQ ID NO 20, SEQ ID NO 21, SEQ ID NO 22, SEQ ID NO 23, SEQ ID NO 24, SEQ ID NO 25, SEQ ID NO 26, SEQ ID NO 27, SEQ ID NO 28, SEQ ID NO 29, SEQ ID NO 30, SEQ ID NO 31, SEQ ID NO 32, SEQ ID NO 33, SEQ ID NO 34, SEQ ID NO 35, SEQ ID NO 36, SEQ ID NO 37, SEQ ID NO 38, SEQ ID NO 39, SEQ ID NO 40, SEQ ID NO 41, SEQ ID NO 42, SEQ ID NO 43, SEQ ID NO 44, SEQ ID NO 45, SEQ ID NO 46, SEQ ID NO 47, SEQ ID NO 48, SEQ ID NO 49, SEQ ID NO 50, SEQ ID NO 51, SEQ ID NO 52, SEQ ID NO 53, SEQ ID NO 54, SEQ ID NO 55, SEQ ID NO 56, SEQ ID NO 57, SEQ ID NO 58, SEQ ID NO 59, SEQ ID NO 60, SEQ ID NO 61, SEQ ID NO 62, SEQ ID NO 63, SEQ ID NO 64, SEQ ID NO 65, SEQ ID NO 66, SEQ ID NO 67, SEQ ID NO 68, SEQ ID NO 69, SEQ ID NO 70, SEQ ID NO 71, SEQ ID NO 72, SEQ ID NO 73, SEQ ID NO 74, SEQ ID NO 75, SEQ ID NO 76, SEQ ID NO 77, SEQ ID NO 78, SEQ ID NO 79, SEQ ID NO 80, SEQ ID NO 81, SEQ ID NO 82, SEQ ID NO 83, SEQ ID NO 84, SEQ ID NO 85, SEQ ID NO 86, SEQ ID NO 87, SEQ ID NO 88, SEQ ID NO 89, SEQ ID NO 90, SEQ ID NO 91, SEQ ID NO 92, SEQ ID NO 93, SEQ ID NO 94, SEQ ID NO 95, SEQ ID NO 96, SEQ ID NO 97, SEQ ID NO: 98, SEQ ID NO: 99, SEQ ID NO: 100, SEQ ID NO: 101, SEQ ID NO: 102, SEQ ID NO: 103, SEQ ID NO: 104, SEQ ID NO: 105, SEQ ID NO: 106, SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111, SEQ ID NO: 112, SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118, SEQ ID NO: 119, SEQ ID NO: 120, SEQ ID NO: 121, SEQ ID NO: 122, SEQ ID NO: 123, SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 132, SEQ ID NO: 133, SEQ ID NO: 134, SEQ ID NO: 135, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 141, SEQ ID NO: 142, SEQ ID NO: 143, SEQ ID NO: 144, SEQ ID NO: 145, SEQ ID NO: 146, SEQ ID NO: 147, SEQ ID NO: 148, SEQ ID NO: 149, SEQ ID NO: 150, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153, SEQ ID NO: 154, SEQ ID NO: 155, SEQ ID NO: 156, SEQ ID NO: 157, SEQ ID NO: 158, SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 161, SEQ ID NO: 162, SEQ ID NO: 163, SEQ ID NO: 164, SEQ ID NO: 165, SEQ ID NO: 166, SEQ ID NO: 167, SEQ ID NO: 168, SEQ ID NO: 169, SEQ ID NO: 170, SEQ ID NO: 171, SEQ ID NO: 172, SEQ ID NO: 173, SEQ ID NO: 174, SEQ ID NO: 175, SEQ ID NO: 176, SEQ ID NO: 177, SEQ ID NO: 178, SEQ ID NO: 179, SEQ ID NO: 180, SEQ ID NO: 181, SEQ ID NO: 182, SEQ ID NO: 183, SEQ ID NO: 184, SEQ ID NO: 185, SEQ ID NO: 186, SEQ ID NO: 187, SEQ ID NO: 188, SEQ ID NO: 189, SEQ ID NO: 190, SEQ ID NO: 191, SEQ ID NO: 192, SEQ ID NO: 193, SEQ ID NO: 194, SEQ ID NO: 195, SEQ ID NO: 196, SEQ ID NO: 197, SEQ ID NO: 198, SEQ ID NO: 199, SEQ ID NO: 200, SEQ ID NO: 201, SEQ ID NO: 202, SEQ ID NO: 203, SEQ ID NO: 204, SEQ ID NO: 205, SEQ ID NO: 206, SEQ ID NO: 207, SEQ ID NO: 208, SEQ ID NO: 209, SEQ ID NO: 210, SEQ ID NO: 211, SEQ ID NO: 212, SEQ ID NO: 213, SEQ ID NO: 214, SEQ ID NO: 215, SEQ ID NO: 216, SEQ ID NO: 217, SEQ ID NO: 218, SEQ ID NO: 219, SEQ ID NO: 220, SEQ ID NO: 221, SEQ ID NO: 222, SEQ ID NO: 223, SEQ ID NO: 224, SEQ ID NO: 225, SEQ ID NO: 226, SEQ ID NO: 227, SEQ ID NO: 228, SEQ ID NO: 229, SEQ ID NO: 230, SEQ ID NO: 231, SEQ ID NO: 232, SEQ ID NO: 233, SEQ ID NO: 234, SEQ ID NO: 235, SEQ ID NO: 236, SEQ ID NO: 237, SEQ ID NO: 238, SEQ ID NO: 239, SEQ ID NO: 240, SEQ ID NO: 241, SEQ ID NO: 242, SEQ ID NO: 243, SEQ ID NO: 244, SEQ ID NO: 245, SEQ ID NO: 246, SEQ ID NO: 247, SEQ ID NO: 248, SEQ ID NO: 249, SEQ ID NO: 250, SEQ ID NO: 251, SEQ ID NO: 252, SEQ ID NO: 253, SEQ ID NO: 254, SEQ ID NO: 255, SEQ ID NO: 256, SEQ ID NO: 257, SEQ ID NO: 258, SEQ ID NO: 259, SEQ ID NO: 260, SEQ ID NO: 261, SEQ ID NO: 262, SEQ ID NO: 263, SEQ ID NO: 264, SEQ ID NO: 265, SEQ ID NO: 266, SEQ ID NO: 267, SEQ ID NO: 268, SEQ ID NO: 269, SEQ ID NO: 270, SEQ ID NO: 271, SEQ ID NO: 272, SEQ ID NO: 273, SEQ ID NO: 274, SEQ ID NO: 275, SEQ ID NO: 276, SEQ ID NO: 277, SEQ ID NO: 278 and SEQ ID NO: 279.


In some embodiments the target sequence is selected from the group consisting of SEQ ID NO: 62; SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 122, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 134, SEQ ID NO: 135, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 141, SEQ ID NO: 142, SEQ ID NO: 143, SEQ ID NO: 146, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153, SEQ ID NO: 154, SEQ ID NO: 155, SEQ ID NO: 156, SEQ ID NO: 162, SEQ ID NO: 163, SEQ ID NO: 178, SEQ ID NO: 179, SEQ ID NO: 183, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 192, SEQ ID NO: 193, SEQ ID NO: 214, SEQ ID NO: 247, SEQ ID NO: 252, SEQ ID NO: 254, SEQ ID NO: 258, SEQ ID NO: 273, SEQ ID NO: 276, SEQ ID NO: 277, SEQ ID NO: 278, and SEQ ID NO: 279. Put another way, in some embodiments the contiguous nucleic acid is complementary to a sequence selected from the group consisting of SEQ ID NO: 62; SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 122, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 134, SEQ ID NO: 135, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 141, SEQ ID NO: 142, SEQ ID NO: 143, SEQ ID NO: 146, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153, SEQ ID NO: 154, SEQ ID NO: 155, SEQ ID NO: 156, SEQ ID NO: 162, SEQ ID NO: 163, SEQ ID NO: 178, SEQ ID NO: 179, SEQ ID NO: 183, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 192, SEQ ID NO: 193, SEQ ID NO: 214, SEQ ID NO: 247, SEQ ID NO: 252, SEQ ID NO: 254, SEQ ID NO: 258, SEQ ID NO: 273, SEQ ID NO: 276, SEQ ID NO: 277, SEQ ID NO: 278, and SEQ ID NO: 279.


In some embodiments the target sequence is selected from the group consisting of SEQ ID NO: 66, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 122, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 134, SEQ ID NO: 135, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 141, SEQ ID NO: 142, SEQ ID NO: 143, SEQ ID NO: 146, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID NO: 155, SEQ ID NO: 156, SEQ ID NO: 162, SEQ ID NO: 163, SEQ ID NO: 273, SEQ ID NO: 276, SEQ ID NO: 277, and SEQ ID NO: 279. Put another way, in some embodiments the contiguous nucleic acid is complementary to sequence selected from the group consisting of SEQ ID NO: 66, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 122, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 134, SEQ ID NO: 135, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 141, SEQ ID NO: 142, SEQ ID NO: 143, SEQ ID NO: 146, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID NO: 155, SEQ ID NO: 156, SEQ ID NO: 162, SEQ ID NO: 163, SEQ ID NO: 273, SEQ ID NO: 276, SEQ ID NO: 277, and SEQ ID NO: 279.


In one embodiment the target sequence is SEQ ID NO 66, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 66, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 66.


In one embodiment the target sequence is SEQ ID NO 70, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID N 70, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 70.


In one embodiment the target sequence is SEQ ID NO 72, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 72, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 72.


In one embodiment the target sequence is SEQ ID NO 73, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 73, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 73.


In one embodiment the target sequence is SEQ ID NO 74, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 74, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 74.


In one embodiment the target sequence is SEQ ID NO 76, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 76, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 76.


In one embodiment the target sequence is SEQ ID N 122, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 122, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 122.


In one embodiment the target sequence is SEQ ID NO 125, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 125, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 125.


In one embodiment the target sequence is SEQ ID NO 126, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID N 126, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 126.


In one embodiment the target sequence is SEQ ID NO 127, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID N 127, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 127.


In one embodiment the target sequence is SEQ ID NO 128, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 128, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 128.


In one embodiment the target sequence is SEQ ID NO 129, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 129, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 129.


In one embodiment the target sequence is SEQ ID NO 130, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 130, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 130.


In one embodiment the target sequence is SEQ ID NO 131, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 131, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 131.


In one embodiment the target sequence is SEQ ID NO 133, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 133, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 133.


In one embodiment the target sequence is SEQ ID NO 134, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 134, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 134.


In one embodiment the target sequence is SEQ ID NO 135, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 135, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 135.


In one embodiment the target sequence is SEQ ID NO 136, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 136, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 136.


In one embodiment the target sequence is SEQ ID NO 138, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 138, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 138.


In one embodiment the target sequence is SEQ ID NO 139, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 139, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 138.


In one embodiment the target sequence is SEQ ID NO 140, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 140, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 140.


In one embodiment the target sequence is SEQ ID NO 141, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 141, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 141.


In one embodiment the target sequence is SEQ ID NO 142, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 142, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 142.


In one embodiment the target sequence is SEQ ID NO 143, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 143, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 143.


In one embodiment the target sequence is SEQ ID NO 146, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 146, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 146.


In one embodiment the target sequence is SEQ ID NO 151, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 151, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 151.


In one embodiment the target sequence is SEQ ID NO 152, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 152, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 152.


In one embodiment the target sequence is SEQ ID NO 154, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 154, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 154.


In one embodiment the target sequence is SEQ ID NO 155, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 155, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 155.


In one embodiment the target sequence is SEQ ID NO 156, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 156, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 156.


In one embodiment the target sequence is SEQ ID NO 162, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 162, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 162.


In one embodiment the target sequence is SEQ ID NO 163, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 163, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 163.


In one embodiment the target sequence is SEQ ID NO 273, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 273, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 273.


In one embodiment the target sequence is SEQ ID NO 276, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 276, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 276.


In one embodiment the target sequence is SEQ ID NO 277, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 277, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 277.


In one embodiment the target sequence is SEQ ID NO 279, or a fragment thereof. Put another way, in some embodiments the contiguous nucleic acid is complementary to SEQ ID NO 279, or a fragment thereof.


In another embodiment the contiguous nucleotide sequence may be fully complementary to SEQ ID NO 279.


In some embodiments the fragment of any of the target sequences may be at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, or at least 17 contiguous nucleotides, preferably at least 10 contiguous nucleotides thereof.


Complementarity

The term “complementarity” describes the capacity for Watson-Crick base-pairing of nucleosides/nucleotides. Watson-Crick base pairs are guanine (G)-cytosine (C) and adenine (A)-thymine (T)/uracil (U).


It will be understood that oligonucleotides may comprise nucleosides with modified nucleobases, for example 5-methyl cytosine is often used in place of cytosine, and as such the term “complementarity” encompasses Watson Crick base-paring between non-modified and modified nucleobases (see for example Hirao et al., 2012, Accounts of Chemical Research, 45, 2055 and Bergstrom, 2009, Curr. Protoc. Nucleic Acid Chem., 37, 1.4.1).


The term “% complementary” as used herein, refers to the proportion of nucleotides (in percent) of a contiguous nucleotide sequence in a nucleic acid molecule (e.g. oligonucleotide) which across the contiguous nucleotide sequence, are complementary to a reference sequence (e.g. a target sequence or sequence motif). The percentage of complementarity is thus calculated by counting the number of aligned nucleobases that are complementary (from Watson Crick base pairs) between the two sequences (when aligned with the target sequence 5′-3′ and the oligonucleotide sequence from 3′-5′), dividing that number by the total number of nucleotides in the oligonucleotide and multiplying by 100. In such a comparison a nucleobase/nucleotide which does not align (form a base pair) is termed a mismatch. Insertions and deletions are not allowed in the calculation of % complementarity of a contiguous nucleotide sequence. It will be understood that in determining complementarity, chemical modifications of the nucleobases are disregarded as long as the functional capacity of the nucleobase to form Watson Crick base pairing is retained (e.g. 5′-methyl cytosine is considered identical to a cytosine for the purpose of calculating % identity).


Within the present invention, the term “complementary” requires the antisense oligonucleotide splice modulator, or contiguous nucleotide sequence thereof, to be at least about 75% complementary, at least about 80% complementary, at least about 85% complementary, at least about 90% complementary, or at least about 95% complementary to the target sequence, e.g. the UNC13A precursor-mRNA. In some embodiments the antisense oligonucleotide splice modulator, or contiguous sequence thereof, may be at least about 75%, at least about 76%, at least about 77%, at least about 78%, at least about 79%, at least about 80%, at least about 81%, at least about 82%, at least about 83%, at least about 84%, at least about 85%, at least about 86%, at least about 87%, at least about 88%, at least about 89%, at least about 90%, at least about 91%, at least about 92%, at least about 93%, at least about 94%, at least about 95%, at least about 96%, at least about 97%, at least about 98% or at least about 99% complementary, or 100% complementary to the target sequence, e.g. the UNC13A precursor-mRNA.


In some embodiments, the antisense oligonucleotide splice modulator, or contiguous nucleotide sequence thereof, of the invention may include one, two, three or more mismatches, wherein a mis-match is a nucleotide within the antisense oligonucleotide splice modulator, or contiguous nucleotide sequence thereof, which does not base pair with its target.


The term “fully complementary”, refers to 100% complementarity.


In some embodiments the antisense oligonucleotide splice modulator is fully complementary to the target sequence.


In some embodiments the contiguous nucleotide sequence is fully complementary to the target sequence.


Identity

The term “identity” as used herein, refers to the proportion of nucleotides (expressed in percent) of a contiguous nucleotide sequence in a nucleic acid molecule (e.g. antisense oligonucleotide splice modulator) which across the contiguous nucleotide sequence, are identical to a reference sequence (e.g. a sequence motif).


The percentage of identity is thus calculated by counting the number of aligned nucleobases that are identical (a match) between two sequences (in the contiguous nucleotide sequence of the antisense oligonucleotide splice modulator of the invention and in the reference sequence), dividing that number by the total number of nucleotides in the contiguous nucleotide sequence and multiplying by 100. Therefore, percentage of identity=(matches×100)/length of aligned region (e.g. the contiguous nucleotide sequence). Insertions and deletions are not allowed in the calculation the percentage of identity of a contiguous nucleotide sequence. It will be understood that in determining identity, chemical modifications of the nucleobases are disregarded as long as the functional capacity of the nucleobase to form Watson Crick base pairing is retained (e.g. 5-methyl cytosine is considered identical to a cytosine for the purpose of calculating % identity).


It is therefore to be understood that there is a relationship between identity and complementarity such that contiguous nucleotide sequences within the antisense oligonucleotide splice modulators of the invention that are complementary to a target sequence also share a percentage of identity with said target sequence.


Hybridization

The terms “hybridizing” or “hybridizes” as used herein are to be understood as two nucleic acid strands (e.g. an oligonucleotide and a target nucleic acid) forming hydrogen bonds between base pairs on opposite strands thereby forming a duplex. The affinity of the binding between two nucleic acid strands is the strength of the hybridization. It is often described in terms of the melting temperature (Tm) defined as the temperature at which half of the oligonucleotides are duplexed with the target nucleic acid. At physiological conditions Tm is not strictly proportional to the affinity (Mergny and Lacroix, 2003, Oligonucleotides 13:515-537). The standard state Gibbs free energy ΔG° is a more accurate representation of binding affinity and is related to the dissociation constant (Kd) of the reaction by ΔG°=−RT ln(Kd), where R is the gas constant and T is the absolute temperature. Therefore, a very low ΔG° of the reaction between an oligonucleotide and the target nucleic acid reflects a strong hybridization between the oligonucleotide and target nucleic acid. ΔG° is the energy associated with a reaction where aqueous concentrations are 1M, the pH is 7, and the temperature is 37° C. The hybridization of oligonucleotides to a target nucleic acid is a spontaneous reaction and for spontaneous reactions ΔG° is less than zero. ΔG° can be measured experimentally, for example, by use of the isothermal titration calorimetry (ITC) method as described in Hansen et al., 1965, Chem. Comm. 36-38 and Holdgate et al., 2005, Drug Discov Today. The skilled person will know that commercial equipment is available for ΔG° measurements. ΔG° can also be estimated numerically by using the nearest neighbour model as described by SantaLucia, 1998, Proc Natl Acad Sci USA. 95:1460-1465 using appropriately derived thermodynamic parameters described by Sugimoto et al., 1995, Biochemistry 34:11211-11216 and McTigue et al., 2004, Biochemistry 43:5388-5405.


In some embodiments, antisense oligonucleotide splice modulators of the present invention hybridize to a target nucleic acid with estimated ΔG° values below-10 kcal for oligonucleotides that are 10-30 nucleotides in length.


In some embodiments the degree or strength of hybridization is measured by the standard state Gibbs free energy ΔG°. The antisense oligonucleotide splice modulators may hybridize to a target nucleic acid with estimated ΔG° values below the range of −10 kcal, such as below −15 kcal, such as below −20 kcal and such as below −25 kcal for oligonucleotides that are 8-30 nucleotides in length. In some embodiments the antisense oligonucleotide splice modulators hybridize to a target nucleic acid with an estimated ΔG° value of −10 to −60 kcal, such as −12 to −40, such as from −15 to −30 kcal, or −16 to −27 kcal such as −18 to −25 kcal.


Antisense Oligonucleotide Splice Modulators

The antisense oligonucleotide of the invention is an antisense oligonucleotide splice modulator comprising a contiguous nucleotide sequence which is complementary to the UNC13A precursor-mRNA.


In some embodiments the contiguous nucleotide sequence is a sequence selected from the group consisting of SEQ ID NO: 280, SEQ ID NO: 281, SEQ ID NO: 282, SEQ ID NO: 283, SEQ ID NO: 284, SEQ ID NO: 285, SEQ ID NO: 286, SEQ ID NO: 287, SEQ ID NO: 288, SEQ ID NO: 289, SEQ ID NO: 290, SEQ ID NO: 291, SEQ ID NO: 292, SEQ ID NO: 293, SEQ ID NO: 294, SEQ ID NO: 295, SEQ ID NO: 296, SEQ ID NO: 297, SEQ ID NO: 298, SEQ ID NO: 299, SEQ ID NO: 300, SEQ ID NO: 301, SEQ ID NO: 302, SEQ ID NO: 303, SEQ ID NO: 304, SEQ ID NO: 305, SEQ ID NO: 306, SEQ ID NO: 307, SEQ ID NO: 308, SEQ ID NO: 309, SEQ ID NO: 310, SEQ ID NO: 311, SEQ ID NO: 312, SEQ ID NO: 313, SEQ ID NO: 314, SEQ ID NO: 315, SEQ ID NO: 316, SEQ ID NO: 317, SEQ ID NO: 318, SEQ ID NO: 319, SEQ ID NO: 320, SEQ ID NO: 321, SEQ ID NO: 322, SEQ ID NO: 323, SEQ ID NO: 324, SEQ ID NO: 325, SEQ ID NO: 326, SEQ ID NO: 327, SEQ ID NO: 328, SEQ ID NO: 329, SEQ ID NO: 330, SEQ ID NO: 331, SEQ ID NO: 332, SEQ ID NO: 333, SEQ ID NO: 334, SEQ ID NO: 335, SEQ ID NO: 336, SEQ ID NO: 337, SEQ ID NO: 338, SEQ ID NO: 339, SEQ ID NO: 340, SEQ ID NO: 341, SEQ ID NO: 342, SEQ ID NO: 343, SEQ ID NO: 344, SEQ ID NO: 345, SEQ ID NO: 346, SEQ ID NO: 347, SEQ ID NO: 348, SEQ ID NO: 349, SEQ ID NO: 350, SEQ ID NO: 351, SEQ ID NO: 352, SEQ ID NO: 353, SEQ ID NO: 354, SEQ ID NO: 355, SEQ ID NO: 356, SEQ ID NO: 357, SEQ ID NO: 358, SEQ ID NO: 359, SEQ ID NO: 360, SEQ ID NO: 361, SEQ ID NO: 362, SEQ ID NO: 363, SEQ ID NO: 364, SEQ ID NO: 365, SEQ ID NO: 366, SEQ ID NO: 367, SEQ ID NO: 368, SEQ ID NO: 369, SEQ ID NO: 370, SEQ ID NO: 371, SEQ ID NO: 372, SEQ ID NO: 373, SEQ ID NO: 374, SEQ ID NO: 375, SEQ ID NO: 376, SEQ ID NO: 377, SEQ ID NO: 378, SEQ ID NO: 379, SEQ ID NO: 380, SEQ ID NO: 381, SEQ ID NO: 382, SEQ ID NO: 383, SEQ ID NO: 384, SEQ ID NO: 385, SEQ ID NO: 386, SEQ ID NO: 387, SEQ ID NO: 388, SEQ ID NO: 389, SEQ ID NO: 390, SEQ ID NO: 391, SEQ ID NO: 392, SEQ ID NO: 393, SEQ ID NO: 394, SEQ ID NO: 395, SEQ ID NO: 396, SEQ ID NO: 397, SEQ ID NO: 398, SEQ ID NO: 399, SEQ ID NO: 400, SEQ ID NO: 401, SEQ ID NO: 402, SEQ ID NO: 403, SEQ ID NO: 404, SEQ ID NO: 405, SEQ ID NO: 406, SEQ ID NO: 407, SEQ ID NO: 408, SEQ ID NO: 409, SEQ ID NO: 410, SEQ ID NO: 411, SEQ ID NO: 412, SEQ ID NO: 413, SEQ ID NO: 414, SEQ ID NO: 415, SEQ ID NO: 416, SEQ ID NO: 417, SEQ ID NO: 418, SEQ ID NO: 419, SEQ ID NO: 420, SEQ ID NO: 421, SEQ ID NO: 422, SEQ ID NO: 423, SEQ ID NO: 424, SEQ ID NO: 425, SEQ ID NO: 426, SEQ ID NO: 427, SEQ ID NO: 428, SEQ ID NO: 429, SEQ ID NO: 430, SEQ ID NO: 431, SEQ ID NO: 432, SEQ ID NO: 433, SEQ ID NO: 434, SEQ ID NO: 435, SEQ ID NO: 436, SEQ ID NO: 437, SEQ ID NO: 438, SEQ ID NO: 439, SEQ ID NO: 440, SEQ ID NO: 441, SEQ ID NO: 442, SEQ ID NO: 443, SEQ ID NO: 444, SEQ ID NO: 445, SEQ ID NO: 446, SEQ ID NO: 447, SEQ ID NO: 448, SEQ ID NO: 449, SEQ ID NO: 450, SEQ ID NO: 451, SEQ ID NO: 452, SEQ ID NO: 453, SEQ ID NO: 454, SEQ ID NO: 455, SEQ ID NO: 456, SEQ ID NO: 457, SEQ ID NO: 458, SEQ ID NO: 459, SEQ ID NO: 460, SEQ ID NO: 461, SEQ ID NO: 462, SEQ ID NO: 463, SEQ ID NO: 464, SEQ ID NO: 465, SEQ ID NO: 466, SEQ ID NO: 467, SEQ ID NO: 468, SEQ ID NO: 469, SEQ ID NO: 470, SEQ ID NO: 471, SEQ ID NO: 472, SEQ ID NO: 473, SEQ ID NO: 474, SEQ ID NO: 475, SEQ ID NO: 476, SEQ ID NO: 477, SEQ ID NO: 478, SEQ ID NO: 479, SEQ ID NO: 480, SEQ ID NO: 481, SEQ ID NO: 482, SEQ ID NO: 483, SEQ ID NO: 484, SEQ ID NO: 485, SEQ ID NO: 486, SEQ ID NO: 487, SEQ ID NO: 488, SEQ ID NO: 489, SEQ ID NO: 490, SEQ ID NO: 491, SEQ ID NO: 492, SEQ ID NO: 493, SEQ ID NO: 494, SEQ ID NO: 495, SEQ ID NO: 496, SEQ ID NO: 497, SEQ ID NO: 498, SEQ ID NO: 499, SEQ ID NO: 500, SEQ ID NO: 501, SEQ ID NO: 502, SEQ ID NO: 503, SEQ ID NO: 504, SEQ ID NO: 505, SEQ ID NO: 506, SEQ ID NO: 507, SEQ ID NO: 508, SEQ ID NO: 509, SEQ ID NO: 510, SEQ ID NO: 511, SEQ ID NO: 512, SEQ ID NO: 513, SEQ ID NO: 514, SEQ ID NO: 515, SEQ ID NO: 516, SEQ ID NO: 517, SEQ ID NO: 518, SEQ ID NO: 519, SEQ ID NO: 520, SEQ ID NO: 521, SEQ ID NO: 522, SEQ ID NO: 523, SEQ ID NO: 524, SEQ ID NO: 525, SEQ ID NO: 526, SEQ ID NO: 527, SEQ ID NO: 528, SEQ ID NO: 529, SEQ ID NO: 530, SEQ ID NO: 531, SEQ ID NO: 532, SEQ ID NO: 533, SEQ ID NO: 534, SEQ ID NO: 535, SEQ ID NO: 536, SEQ ID NO: 537, SEQ ID NO: 538, SEQ ID NO: 539, SEQ ID NO: 540, SEQ ID NO: 541, SEQ ID NO: 542, SEQ ID NO: 543, SEQ ID NO: 544, SEQ ID NO: 545, SEQ ID NO: 546, SEQ ID NO: 547, SEQ ID NO: 548, SEQ ID NO: 549, SEQ ID NO: 550 and SEQ ID NO: 551, or a fragment thereof.


In some embodiments the fragment may be at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, or at least 17 contiguous nucleotides of the contiguous nucleotide sequence, preferably at least 10 contiguous nucleotides thereof.


In some embodiments the contiguous nucleotide sequence is a sequence selected from the group consisting of SEQ ID NO: 334; SEQ ID NO: 338; SEQ ID NO: 340; SEQ ID NO: 342; SEQ ID NO: 344; SEQ ID NO: 345; SEQ ID NO: 346; SEQ ID NO: 348; SEQ ID NO: 384; SEQ ID NO: 386; SEQ ID NO: 387; SEQ ID NO: 389; SEQ ID NO: 394; SEQ ID NO: 397; SEQ ID NO: 398; SEQ ID NO: 399; SEQ ID NO: 400; SEQ ID NO: 401; SEQ ID NO: 402; SEQ ID NO: 403; SEQ ID NO: 405; SEQ ID NO: 406; SEQ ID NO: 407; SEQ ID NO: 408; SEQ ID NO: 409; SEQ ID NO: 410; SEQ ID NO: 411; SEQ ID NO: 412; SEQ ID NO: 413; SEQ ID NO: 414; SEQ ID NO: 415; SEQ ID NO: 418; SEQ ID NO: 423; SEQ ID NO: 424; SEQ ID NO: 425; SEQ ID NO: 426, SEQ ID NO: 427, SEQ ID NO: 428, SEQ ID NO: 434, SEQ ID NO: 435, SEQ ID NO: 450, SEQ ID NO: 451, SEQ ID NO: 455, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 464, SEQ ID NO: 465, SEQ ID NO: 486, SEQ ID NO: 519, SEQ ID NO: 524, SEQ ID NO: 526, SEQ ID NO: 530, SEQ ID NO: 545, SEQ ID NO: 548, SEQ ID NO: 549, SEQ ID NO: 550, and SEQ ID NO: 551, or a fragment thereof.


In some embodiments the fragment may be at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, or at least 17 contiguous nucleotides of the contiguous nucleotide sequence, preferably at least 10 contiguous nucleotides thereof.


In some embodiments the contiguous nucleotide sequence is a sequence selected from the group consisting of SEQ ID NO: 338, SEQ ID NO: 342, SEQ ID NO: 344, SEQ ID NO: 345, SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 394, SEQ ID NO: 397, SEQ ID NO: 398, SEQ ID NO: 399, SEQ ID NO: 400, SEQ ID NO: 401, SEQ ID NO: 402, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 406, SEQ ID NO: 407, SEQ ID NO: 408, SEQ ID NO: 409, SEQ ID NO: 410, SEQ ID NO: 411, SEQ ID NO: 412, SEQ ID NO: 413, SEQ ID NO: 414, SEQ ID NO: 415, SEQ ID NO: 418, SEQ ID NO: 423, SEQ ID NO: 424, SEQ ID NO: 426, SEQ ID NO: 427, SEQ ID NO: 428, SEQ ID NO: 434, SEQ ID NO: 435, SEQ ID NO: 545, SEQ ID NO: 548, SEQ ID NO: 549 and SEQ ID NO: 551, or a fragment thereof.


In some embodiments the fragment may be at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, or at least 17 contiguous nucleotides of the contiguous nucleotide sequence, preferably at least 10 contiguous nucleotides thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 338, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 342, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 344, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 345, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 346, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 348, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 394, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 397, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 398, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 399, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 400, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 401, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 402, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 403, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 405, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 406, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 407, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 408, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 409, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 410, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 411, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 412, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 413, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 414, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 415, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 418, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 423, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 424, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 426, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 427, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 428, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 434, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 435, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 545, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 548, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 549, or a fragment thereof.


In one embodiment the contiguous nucleotide sequence comprises SEQ ID NO 551, or a fragment thereof.


In some embodiments the fragment may be at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, or at least 17 contiguous nucleotides of the contiguous nucleotide sequence, preferably at least 10 contiguous nucleotides thereof.


Nucleotides and Nucleosides

Nucleotides and nucleosides are the building blocks of oligonucleotides and polynucleotides and, for the purposes of the present invention, include both naturally occurring and non-naturally occurring nucleotides and nucleosides. In nature, nucleotides, such as DNA and RNA nucleotides comprise a ribose sugar moiety, a nucleobase moiety and one or more phosphate groups (which is absent in nucleosides).


Nucleosides and nucleotides may also interchangeably be referred to as “units” or “monomers”.


Modified Nucleoside

The term “modified nucleoside” or “nucleoside modification” as used herein refers to nucleosides modified as compared to the equivalent DNA or RNA nucleoside by the introduction of one or more modifications of the sugar moiety or the (nucleo) base moiety.


Advantageously, the antisense oligonucleotide splice modulators according to the invention may comprise one or more modified nucleosides.


In some embodiments the antisense oligonucleotide splice modulator or the contiguous nucleotide sequence thereof (motif sequence) can be modified to, for example, increase nuclease resistance and/or binding affinity to the target nucleic acid. Advantageously, high affinity modified nucleosides are used.


Advantageously, one or more of the modified nucleosides of the antisense oligonucleotide splice modulator according to the invention may comprise a modified sugar moiety. The term modified nucleoside may also be used herein interchangeably with the term “nucleoside analogue” or modified “units” or modified “monomers”. Nucleosides with an unmodified DNA or RNA sugar moiety are termed DNA or RNA nucleosides herein. Nucleosides with modifications in the base region of the DNA or RNA nucleoside are still generally termed DNA or RNA if they allow Watson Crick base pairing. Exemplary modified nucleosides which may be used in the antisense oligonucleotide splice modulators according to the invention include LNA, 2′-O-MOE, 2′oMe and morpholino nucleoside analogues.


Modified Internucleoside Linkage

Advantageously, the antisense oligonucleotide splice modulators according to the invention comprise one or more modified internucleoside linkages.


The term “modified internucleoside linkage” is defined as generally understood by the skilled person as linkages, other than phosphodiester (PO) linkages, which covalently couple two nucleosides together. The antisense oligonucleotide splice modulator of the invention may therefore comprise one or more modified internucleoside linkages such as one or more phosphorothioate internucleoside linkages.


In some embodiments at least 50% of the internucleoside linkages in the antisense oligonucleotide splice modulators according to the invention, or the contiguous nucleotide sequence thereof, are phosphorothioate, such as at least 60%, such as at least 70%, such as at least 75%, such as at least 80%, such as at least 90% or more. In some embodiments all of the internucleoside linkages of the antisense oligonucleotide splice modulators of the invention, or contiguous nucleotide sequence thereof, are phosphorothioate.


In a further embodiment, the antisense oligonucleotide splice modulators according to the invention, or the contiguous nucleotide sequence thereof, comprise at least one modified internucleoside linkage. It is advantageous if at least 75%, such as all, of the internucleoside linkages within the contiguous nucleotide sequence are phosphorothioate or boranophosphate internucleoside linkages.


Advantageously, all the internucleoside linkages of the contiguous nucleotide sequence of the antisense oligonucleotide splice modulators according to the invention may be phosphorothioate, or all the internucleoside linkages of the antisense oligonucleotide splice modulators according to the invention may be phosphorothioate linkages.


Nucleobase

The term nucleobase includes the purine (e.g. adenine and guanine) and pyrimidine (e.g. uracil, thymine and cytosine) moiety present in nucleosides and nucleotides which form hydrogen bonds in nucleic acid hybridization. In the context of the present invention, the term nucleobase also encompasses modified nucleobases which may differ from naturally occurring nucleobases, but which are functional during nucleic acid hybridisation. In this context “nucleobase” refers to both naturally occurring nucleobases such as adenine, guanine, cytosine, thymidine, uracil, xanthine and hypoxanthine, as well as non-naturally occurring variants. Such variants are for example described in Hirao et al. (2012) Accounts of Chemical Research vol 45 page 2055 and Bergstrom (2009) Current Protocols in Nucleic Acid Chemistry Suppl. 37 1.4.1.


In some embodiments the nucleobase moiety is modified by changing the purine or pyrimidine into a modified purine or pyrimidine, such as substituted purine or substituted pyrimidine, such as a nucleobase selected from isocytosine, pseudoisocytosine, 5-methyl cytosine, 5-thiozolo-cytosine, 5-propynyl-cytosine, 5-propynyl-uracil, 5-bromouracil 5-thiazolo-uracil, 2-thio-uracil, 2′thio-thymine, inosine, diaminopurine, 6-aminopurine, 2-aminopurine, 2,6-diaminopurine and 2-chloro-6-aminopurine.


The nucleobase moieties may be indicated by the letter code for each corresponding nucleobase, e.g. A, T, G, C or U, wherein each letter may optionally include modified nucleobases of equivalent function. For example, in the exemplified oligonucleotides, the nucleobase moieties are selected from A, T, G, C, and 5-methyl cytosine.


Modified Oligonucleotide

The antisense oligonucleotide splice modulators of the invention may be modified oligonucleotides.


The term “modified oligonucleotide” describes an oligonucleotide comprising one or more sugar-modified nucleosides and/or modified internucleoside linkages. The term “chimeric oligonucleotide” is a term that has been used in the literature to describe oligonucleotides comprising sugar modified nucleosides and DNA nucleosides. In some embodiments, it may be advantageous for the antisense oligonucleotide splice modulators according to the invention to be or to comprise chimeric oligonucleotides.


In some embodiments, antisense oligonucleotide splice modulators according to the invention, or contiguous nucleotide sequence thereof, may include modified nucleobases, which function as the shown nucleobase in base pairing, for example 5-methyl cytosine may be used in place of methyl cytosine. Inosine may be used as a universal base.


It is understood that the contiguous nucleobase sequences (motif sequence) can be modified to, for example, increase nuclease resistance and/or binding affinity to the target nucleic acid.


The pattern in which the modified nucleosides (such as high affinity modified nucleosides) are incorporated into an oligonucleotide sequence is generally termed oligonucleotide design.


In an embodiment, the antisense oligonucleotide splice modulators according to the invention comprise at least 1 modified nucleoside, such as at least 2, at least 3, at least 4, at least 5, at least 6, at least 7, at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, or at least 19 modified nucleosides.


Suitable modifications are described herein under the headings “modified nucleoside”, “high affinity modified nucleosides”, “sugar modifications”, “2′ sugar modifications” and “Locked nucleic acids (LNA)”.


High Affinity Modified Nucleosides

A high affinity modified nucleoside is a modified nucleoside which, when incorporated into the oligonucleotide enhances the affinity of the oligonucleotide for its complementary target, for example as measured by the melting temperature (Tm). A high affinity modified nucleoside of the present invention preferably results in an increase in melting temperature between +0.5 to +12° C., more preferably between +1.5 to +10° C. and most preferably between +3 to +8° C. per modified nucleoside. Numerous high affinity modified nucleosides are known in the art and include for example, many 2′ substituted nucleosides as well as locked nucleic acids (LNA) (see e.g. Freier & Altmann; Nucl. Acid Res., 1997, 25, 4429-4443 and Uhlmann; Curr. Opinion in Drug Development, 2000, 3 (2), 203-213).


Sugar Modifications

The antisense oligonucleotide splice modulators according to the invention may comprise one or more nucleosides which have a modified sugar moiety, i.e. a modification of the sugar moiety when compared to the ribose sugar moiety found in DNA and RNA.


Numerous nucleosides with modification of the ribose sugar moiety have been made, primarily with the aim of improving certain properties of oligonucleotides, such as affinity and/or nuclease resistance.


Such modifications include those where the ribose ring structure is modified, e.g. by replacement with a hexose ring (HNA), or a bicyclic ring, which typically have a biradicle bridge between the C2 and C4 carbons on the ribose ring (LNA), or an unlinked ribose ring which typically lacks a bond between the C2 and C3 carbons (e.g. UNA). Other sugar modified nucleosides include, for example, bicyclohexose nucleic acids (WO2011/017521) or tricyclic nucleic acids (WO2013/154798). Modified nucleosides also include nucleosides where the sugar moiety is replaced with a non-sugar moiety, for example in the case of peptide nucleic acids (PNA), or morpholino nucleic acids.


Sugar modifications also include modifications made via altering the substituent groups on the ribose ring to groups other than hydrogen, or the 2′-OH group naturally found in DNA and RNA nucleosides. Substituents may, for example be introduced at the 2′, 3′, 4′ or 5′ positions.


2′ Sugar Modified Nucleosides

A 2′ sugar modified nucleoside is a nucleoside which has a substituent other than H or —OH at the 2′ position (2′ substituted nucleoside) or comprises a 2′ linked biradicle capable of forming a bridge between the 2′ carbon and a second carbon in the ribose ring, such as LNA (2′-4′ biradicle bridged) nucleosides.


Indeed, much focus has been spent on developing 2′ sugar substituted nucleosides, and numerous 2′ substituted nucleosides have been found to have beneficial properties when incorporated into oligonucleotides. For example, the 2′ modified sugar may provide enhanced binding affinity and/or increased nuclease resistance to the oligonucleotide. Examples of 2′ substituted modified nucleosides are 2′-O-alkyl-RNA, 2′-O-methyl-RNA (2′oMe), 2′-alkoxy-RNA, 2′-O-methoxyethyl-RNA (MOE), 2′-amino-DNA, 2′-Fluoro-RNA, and 2′-F-ANA nucleoside. For further examples, please see e.g. Freier & Altmann; Nucl. Acid Res., 1997, 25, 4429-4443 and Uhlmann; Curr. Opinion in Drug Development, 2000, 3 (2), 203-213, and Deleavey and Damha, Chemistry and Biology 2012, 19, 937. Below are illustrations of some 2′ substituted modified nucleosides.




embedded image


In relation to the present invention, 2′ substituted sugar modified nucleosides does not include 2′ bridged nucleosides like LNA.


In one embodiment, the antisense oligonucleotide splice modulators according to the invention may comprise one or more sugar modified nucleosides, such as 2′ sugar modified nucleosides. Preferably the antisense oligonucleotide splice modulators according to the invention comprises one or more 2′ sugar modified nucleoside independently selected from the group consisting of 2′-O-alkyl-RNA, 2′-O-methyl-RNA (2′oMe), 2′-alkoxy-RNA, 2′-O-methoxyethyl-RNA (2′MOE), 2′-amino-DNA, 2′-fluoro-DNA, arabino nucleic acid (ANA), 2′-fluoro-ANA and LNA nucleosides. It is advantageous if one or more of the modified nucleoside(s) is a locked nucleic acid (LNA).


Locked Nucleic Acid Nucleosides (LNA Nucleoside)

A “LNA nucleoside” is a 2′-modified nucleoside which comprises a biradical linking the C2′ and C4′ of the ribose sugar ring of said nucleoside (also referred to as a “2′-4′ bridge”), which restricts or locks the conformation of the ribose ring. These nucleosides are also termed bridged nucleic acid or bicyclic nucleic acid (BNA) in the literature. The locking of the conformation of the ribose is associated with an enhanced affinity of hybridization (duplex stabilization) when the LNA is incorporated into an oligonucleotide for a complementary RNA or DNA molecule. This can be routinely determined by measuring the melting temperature of the oligonucleotide/complement duplex.


Non limiting, exemplary LNA nucleosides are disclosed in WO 99/014226, WO 00/66604, WO 98/039352, WO 2004/046160, WO 00/047599, WO 2007/134181, WO 2010/077578, WO 2010/036698, WO 2007/090071, WO 2009/006478, WO 2011/156202, WO 2008/154401, WO 2009/067647, WO 2008/150729, Morita et al., Bioorganic & Med. Chem. Lett. 12, 73-76, Seth et al. J. Org. Chem. 2010, Vol 75 (5) pp. 1569-81, and Mitsuoka et al., Nucleic Acids Research 2009, 37 (4), 1225-1238, and Wan and Seth, J. Medical Chemistry 2016, 59, 9645-9667.


Further non limiting, exemplary LNA nucleosides are disclosed in Scheme 1.




text missing or illegible when filed


text missing or illegible when filed


Particular LNA nucleosides are beta-D-oxy-LNA, 6′-methyl-beta-D-oxy LNA such as(S)-6′-methyl-beta-D-oxy-LNA (ScET) and ENA.


A particularly advantageous LNA is beta-D-oxy-LNA.


Morpholino Oligonucleotides

In some embodiments, the antisense oligonucleotide splice modulators of the invention comprise or consist of morpholino nucleosides (i.e. are Morpholino oligomers and phosphorodiamidate Morpholino oligomer (PMO)). Splice modulating morpholino oligonucleotides have been approved for clinical use—see for example eteplirsen, a 30 nucleotide morpholino oligonucleotide targeting a frame shift mutation in DMD, used to treat Duchenne muscular dystrophy. Morpholino oligonucleotides have nucleases attached to six membered morpholino rings rather ribose, such as methylenemorpholine rings linked through phosphorodiamidate groups, for example as illustrated by the following illustration of 4 consecutive morpholino nucleotides:




embedded image


In some embodiments, antisense oligonucleotide splice modulators according to the invention may be, for example 8 to 40 morpholino nucleotides in length, such as morpholino 16 to 20 nucleotides in length, such as 18 to 20 nucleotides in length.


RNase H Activity and Recruitment

The RNase H activity of an antisense oligonucleotide refers to its ability to recruit RNase H when in a duplex with a complementary RNA molecule. WO01/23613 provides in vitro methods for determining RNase H activity, which may be used to determine the ability to recruit RNase H. Typically an oligonucleotide is deemed capable of recruiting RNase H if it, when provided with a complementary target nucleic acid sequence, has an initial rate, as measured in pmol/l/min, of at least 5%, such as at least 10%, at least 20% or more than 20%, of the initial rate determined when using an oligonucleotide having the same base sequence as the modified oligonucleotide being tested, but containing only DNA monomers with phosphorothioate linkages between all monomers in the oligonucleotide, and using the methodology provided by Examples 91-95 of WO01/23613 (hereby incorporated by reference). For use in determining RHase H activity, recombinant RNase H1 is available from Lubio Science GmbH, Lucerne, Switzerland.


DNA oligonucleotides are known to effectively recruit RNase H, as are gapmer oligonucleotides which comprise a region of DNA nucleosides (typically at least 5 or 6 contiguous DNA nucleosides), flanked 5′ and 3′ by regions comprising 2′ sugar modified nucleosides, typically high affinity 2′ sugar modified nucleosides, such as 2-O-MOE and/or LNA. For effective function as a splice modulator, degradation of the precursor-mRNA is not desirable, and as such it is preferable to avoid the RNaseH degradation of the target. Therefore, the antisense oligonucleotide splice modulators of the invention are preferably not RNase H recruiting gapmer oligonucleotides.


RNase H recruitment may be avoided by limiting the number of contiguous DNA nucleotides in the antisense oligonucleotide splice modulator-therefore mixmer and totalmer designs may be used. Advantageously, in some embodiments, the antisense oligonucleotide splice modulators of the invention, or the contiguous nucleotide sequences thereof, does not comprise more than 3 contiguous DNA nucleosides.


Further, advantageously, in some embodiments, the antisense oligonucleotide splice modulators of the invention, or the contiguous nucleotide sequences thereof, do not comprise more than 4 contiguous DNA nucleosides. Further advantageously, in some embodiments, the antisense oligonucleotide splice modulators of the invention, or contiguous nucleotide sequences thereof, do not comprise more than 2 contiguous DNA nucleosides.


Mixmers and Totalmers

For use as a splice modulator it is often advantageous to use antisense oligonucleotides which do not recruit RNAase H and do not cause destruction of target pre-cursor-RNA. As RNase H activity requires a contiguous sequence of DNA nucleotides, RNase H recruitment may be prevented by designing oligonucleotides which do not comprise a region of more than 3 or more than 4 contiguous DNA nucleosides. This may be achieved by using antisense oligonucleotides or contiguous nucleoside regions thereof with a mixmer design, which comprise sugar modified nucleosides, such as 2′ sugar modified nucleosides, and short regions of DNA nucleosides, such as 1, 2 or 3 DNA nucleosides. Mixmers are exemplified herein by every second design, wherein the nucleosides alternate between 1 LNA and 1 DNA nucleoside, e.g. LDLDLDLDLDLDLDLL, with 5′ and 3′ terminal LNA nucleosides, and every third design, such as LDDLDDLDDLDDLDDL, where every third nucleoside is a LNA nucleoside.


In one embodiment, the mixmer may comprise or consist of nucleosides that alternate between 1, 2 or 3 sequential DNA nucleosides, followed by 1 or 2 sequential LNA nucleosides.


A totalmer is an oligonucleotide or a contiguous nucleotide sequence thereof which does not comprise DNA or RNA nucleosides, and may for example comprise only 2′-O-MOE nucleosides, such as a fully MOE phosphorothioate, e.g. MMMMMMMMMMMMMMMMMMMM, where M=2′-O-MOE, or may for example comprise only 2′oMe nucleosides, which are reported to be effective for therapeutic use.


Alternatively, a mixmer may comprise a mixture of modified nucleosides, such as MLMLMLMLMLMLMLMLMLML, wherein L=LNA and M=2′-O-MOE nucleosides. Advantageously, the internucleoside nucleosides in mixmers and totalmers may be phosphorothioate, or a majority of nucleoside linkages in mixmers may be phosphorothioate.


Mixmers and totalmers may comprise other internucleoside linkages, such as phosphodiester or phosphorodithioate, by way of example.


In some embodiments, the antisense oligonucleotide splice modulator is or comprises an oligonucleotide mixmer or totalmer. In some embodiments, the contiguous nucleotide sequence is a mixmer or a totalmer.


Region D′ or D″ in an Oligonucleotide

The antisense oligonucleotide splice modulators of the invention may in some embodiments comprise the contiguous nucleotide sequences of the oligonucleotides which are complementary to the target nucleic acid, such as a mixmer or totalmer region, and further 5′ and/or 3′ nucleosides. The further 5′ and/or 3′ nucleosides may or may not be complementary, such as fully complementary, to the target nucleic acid. Such further 5′ and/or 3′ nucleosides may be referred to as region D′ and D″ herein.


The addition of region D′ or D″ may be used for the purpose of joining the contiguous nucleotide sequence, such as the mixmer or totalmer, to a conjugate moiety or another functional group. When used for joining the contiguous nucleotide sequence with a conjugate moiety is can serve as a biocleavable linker. Alternatively, it may be used to provide exonucleoase protection or for ease of synthesis or manufacture.


Region D′ or D″ may independently comprise or consist of 1, 2, 3, 4 or 5 additional nucleotides, which may be complementary or non-complementary to the target nucleic acid. The nucleotide adjacent to the F or F′ region is not a sugar-modified nucleotide, such as a DNA or RNA or base modified versions of these. The D′ or D′ region may serve as a nuclease susceptible biocleavable linker (see definition of linkers). In some embodiments the additional 5′ and/or 3′ end nucleotides are linked with phosphodiester linkages, and are DNA or RNA. Nucleotide based biocleavable linkers suitable for use as region D′ or D″ are disclosed in WO2014/076195, which include by way of example a phosphodiester linked DNA dinucleotide. The use of biocleavable linkers in poly-oligonucleotide constructs is disclosed in WO2015/113922, where they are used to link multiple antisense constructs within a single oligonucleotide.


In one embodiment the antisense oligonucleotide splice modulators of the invention may comprise a region D′ and/or D″ in addition to the contiguous nucleotide sequence, which may constitute a mixmer or a totalmer.


In some embodiments the internucleoside linkage positioned between region D′ or D″ and the mixmer or totalmer region may be a phosphodiester linkage.


Conjugates

The invention encompasses an antisense oligonucleotide splice modulator covalently attached to at least one conjugate moiety. In some embodiments this may be referred to as a conjugate of the invention.


In some embodiments, the invention provides an antisense oligonucleotide splice modulator covalently attached to at least one conjugate moiety.


The term “conjugate” as used herein refers to an antisense oligonucleotide splice modulator which is covalently linked to a non-nucleotide moiety (conjugate moiety or region C or third region). The conjugate moiety may be covalently linked to the antisense oligonucleotide splice modulator, optionally via a linker group, such as region D′ or D″.


Oligonucleotide conjugates and their synthesis has also been reported in comprehensive reviews by Manoharan in Antisense Drug Technology, Principles, Strategies, and Applications, S. T. Crooke, ed., Ch. 16, Marcel Dekker, Inc., 2001 and Manoharan, Antisense and Nucleic Acid Drug Development, 2002, 12, 103.


In some embodiments, the non-nucleotide moiety (conjugate moiety) is selected from the group consisting of carbohydrates (e.g. GalNAc), cell surface receptor ligands, drug substances, hormones, lipophilic substances, polymers, proteins, peptides, toxins (e.g. bacterial toxins), vitamins, viral proteins (e.g. capsids) or combinations thereof.


Linkers

A linkage or linker is a connection between two atoms that links one chemical group or segment of interest to another chemical group or segment of interest via one or more covalent bonds. Conjugate moieties can be attached to the antisense oligonucleotide splice modulator directly or through a linking moiety (e.g. linker or tether). Linkers serve to covalently connect a third region, e.g. a conjugate moiety (Region C), to a first region, e.g. an antisense oligonucleotide splice modulator or contiguous nucleotide sequence complementary to the target nucleic acid (region A).


In some embodiments of the invention, the conjugate or antisense oligonucleotide splice modulator of the invention may optionally comprise a linker region (second region or region B and/or region Y) which is positioned between the antisense oligonucleotide splice modulator or contiguous nucleotide sequence complementary to the target nucleic acid (region A or first region) and the conjugate moiety (region C or third region).


Region B refers to biocleavable linkers comprising or consisting of a physiologically labile bond that is cleavable under conditions normally encountered or analogous to those encountered within a mammalian body. Conditions under which physiologically labile linkers undergo chemical transformation (e.g., cleavage) include chemical conditions such as pH, temperature, oxidative or reductive conditions or agents, and salt concentration found in or analogous to those encountered in mammalian cells. Mammalian intracellular conditions also include the presence of enzymatic activity normally present in a mammalian cell such as from proteolytic enzymes or hydrolytic enzymes or nucleases. In one embodiment the biocleavable linker is susceptible to S1 nuclease cleavage. In some embodiments the nuclease susceptible linker comprises between 1 and 5 nucleosides, such as DNA nucleoside(s) comprising at least two consecutive phosphodiester linkages. Phosphodiester containing biocleavable linkers are described in more detail in WO 2014/076195.


Region Y refers to linkers that are not necessarily biocleavable but primarily serve to covalently connect a conjugate moiety (region C or third region), to an oligonucleotide (region A or first region). The region Y linkers may comprise a chain structure or an oligomer of repeating units such as ethylene glycol, amino acid units or amino alkyl groups. The antisense oligonucleotide splice modulator conjugates of the present invention can be constructed of the following regional elements A-C, A-B-C, A-B-Y-C, A-Y-B-C or A-Y-C. In some embodiments the linker (region Y) is an amino alkyl, such as a C2-C36 amino alkyl group, including, for example C6 to C12 amino alkyl groups. In some embodiments the linker (region Y) is a C6 amino alkyl group.


Salts

The term “salts” as used herein conforms to its generally known meaning, i.e. an ionic assembly of anions and cations.


In some embodiments, the antisense oligonucleotide splice modulator of the invention may be in the form of a pharmaceutically acceptable salt. Put another way, the invention provides for pharmaceutically acceptable salts of the antisense oligonucleotide splice modulator of the invention.


In some embodiments the pharmaceutically acceptable salt may be a sodium salt or a potassium salt.


The invention provides for a pharmaceutically acceptable sodium salt of the antisense oligonucleotide splice modulator of the invention.


The invention provides for a pharmaceutically acceptable potassium salt of the antisense oligonucleotide splice modulator of the invention.


Delivery of Antisense Oligonucleotide Splice Modulators

The invention provides for antisense oligonucleotide splice modulators of the invention wherein the antisense oligonucleotide splice modulators are encapsulated in a lipid-based delivery vehicle, covalently linked to or encapsulated in a dendrimer, or conjugated to an aptamer.


This may be for the purpose of delivering the antisense oligonucleotide splice modulators of the invention to the targeted cells and/or to improve the pharmacokinetics of the antisense oligonucleotide splice modulator.


Examples of lipid-based delivery vehicles include oil-in-water emulsions, micelles, liposomes, and lipid nanoparticles.


Pharmaceutical Compositions

The invention provides for a pharmaceutical composition comprising the antisense oligonucleotide splice modulator of the invention, and a pharmaceutically acceptable diluent, solvent, carrier, salt and/or adjuvant.


The invention provides for a pharmaceutical composition comprising the antisense oligonucleotide splice modulator of the invention, and a pharmaceutically acceptable salt.


For example, the salt may comprise a metal cation, such as a sodium salt or a potassium salt.


The invention provides for a pharmaceutical composition of the invention, wherein the pharmaceutical composition comprises an antisense oligonucleotide splice modulator of the invention, and an aqueous diluent or solvent.


The invention provides for a solution, such as a phosphate buffered saline solution of the antisense oligonucleotide splice modulator of the invention. In some embodiments, the solution, such as phosphate buffered saline solution, of the invention is a sterile solution.


Method for Increasing UNC13A Expression

The invention provides for a method for enhancing, upregulating or restoring the expression of wild-type UNC13A in a cell, such as a cell which is expressing UNC13A, said method comprising administering an antisense oligonucleotide splice modulator of the invention, or A pharmaceutical composition of the invention in an effective amount to said cell.


In some embodiments the method is an in vitro method.


In some embodiments the method is an in vivo method.


In some embodiments, the cell is an animal cell, preferably a mammalian cell such as a mouse cell, rat cell, hamster cell, or monkey cell, or preferably a human cell.


In some embodiments, the cell is a mammalian cell.


In some embodiments, the cell is a human cell.


In some embodiments the cell is part of, or derived from, a subject suffering from or susceptible to a disease associated with reduced expression of wild-type UNC13A. Such diseases include but are not limited amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Progressive supranuclear palsy (PSP), Primary lateral sclerosis, Progressive muscular atrophy, Alzheimer's disease, Parkinsons disease, Autism, Hippocampal sclerosis dementia, Down syndrome, Huntington's disease, polyglutamine diseases, such as spinocerebellar ataxia 3, myopathies and Chronic Traumatic Encephalopathy.


Treatment

The term “treatment” as used herein refers to both treatment of an existing disease (e.g. a disease or disorder as herein referred to), or prevention of a disease, i.e. prophylaxis. It will therefore be recognized that treatment, as referred to herein may in some embodiments be prophylactic.


The invention provides for a method for treating or preventing a disease, comprising administering a therapeutically or prophylactically effective amount of an antisense oligonucleotide splice modulator of the invention or a pharmaceutical composition of the invention to a subject suffering from or susceptible to a disease.


The disease may be associated with reduced expression of wild-type UNC13A.


In some embodiments, the invention provides for a method for treating or preventing a disease associated with reduced expression of wild-type UNC13A, comprising administering a therapeutically or prophylactically effective amount of an antisense oligonucleotide splice modulator of the invention or a pharmaceutical composition of the invention to a subject suffering from or susceptible to a disease associated with reduced expression of wild-type UNC13A.


In one embodiment, the disease is a neurological disorder.


In one embodiment the disease is selected from the group consisting of amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Progressive supranuclear palsy (PSP), Primary lateral sclerosis, Progressive muscular atrophy, Alzheimer's disease, Parkinsons disease, Autism, Hippocampal sclerosis dementia, Down syndrome, Huntington's disease, polyglutamine diseases, such as spinocerebellar ataxia 3, myopathies and Chronic Traumatic Encephalopathy.


In some embodiments, the subject is an animal, preferably a mammal such as a mouse, rat, hamster, or monkey, or human.


In some embodiments, the subject is a human.


The invention provides for an antisense oligonucleotide splice modulator of the invention for use as a medicament.


The invention provides for an antisense oligonucleotide splice modulator of the invention for the preparation of a medicament.


The invention provides for an antisense oligonucleotide splice modulator of the invention for use in therapy.


The invention provides for a pharmaceutical composition of the invention for use as a medicament.


The invention provides for a pharmaceutical composition of the invention for the preparation of a medicament.


The invention provides for a pharmaceutical composition of the invention for use in therapy.


The invention provides for an antisense oligonucleotide splice modulator of the invention for use as a medicament in the treatment of a neurological disorder.


The invention provides for an antisense oligonucleotide splice modulator of the invention for use as a medicament in the treatment of a disease selected from the group consisting of amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Progressive supranuclear palsy (PSP), Primary lateral sclerosis, Progressive muscular atrophy, Alzheimer's disease, Parkinsons disease, Autism, Hippocampal sclerosis dementia, Down syndrome, Huntington's disease, polyglutamine diseases, such as spinocerebellar ataxia 3, myopathies and Chronic Traumatic Encephalopathy.


The invention provides for the use of an antisense oligonucleotide splice modulator of the invention for the preparation of a medicament for the treatment or prevention of a neurological disorder.


The invention provides for the use of an antisense oligonucleotide splice modulator of the invention for the preparation of a medicament for the treatment or prevention of a disease selected from the group consisting of amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Progressive supranuclear palsy (PSP), Primary lateral sclerosis, Progressive muscular atrophy, Alzheimer's disease, Parkinsons disease, Autism, Hippocampal sclerosis dementia, Down syndrome, Huntington's disease, polyglutamine diseases, such as spinocerebellar ataxia 3, myopathies and Chronic Traumatic Encephalopathy.


The invention provides for a pharmaceutical composition of the invention for use as a medicament in the treatment of a neurological disorder.


The invention provides for a pharmaceutical composition of the invention for use as a medicament in the treatment of a disease selected from the group consisting of amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Progressive supranuclear palsy (PSP), Primary lateral sclerosis, Progressive muscular atrophy, Alzheimer's disease, Parkinsons disease, Autism, Hippocampal sclerosis dementia, Down syndrome, Huntington's disease, polyglutamine diseases, such as spinocerebellar ataxia 3, myopathies and Chronic Traumatic Encephalopathy.


The invention provides for the use of a pharmaceutical composition of the invention for the preparation of a medicament for the treatment or prevention of a neurological disorder.


The invention provides for the use of a pharmaceutical composition of the invention for the preparation of a medicament for the treatment or prevention of a disease selected from the group consisting of amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Progressive supranuclear palsy (PSP), Primary lateral sclerosis, Progressive muscular atrophy, Alzheimer's disease, Parkinsons disease, Autism, Hippocampal sclerosis dementia, Down syndrome, Huntington's disease, polyglutamine diseases, such as spinocerebellar ataxia 3, myopathies and Chronic Traumatic Encephalopathy.


Administration

The antisense oligonucleotide splice modulator of the invention or the pharmaceutical composition of the invention may be administered topically (such as, to the skin, inhalation, ophthalmic or otic) or enteral (such as, orally or through the gastrointestinal tract) or parenterally (such as, intravenous, subcutaneous, intra-muscular, intracerebral, intracerebroventricular or intrathecal).


In a preferred embodiment the antisense oligonucleotide splice modulator of the invention or pharmaceutical composition of the invention is administered by a parenteral route including intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion, intrathecal or intracranial, e.g., intracerebral or intraventricular, administration. In one embodiment the antisense oligonucleotide splice modulator of the invention is administered intracerebrally or intracerebroventricularly. In another embodiment the antisense oligonucleotide splice modulator of the invention is administered intrathecally.


The invention also provides for the use of the antisense oligonucleotide splice modulator of the invention or pharmaceutical composition of the invention as described for the preparation of a medicament wherein the medicament is in a dosage form for intrathecal administration.


The invention also provides for the use of the antisense oligonucleotide splice modulator of the invention or pharmaceutical composition of the invention as described for the preparation of a medicament wherein the medicament is in a dosage form for intracerebral or intraventricular administration.


The invention also provides for the use of the antisense oligonucleotide splice modulator of the invention or pharmaceutical composition of the invention as described for the preparation of a medicament wherein the medicament is in a dosage form for intracerebroventricular administration.


Combination Therapies

In some embodiments, the antisense oligonucleotide splice modulator of the invention or pharmaceutical composition of the invention is for use in a combination treatment with one or more other therapeutic agents.


EXAMPLES
Example 1: Identification of UNC13A as a Novel Target for TDP43 mRNA Splice Regulation

One hallmark feature of ALS disease is the presence of cytoplasmic aggregated TDP43 protein in a small fraction of the patient's neuronal cells. The consequence of cytoplasmic aggregation of TDP43 is that it becomes depleted in the cell nucleus, and hence can't perform its normal function here.


TDP43 has been shown to affect mRNA splicing. In order to identify new genes whose mRNAs are regulated by the presence of TDP43, we did a knockdown of TDP43 in a neuronal cell model. RNA sequencing was performed on the cells, and de novo transcript analysis was performed to identify affected genes with new splice patterns.


Human glutamatergic neurons (Fujifilms) were plated at 60,000 viable cells together with 10,000 viable Astrocytes (Fujifilms) in 96-well plates coated with Laminin and Poly(ethyleneimine) solution (Sigma Aldrich) in 200 μl culture medium (day-1).


To knockdown TDP-43, compound A (SEQ ID 553) was added to the culture medium at 5 UM on day 0, in other wells PBS was added instead as control. Half the cell culture medium was changed 3 times a week during the whole experiment (day 2, 5, 7, 10, 12, 14 & 17). The cells were harvested on day 20 using Magnapure lysis buffer (Roche) and RNA was isolation on MagNA pure 96 system (Roche) according to the manufacturer's instructions including DNase treatment step. NGS libraries was prepared from 100 ng of total RNA using the KAPA mRNA HyperPrep Kit Illumina® Platforms (Roche). Libraries were subjected to paired-end sequencing on a NovaSeq6000 sequencer (Illumina) with 150-bp read length. Data analysis was carried out using CLC Genomics Workbench 21. Data was first analyzed by running large gap mapping analysis using hg38 genome assembly, followed by transcript discovery. Predicted novel splice events were examined by manual visual inspection to identify real splice events.


The inclusion of a novel 128 (mutant transcript 1) or 178 (mutant transcript 2) base pair exon in UNC13A upon loss of TDP43 was discovered. The first and last base in the new exons is; mutant transcript 1: (17,642,541 and 17,642,414), mutant transcript 2 (17,642,591 and 17,642,414) according to the hg38 human gene annotation with the UNC13A being placed in the minus orientation. This results in the inclusion of a 128 bp or 178 bp exon, which in both cases results in a frameshift and a pre-mature stop codon that then would target the transcripts for nonsense mediated decay (NMD).


Example 2: Rescue of Erroneous UNC13A mRNA Splicing Caused by the Lack of TDP43 Using ASO

Here we show ASOs ability to induce proper splicing on the TDP43 target UNC13A.


Human glutamatergic neurons (Fujifilms) were plated at 60000 viable cells together with 10.000 viable Astrocytes (Fujifilms) per 96-well plates coated with Laminin and Poly(ethyleneimine) solution (Sigma Aldrich) in 200 ul Culture medium (day-1). To knockdown TDP-43, compound A (SEQ ID 553) was added to the culture medium at 5 uM on day 0 (Except for four control wells per plate). Half the cell culture medium was changed 3 times a week during the whole experiment (day 2, 5, 7, 9, 12, 14, 16, 19) . . . . The ASOs targeting the cryptic UNC13A exons were added to the culture medium on day 5 at 10 uM. 272 different ASOs were added in total (SEQ ID 280-551). 10 wells per plate received only the compound A (SEQ ID 553) to serve as a baseline reference. The experiments were run in duplicate.


The cells were harvested on day 20 using Magnapure lysis buffer (Roche) and RNA was isolated on MagNA pure 96 system (Roche) according to the manufacturer's instructions including DNase treatment step. The purified RNA was denatured 30 sek at 90 before cDNA synthesis. cDNA was created using the iScript Advanced cDNA Synthesis Kit for RT-qPCR (Biorad) according to the manufacturer's instructions.


Measurements of the expression levels of the target genes was done by droplet digital PCR using the QX1 system (Bio-Rad) together with the QX1 software stand edition. The pcr-probe assays used to measure the expressed of normally spliced target mRNA was designed to span the two exons, where in-between the new “mutant” exons would occur.


Data shown in Table 1 was normalized to the expression of the house keeping gene HPRT1, and finally normalized to the average expression value of the four control wells (PBS) that didn't receive any TDP43 knock-down or CA-repeat ASO.


The following PCR probe assay synthesized at (Integrated DNA technologies (IDT)) were used:









TARDBP:


Primer 1: CAGCTCATCCTCAGTCATGTC,





Primer 2: GATGGTGTGACTGCAAACTTC,





Probe:


/5Cy5/CAGCGCCCCACAAACACTTTTCT/3IAbRQSp/,





UNC13A wt (ex20-ex21):


Primer 1:


GATCAAAGGCGAGGAGAAGG ,





Primer 2:


TGGCATCTGGGATCTTCAC,





Probe:


/56-FAM/ACCTGTCTG/ZEN/CATGAGAACCTGTTCCACTTC/


3IABKFQ/






The following CY5.5 labelled HPRT1 probe was purchased from BioRad: dHsaCPE13136107.









TABLE 1







Production of TDP43 and UNC13A WT following exposure


to oligonucleotides. Data shown in Table 1 shows the


percentile of gene expression compared to control cells.


Data was normalized to the expression of the house keeping


gene HPRT1, and finally normalized to the average expression


value of the control wells (PBS) that didn't receive


any TDP43 knock-down. KD (“knockdown”, describes


wells that only received treatment with the gapmer ASO


that degrades the TDP43 mRNA)











Oligo SEQ ID NO
Norm UNC13A
Norm TDP43















PBS
90.5
105.0



PBS
88.6
104.8



PBS
87.8
104.6



PBS
102.8
98.8



PBS
111.1
101.2



PBS
92.1
98.9



PBS
86.7
97.0



PBS
88.3
96.7



PBS
131.4
105.9




96.8
95.6




100.8
89.5




123.0
109.3




122.4
100.7




91.5
92.2




3.5
4.7




4.6
4.3




4.2
3.2




3.0
6.5




7.6
7.3




4.9
4.3




8.0
3.7




8.5
4.7




7.4
7.9




3.0
6.1




3.3
3.6




3.3
2.8




3.8
4.8




6.6
7.2




6.2
4.2




5.0
6.9




7.0
6.5




4.9
8.0




7.3
5.5




7.1
3.8




6.8
7.4




4.5
7.5




3.5
9.2




5.9
7.6




2.3
7.1




3.8
5.8




4.6
3.5




8.0
8.0




6.1
7.3




4.2
4.1




5.2
4.0




5.1
2.8




4.6
7.1




7.5
5.2




5.2
9.2




3.6
6.2




7.2
5.8




4.1
5.2




6.3
5.7




6.0
10.7




7.7
6.3




7.5
9.8




3.0
9.3




6.3
8.9




3.4
4.3




4.7
6.6




4.6
6.4




9.4
8.1



KD
4.4
4.8



KD
6.4
9.0



KD
4.9
8.9



KD
6.6
8.8



KD
4.0
2.6



KD
6.2
8.2



KD
6.3
8.2



KD
7.1
8.0



KD
7.9
6.7



KD
19.0
6.5



KD
2.4
3.9



KD
5.8
7.9



KD
3.5
5.0



KD
4.6
5.1



KD
5.3
7.0



KD
6.8
3.5



KD
16.6
5.7



KD
4.0
5.6



KD
4.9
4.4



KD
2.6
2.4



KD
9.2
5.6



KD
6.6
5.8



KD
7.7
5.1



KD
5.9
5.5



SEQ ID NO: 280
0.0
6.6



SEQ ID NO: 281
1.0
8.4



SEQ ID NO: 282
1.0
7.3



SEQ ID NO: 283
2.8
16.2



SEQ ID NO: 284
1.0
11.4



SEQ ID NO: 285
1.5
9.1



SEQ ID NO: 286
1.3
10.2



SEQ ID NO: 287
0.7
4.6



SEQ ID NO: 288
0.4
7.5



SEQ ID NO: 289
4.5
14.8



SEQ ID NO: 290
0.0
9.7



SEQ ID NO: 291
1.0
6.8



SEQ ID NO: 292
1.8
8.3



SEQ ID NO: 293
13.1
18.9



SEQ ID NO: 294
1.0
3.4



SEQ ID NO: 295
0.8
6.5



SEQ ID NO: 296
0.5
7.6



SEQ ID NO: 297
1.0
2.5



SEQ ID NO: 298
1.2
4.3



SEQ ID NO: 299
2.4
4.4



SEQ ID NO: 300
0.9
7.7



SEQ ID NO: 301
1.0
4.1



SEQ ID NO: 302
0.9
4.3



SEQ ID NO: 303
0.0
2.5



SEQ ID NO: 304
1.5
4.9



SEQ ID NO: 305
0.7
3.3



SEQ ID NO: 306
0.9
4.2



SEQ ID NO: 307
0.2
3.3



SEQ ID NO: 308
1.8
4.6



SEQ ID NO: 309
1.4
4.7



SEQ ID NO: 310
3.8
5.4



SEQ ID NO: 311
2.6
6.0



SEQ ID NO: 312
2.3
3.1



SEQ ID NO: 313
3.3
11.1



SEQ ID NO: 314
15.9
5.7



SEQ ID NO: 315
0.9
4.0



SEQ ID NO: 316
1.6
2.7



SEQ ID NO: 317
1.1
5.2



SEQ ID NO: 318
1.5
4.8



SEQ ID NO: 319
2.3
6.1



SEQ ID NO: 320
2.5
6.2



SEQ ID NO: 321
1.3
7.2



SEQ ID NO: 322
0.0
10.7



SEQ ID NO: 323
0.8
4.4



SEQ ID NO: 324
2.2
6.0



SEQ ID NO: 325
0.0
6.2



SEQ ID NO: 326
0.4
4.5



SEQ ID NO: 327
0.8
7.8



SEQ ID NO: 328
0.4
4.4



SEQ ID NO: 329
0.3
6.7



SEQ ID NO: 330
1.9
6.0



SEQ ID NO: 331
6.3
5.6



SEQ ID NO: 332
3.7
4.6



SEQ ID NO: 333
3.7
5.2



SEQ ID NO: 334
33.1
5.0



SEQ ID NO: 335
2.4
4.8



SEQ ID NO: 336
21.0
9.9



SEQ ID NO: 337
7.8
8.3



SEQ ID NO: 338
72.0
5.2



SEQ ID NO: 339
3.0
4.5



SEQ ID NO: 340
46.8
4.4



SEQ ID NO: 341
20.3
5.1



SEQ ID NO: 342
65.6
4.6



SEQ ID NO: 343
2.2
5.8



SEQ ID NO: 344
96.5
4.0



SEQ ID NO: 345
117.2
4.2



SEQ ID NO: 346
133.3
4.4



SEQ ID NO: 347
10.4
9.3



SEQ ID NO: 348
101.3
3.2



SEQ ID NO: 349
19.8
1.7



SEQ ID NO: 350
11.6
9.4



SEQ ID NO: 351
1.9
4.8



SEQ ID NO: 352
5.4
7.6



SEQ ID NO: 353
1.2
3.2



SEQ ID NO: 354
2.0
5.0



SEQ ID NO: 355
1.2
5.1



SEQ ID NO: 356
2.5
5.5



SEQ ID NO: 357
2.4
5.4



SEQ ID NO: 358
2.5
3.5



SEQ ID NO: 359
2.3
3.1



SEQ ID NO: 360
1.1
6.6



SEQ ID NO: 361
5.9
3.3



SEQ ID NO: 362
3.2
7.4



SEQ ID NO: 363
1.1
3.7



SEQ ID NO: 364
2.1
4.7



SEQ ID NO: 365
2.1
7.1



SEQ ID NO: 366
4.3
4.0



SEQ ID NO: 367
20.8
5.4



SEQ ID NO: 368
1.2
5.9



SEQ ID NO: 369
2.4
13.1



SEQ ID NO: 370
1.7
5.9



SEQ ID NO: 371
1.7
4.7



SEQ ID NO: 372
4.4
14.5



SEQ ID NO: 373
1.6
10.2



SEQ ID NO: 374
0.6
8.1



SEQ ID NO: 375
3.0
6.7



SEQ ID NO: 376
1.3
10.9



SEQ ID NO: 377
0.8
10.7



SEQ ID NO: 378
8.4
8.7



SEQ ID NO: 379
2.2
5.0



SEQ ID NO: 380
3.5
6.3



SEQ ID NO: 381
1.5
7.7



SEQ ID NO: 382
1.1
4.4



SEQ ID NO: 383
4.2
6.4



SEQ ID NO: 384
33.8
5.3



SEQ ID NO: 385
1.4
6.8



SEQ ID NO: 386
32.2
8.9



SEQ ID NO: 387
49.4
5.1



SEQ ID NO: 388
19.7
4.9



SEQ ID NO: 389
31.6
4.2



SEQ ID NO: 390
16.4
5.5



SEQ ID NO: 391
1.7
5.4



SEQ ID NO: 392
22.8
10.1



SEQ ID NO: 393
21.0
4.4



SEQ ID NO: 394
86.2
6.4



SEQ ID NO: 395
27.6
5.9



SEQ ID NO: 396
17.1
6.9



SEQ ID NO: 397
81.6
6.3



SEQ ID NO: 398
92.6
4.3



SEQ ID NO: 399
131.9
4.6



SEQ ID NO: 400
183.2
6.0



SEQ ID NO: 401
60.7
6.5



SEQ ID NO: 402
76.0
5.2



SEQ ID NO: 403
136.9
4.4



SEQ ID NO: 404
28.1
6.8



SEQ ID NO: 405
53.7
4.7



SEQ ID NO: 406
119.8
2.4



SEQ ID NO: 407
144.9
6.4



SEQ ID NO: 408
60.8
2.9



SEQ ID NO: 409
116.7
5.7



SEQ ID NO: 410
64.7
5.0



SEQ ID NO: 411
74.4
3.3



SEQ ID NO: 412
189.4
5.2



SEQ ID NO: 413
145.7
5.3



SEQ ID NO: 414
163.4
4.5



SEQ ID NO: 415
82.2
6.1



SEQ ID NO: 416
10.1
5.1



SEQ ID NO: 417
26.1
5.1



SEQ ID NO: 418
87.5
6.0



SEQ ID NO: 419
0.5
5.0



SEQ ID NO: 420
6.6
5.1



SEQ ID NO: 421
10.4
6.0



SEQ ID NO: 422
28.6
7.6



SEQ ID NO: 423
57.3
7.3



SEQ ID NO: 424
69.5
4.6



SEQ ID NO: 425
35.8
4.6



SEQ ID NO: 426
73.0
3.7



SEQ ID NO: 427
58.3
3.5



SEQ ID NO: 428
80.0
5.7



SEQ ID NO: 429
12.2
9.0



SEQ ID NO: 430
13.7
3.0



SEQ ID NO: 431
28.0
2.0



SEQ ID NO: 432
22.9
3.0



SEQ ID NO: 433
17.3
3.8



SEQ ID NO: 434
83.9
4.8



SEQ ID NO: 435
66.7
3.8



SEQ ID NO: 436
26.2
4.8



SEQ ID NO: 437
16.5
2.7



SEQ ID NO: 438
8.3
4.8



SEQ ID NO: 439
2.8
3.3



SEQ ID NO: 440
13.9
3.1



SEQ ID NO: 441
16.1
8.9



SEQ ID NO: 442
11.8
5.9



SEQ ID NO: 443
2.9
2.6



SEQ ID NO: 444
11.9
7.0



SEQ ID NO: 445
27.4
9.8



SEQ ID NO: 446
10.6
8.1



SEQ ID NO: 447
16.7
3.4



SEQ ID NO: 448
26.7
7.3



SEQ ID NO: 449
21.2
8.0



SEQ ID NO: 450
33.2
14.2



SEQ ID NO: 451
40.7
16.9



SEQ ID NO: 452
20.2
10.6



SEQ ID NO: 453
19.0
13.5



SEQ ID NO: 454
22.8
8.1



SEQ ID NO: 455
38.5
7.8



SEQ ID NO: 456
27.5
8.5



SEQ ID NO: 457
14.1
4.8



SEQ ID NO: 458
20.7
5.6



SEQ ID NO: 459
37.4
5.2



SEQ ID NO: 460
15.7
4.9



SEQ ID NO: 461
36.6
2.7



SEQ ID NO: 462
14.2
8.2



SEQ ID NO: 463
22.2
3.0



SEQ ID NO: 464
32.6
3.8



SEQ ID NO: 465
41.9
3.3



SEQ ID NO: 466
23.2
6.7



SEQ ID NO: 467
21.6
4.8



SEQ ID NO: 468
12.3
8.1



SEQ ID NO: 469
1.8
4.3



SEQ ID NO: 470
8.3
5.3



SEQ ID NO: 471
6.3
2.8



SEQ ID NO: 472
12.4
3.5



SEQ ID NO: 473
4.4
3.3



SEQ ID NO: 474
9.0
5.9



SEQ ID NO: 475
5.5
4.5



SEQ ID NO: 476
5.4
4.0



SEQ ID NO: 477
13.4
4.1



SEQ ID NO: 478
17.8
3.6



SEQ ID NO: 479
6.6
4.0



SEQ ID NO: 480
18.3
2.0



SEQ ID NO: 481
15.1
2.8



SEQ ID NO: 482
9.0
4.3



SEQ ID NO: 483
8.6
4.2



SEQ ID NO: 484
21.5
5.4



SEQ ID NO: 485
3.9
4.2



SEQ ID NO: 486
32.3
3.6



SEQ ID NO: 487
13.8
6.3



SEQ ID NO: 488
8.5
3.4



SEQ ID NO: 489
11.4
3.2



SEQ ID NO: 490
12.8
6.6



SEQ ID NO: 491
12.2
6.4



SEQ ID NO: 492
5.8
4.5



SEQ ID NO: 493
11.6
6.1



SEQ ID NO: 494
8.2
3.9



SEQ ID NO: 495
13.5
5.3



SEQ ID NO: 496
9.7
5.5



SEQ ID NO: 497
13.8
3.8



SEQ ID NO: 498
18.2
5.9



SEQ ID NO: 499
2.3
6.4



SEQ ID NO: 500
7.5
4.5



SEQ ID NO: 501
2.3
3.7



SEQ ID NO: 502
1.3
2.0



SEQ ID NO: 503
2.5
4.9



SEQ ID NO: 504
0.8
5.5



SEQ ID NO: 505
5.5
2.4



SEQ ID NO: 506
0.7
2.3



SEQ ID NO: 507
5.6
3.1



SEQ ID NO: 508
2.3
2.1



SEQ ID NO: 509
2.3
4.2



SEQ ID NO: 510
2.5
3.5



SEQ ID NO: 511
4.0
4.7



SEQ ID NO: 512
6.9
6.8



SEQ ID NO: 513
4.5
2.4



SEQ ID NO: 514
6.8
4.2



SEQ ID NO: 515
25.3
10.1



SEQ ID NO: 516
22.8
6.2



SEQ ID NO: 517
19.2
6.0



SEQ ID NO: 518
15.2
6.3



SEQ ID NO: 519
32.3
7.6



SEQ ID NO: 520
25.9
8.9



SEQ ID NO: 521
22.2
4.8



SEQ ID NO: 522
23.7
6.8



SEQ ID NO: 523
29.7
9.6



SEQ ID NO: 524
34.9
16.7



SEQ ID NO: 525
24.6
5.6



SEQ ID NO: 526
48.8
10.4



SEQ ID NO: 527
24.0
9.6



SEQ ID NO: 528
26.7
9.0



SEQ ID NO: 529
10.4
7.9



SEQ ID NO: 530
36.6
10.1



SEQ ID NO: 531
25.1
13.0



SEQ ID NO: 532
11.0
6.3



SEQ ID NO: 533
20.2
6.2



SEQ ID NO: 534
14.0
5.7



SEQ ID NO: 535
23.0
9.2



SEQ ID NO: 536
21.0
7.1



SEQ ID NO: 537
13.0
8.9



SEQ ID NO: 538
8.7
4.8



SEQ ID NO: 539
25.8
8.6



SEQ ID NO: 540
14.8
6.1



SEQ ID NO: 541
13.2
5.7



SEQ ID NO: 542
8.5
4.3



SEQ ID NO: 543
14.5
5.3



SEQ ID NO: 544
17.1
6.0



SEQ ID NO: 545
117.2
3.0



SEQ ID NO: 546
1.5
4.2



SEQ ID NO: 547
7.3
6.7



SEQ ID NO: 548
95.8
2.2



SEQ ID NO: 549
138.4
6.7



SEQ ID NO: 550
34.9
6.0



SEQ ID NO: 551
98.8
5.9

















TABLE 2







COMPOUND TABLE











Natural
Oligo


Target


analog
SEQ ID

Target
SEQ


sequence
NO
HELM
sequence
ID NO





5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[P].[LR](T)[s
TGGATGG
SEQ ID NO:


CATCTGT
NO: 280
P].[dR](C)[sP].[dR](T)[sP].[LR](G)[sP].[dR](T)
ATGGACA
8


CCATCCA

[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](
GATG



TCCA-3′

T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[d






R](T)[sP].[dR](C)[sP].[LR]([5meC])[sP].[LR](A






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR
ATGGATG
SEQ ID NO:


ATCTGTC
NO: 281
](T)[sP].[LR](G)[sP].[dR](T)[sP].[dR](C)[sP].[d
GATGGAC
9


CATCCAT

R](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].
AGAT



CCAT-3′

[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[s






P].[dR](C)[sP].[LR](A)[sP].[LR](T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR
GATGGAT
SEQ ID NO:


TCTGTCC
NO: 282
](G)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[
GGATGGA
10


ATCCATC

LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP
CAGA



CATC-3′

].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[LR]([5m






eC])[sP].[dR](A)[sP].[LR](T)[sP].[LR]([5meC])






}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](T)[sP].[LR](G)[s
TGATGGA
SEQ ID NO:


CTGTCCA
NO: 283
P].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)
TGGATGG
11


TCCATCC

[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](
ACAG



ATCA-3′

A)[P].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[L






R](A)[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR](A






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](G)[sP].[LR](T)[sP].[dR
ATGATGG
SEQ ID NO:


TGTCCAT
NO: 284
](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[d
ATGGATG
12


CCATCCA

R](C)[sP].[dR](C)[sP].[LR](A)[P].[dR](T)[sP].
GACA



TCAT-3′

[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[s






P].[dR](C)[sP].[LR](A)[sP].[LR](T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[L
GGATGAT
SEQ ID NO:


TCCATCC
NO: 285
R](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].
GGATGGA
13


ATCCATC

[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[s
TGGA



ATCC-3′

P].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)






[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR]([5meC






])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[LR](A)[s
TGGATGA
SEQ ID NO:


CCATCCA
NO: 286
P].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)
TGGATGG
14


TCCATCA

[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](
ATGG



TCCA-3′

A)[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR






](T)[sP].[dR](C)[sP].[LR]([5meC])[sP].[LR](A)}






$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[LR](T)[s
ATGGATG
SEQ ID NO:


CATCCAT
NO: 287
P].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)
ATGGATG
15


CCATCAT

[sP].[dR](C)[sP].[dR](C)[P].[LR](A)[sP].[dR](
GATG



CCAT-3′

T)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR






](C)[sP].[dR](C)[sP].[LR](A)[sP].[LR](T)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[L
AGATGGA
SEQ ID NO:


TCCATCC
NO: 288
R](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].
TGATGGA
16


ATCATCC

[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)[s
TGGA



ATCT-3′

P].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)






[sP].[dR](T)[sP].[LR]([5meC])[P].[LR](T)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[LR](A)[s
TAGATGG
SEQ ID NO:


CCATCCA
NO: 289
P].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)
ATGATGG
17


TCATCCA

[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR](
ATGG



TCTA-3′

T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[d






R](T)[sP].[dR](C)[sP].[LR](T)[sP].[LR](A)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[LR](T)[s
CTAGATG
SEQ ID NO:


CATCCAT
NO: 290
P].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)
GATGATG
18


CATCCAT

[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](
GATG



CTAG-3′

C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[d






R](C)[sP].[dR](T)[P].[LR](A)[sP].[LR](G)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR
GCTAGAT
SEQ ID NO:


ATCCATC
NO: 291
](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[d
GGATGAT
19


ATCCATC

R](A)[sP].[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].
GGAT



TAGC-3′

[dR](A)[sP].[LR](T)[sP].[dR](C)[sP].[dR](T)[sP






].[dR](A)[sP].[LR](G)[sP].[LR]([5meC])}$$$$V






2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[L
GGCTAGA
SEQ ID NO:


TCCATCA
NO: 292
R](A)[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)[sP].
TGGATGA
20


TCCATCT

[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[s
TGGA



AGCC-3′

P].[dR](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR](A)






[sP].[dR](G)[sP].[LR]([5meC])[sP].[LR]([5me






C])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[LR](A)[s
TGGCTAG
SEQ ID NO:


CCATCAT
NO: 293
P].[dR](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)
ATGGATG
21


CCATCTA

[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](
ATGG



GCCA-3′

T)[sP].[dR](C)[sP].[dR](T)[sP].[LR](A)[sP].[dR






](G)[sP].[dR](C)[sP].[LR]([5meC])[sP].[LR](A)






}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[dR](T)[s
GTGGCTA
SEQ ID NO:


CATCATC
NO: 294
P].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)
GATGGAT
22


CATCTAG

[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](
GATG



CCAC-3′

C)[sP].[dR](T)[sP].[LR](A)[sP].[dR](G)[sP].[d






R](C)[sP].[dR](C)[sP].[LR](A)[sP].[LR]([5meC






])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[LR
CGTGGCT
SEQ ID NO:


ATCATCC
NO: 295
](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[L
AGATGGA
23


ATCTAGC

R](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](T)[sP].[
TGAT



CACG-3′

LR](A)[sP].[dR](G)[sP].[dR](C)[sP].[dR](C)[sP






].[LR](A)[sP].[LR]([5meC])[sP].[LR](G)}$$$$V






2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR
TCGTGGC
SEQ ID NO:


TCATCCA
NO: 296
](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[d
TAGATGG
24


TCTAGCC

R](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR](A)[sP].[
ATGA



ACGA-3′

dR](G)[sP].[dR](C)[sP].[dR](C)[P].[LR](A)[sP






].[dR](C)[sP].[LR](G)[sP].[LR](A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[LR](T)[s
TTCGTGG
SEQ ID NO:


CATCCAT
NO: 297
P].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)
CTAGATG
25


CTAGCCA

[sP].[dR](C)[sP].[dR](T)[sP].[LR](A)[sP].[dR](
GATG



CGAA-3′

G)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[d






R]([5meC])[sP].[dR](G)[sP].[LR](A)[sP].[LR](






A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR
ATTCGTG
SEQ ID NO:


ATCCATC
NO: 298
](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[d
GCTAGAT
26


TAGCCAC

R](T)[sP].[LR](A)[sP].[dR](G)[sP].[dR](C)[sP].
GGAT



GAAT-3′

[dR](C)[sP].[LR](A)[sP].[dR]([5meC])[sP].[dR]






(G)[sP].[dR](A)[sP].[LR](A)[sP].[LR](T)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[P].[dR](C)[sP].[L
GATTCGT
SEQ ID NO:


TCCATCT
NO: 299
R](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](T)[sP].[
GGCTAGA
27


AGCCACG

LR](A)[sP].[dR](G)[sP].[dR](C)[sP].[dR](C)[sP
TGGA



AATC-3′

].[LR](A)[sP].[dR](C)[sP].[LR](G)[sP].[dR](A)[






sP].[dR](A)[sP].[LR](T)[sP].[LR]([5meC])}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[LR](A)[s
AGATTCG
SEQ ID NO:


CCATCTA
NO: 300
P].[dR](T)[sP].[dR](C)[P].[dR](T)[sP].[LR](A)
TGGCTAG
28


GCCACGA

[sP].[dR](G)[sP].[dR](C)[sP].[dR](C)[sP].[LR](
ATGG



ATCT-3′

A)[sP].[dR](C)[sP].[LR](G)[sP].[dR](A)[sP].[d






R](A)[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR](T






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[P].[dR](A)[sP].[LR](T)[s
TAGATTC
SEQ ID NO:


CATCTAG
NO: 301
P].[dR](C)[sP].[dR](T)[sP].[LR](A)[sP].[dR](G)
GTGGCTA
29


CCACGAA

[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR]([
GATG



TCTA-3′

5meC])[sP].[dR](G)[sP].[dR](A)[P].[LR](A)[s






P].[dR](T)[sP].[dR](C)[sP].[LR](T)[sP].[LR](A)






}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR
GTAGATT
SEQ ID NO:


ATCTAGC
NO: 302
](T)[sP].[LR](A)[sP].[dR](G)[sP].[dR](C)[sP].[L
CGTGGCT
30


CACGAAT

R]([5meC])[sP].[dR](A)[sP].[LR]([5meC])[sP].[
AGAT



CTAC-3′

dR](G)[sP].[dR](A)[sP].[LR](A)[sP].[dR](T)[sP






].[dR](C)[sP].[dR](T)[sP].[LR](A)[sP].[LR]([5m






eC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](T)[sP].[LR](A)[s
GGGTAGA
SEQ ID NO:


CTAGCCA
NO: 303
P].[dR](G)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A
TTCGTGG
31


CGAATCT

)[sP].[dR]([5meC])[sP].[dR](G)[sP].[dR](A)[sP
CTAG



ACCC-3′

].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](T)[s






P].[LR](A)[sP].[dR](C)[sP].[LR]([5meC])[sP].[






LR]([5meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](A)[sP].[dR](G)[sP].[d
TGGGTAG
SEQ ID NO:


TAGCCAC
NO: 304
R](C)[sP].[LR]([5meC])[sP].[dR](A)[sP].[dR](
ATTCGTG
32


GAATCTA

C)[sP].[LR](G)[sP].[dR](A)[P].[LR](A)[sP].[d
GCTA



CCCA-3′

R](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR](A)[sP].[






dR](C)[sP].[dR](C)[sP].[LR]([5meC])[sP].[LR](






A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](G)[sP].[dR](C)[sP].[d
GTGGGTA
SEQ ID NO:


AGCCACG
NO: 305
R](C)[sP].[LR](A)[sP].[dR]([5meC])[sP].[dR](
GATTCGT
33


AATCTAC

G)[sP].[dR](A)[sP].[LR](A)[sP].[dR](T)[sP].[d
GGCT



CCAC-3′

R](C)[sP].[dR](T)[sP].[LR](A)[sP].[dR](C)[sP].






[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[LR]([5me






C])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](C)[sP].[dR](C)[sP].[L
GGTGGGT
SEQ ID NO:


GCCACGA
NO: 306
R](A)[sP].[dR]([5meC])[sP].[dR](G)[sP].[dR](
AGATTCG
34


ATCTACC

A)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR
TGGC



CACC-3′

](T)[sP].[LR](A)[sP].[dR](C)[sP].[dR](C)[sP].[d






R](C)[sP].[LR](A)[sP].[LR]([5meC])[sP].[LR]([






5meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[LR](A)[s
TGGTGGG
SEQ ID NO:


CCACGAA
NO: 307
P].[dR]([5meC])[sP].[dR](G)[sP].[dR](A)[sP].[
TAGATTC
35


TCTACCC

LR](A)[P].[dR](T)[sP].[dR](C)[sP].[dR](T)[sP]
GTGG



ACCA-3′

[LR](A)[sP].[dR](C)[sP].[dR](C)[sP].[dR](C)[s






P].[LR](A)[sP].[dR](C)[P].[LR]([5meC])[sP].[






LR](A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[dR](C)[s
TTGGTGG
SEQ ID NO:


CACGAAT
NO: 308
P].[LR](G)[P].[dR](A)[sP].[LR](A)[sP].[dR](T)
GTAGATT
36


CTACCCA

[sP].[dR](C)[sP].[dR](T)[sP].[LR](A)[sP].[dR](
CGTG



CCAA-3′

C)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[d






R](C)[sP].[dR](C)[sP].[LR](A)[sP].[LR](A)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR]([5meC])[sP].[dR](G)[s
GTTGGTG
SEQ ID NO:


ACGAATC
NO: 309
P].[dR](A)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)
GGTAGAT
37


TACCCAC

[sP].[dR](T)[sP].[LR](A)[sP].[dR](C)[sP].[dR](
TCGT



CAAC-3′

C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](C)[sP].[d






R](C)[sP].[dR](A)[sP].[LR](A)[sP].[LR]([5meC






])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](A)[sP].[LR](T)[sP].[dR
TGAGTTG
SEQ ID NO:


AATCTAC
NO: 310
](C)[sP].[dR](T)[sP].[LR](A)[sP].[dR](C)[sP].[d
GTGGGTA
38


CCACCAA

R](C)[sP].[dR](C)[P].[LR](A)[sP].[dR](C)[sP].
GATT



CTCA-3′

[dR](C)[sP].[LR](A)[P].[dR](A)[sP].[dR](C)[s






P].[dR](T)[sP].[LR]([5meC])[sP].[LR](A)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR
ATGAGTT
SEQ ID NO:


ATCTACC
NO: 311
](T)[sP].[LR](A)[sP].[dR](C)[sP].[dR](C)[sP].[d
GGTGGGT
39


CACCAAC

R](C)[P].[LR](A)[sP].[dR](C)[sP].[dR](C)[sP].
AGAT



TCAT-3′

[dR](A)[sP].[LR](A)[sP].[dR](C)[sP].[dR](T)[s






P].[dR](C)[sP].[LR](A)[sP].[LR](T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR
GATGAGT
SEQ ID NO:


TCTACCC
NO: 312
](A)[sP].[dR](C)[sP].[dR](C)[sP].[dR](C)[P].[
TGGTGGG
40


ACCAACT

LR](A)[sP].[dR](C)[P].[dR](C)[sP].[LR](A)[sP
TAGA



CATC-3′

].[dR](A)[sP].[dR](C)[sP].[LR](T)[sP].[dR](C)[s






P].[dR](A)[sP].[LR](T)[sP].[LR]([5meC])}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](T)[sP].[LR](A)[s
GGATGAG
SEQ ID NO:


CTACCCA
NO: 313
P].[dR](C)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)
TTGGTGG
41


CCAACTC

[sP].[dR](C)[sP].[dR](C)[sP].[dR](A)[sP].[LR](
GTAG



ATCC-3′

A)[sP].[dR](C)[sP].[dR](T)[sP].[dR](C)[sP].[L






R](A)[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR]([






5meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](A)[sP].[dR](C)[sP].[dR
TGGATGA
SEQ ID NO:


TACCCAC
NO: 314
](C)[sP].[LR]([5meC])[sP].[dR](A)[sP].[dR](C)[
GTTGGTG
42


CAACTCA

sP].[dR](C)[sP].[LR](A)[sP].[dR](A)[sP].[dR](
GGTA



TCCA-3′

C)[sP].[LR](T)[sP].[dR](C)[P].[LR](A)[sP].[d






R](T)[sP].[dR](C)[sP].[LR]([5meC])[sP].[LR](A






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](C)[sP].[dR](C)[sP].[d
ATGGATG
SEQ ID NO:


ACCCACC
NO: 315
R](C)[sP].[LR](A)[sP].[dR](C)[sP].[dR](C)[sP].
AGTTGGT
43


AACTCAT

[dR](A)[sP].[LR](A)[sP].[dR](C)[sP].[dR](T)[s
GGGT



CCAT-3′

P].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)






[sP].[dR](C)[sP].[LR](A)[sP].[LR](T)}$$$$V2.






0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[dR](C)[s
GATGGAT
SEQ ID NO:


CCCACCA
NO: 316
P].[LR](A)[sP].[dR](C)[sP].[dR](C)[sP].[dR](A)
GAGTTGG
44


ACTCATC

[sP].[LR](A)[sP].[dR](C)[sP].[dR](T)[sP].[dR](
TGGG



CATC-3′

C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[L






R]([5meC])[sP].[dR](A)[sP].[LR](T)[sP].[LR]([






5meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[LR](A)[s
AGATGGA
SEQ ID NO:


CCACCAA
NO: 317
P].[dR](C)[sP].[dR](C)[sP].[dR](A)[sP].[LR](A)
TGAGTTG
45


CTCATCC

[sP].[dR](C)[sP].[dR](T)[sP].[dR](C)[sP].[LR](
GTGG



ATCT-3′

A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[L






R](A)[sP].[dR](T)[sP].[LR]([5meC])[P].[LR](T






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[dR](C)[s
TAGATGG
SEQ ID NO:


CACCAAC
NO: 318
P].[dR](C)[sP].[LR](A)[sP].[dR](A)[sP].[dR](C)
ATGAGTT
46


TCATCCA

[sP].[LR](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR](
GGTG



TCTA-3′

T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[d






R](T)[sP].[dR](C)[sP].[LR](T)[sP].[LR](A)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](C)[sP].[LR]([5meC])[s
ATAGATG
SEQ ID NO:


ACCAACT
NO: 319
P].[dR](A)[sP].[LR](A)[sP].[dR](C)[sP].[dR](T)
GATGAGT
47


CATCCAT

[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](
TGGT



CTAT-3′

C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[d






R](C)[sP].[dR](T)[sP].[LR](A)[sP].[LR](T)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[P].[dR](C)[sP].[dR](A)[s
GATAGAT
SEQ ID NO:


CCAACTC
NO: 320
P].[LR](A)[sP].[dR](C)[sP].[dR](T)[sP].[dR](C)
GGATGAG
48


ATCCATC

[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](
TTGG



TATC-3′

C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[d






R](T)[sP].[LR](A)[sP].[LR](T)[sP].[LR]([5meC]






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[LR](A)[s
GGATAGA
SEQ ID NO:


CAACTCA
NO: 321
P].[dR](C)[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)
TGGATGA
49


TCCATCT

[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](
GTTG



ATCC-3′

A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR






](A)[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR]([5






meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](A)[sP].[dR](C)[sP].[L
TGGATAG
SEQ ID NO:


AACTCAT
NO: 322
R](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[
ATGGATG
50


CCATCTA

dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP
AGTT



TCCA-3′

].[dR](C)[sP].[dR](T)[sP].[LR](A)[sP].[dR](T)[s






P].[dR](C)[sP].[LR]([5meC])[sP].[LR](A)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](C)[sP].[dR](T)[sP].[dR
ATGGATA
SEQ ID NO:


ACTCATC
NO: 323
](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[d
GATGGAT
51


CATCTAT

R](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].
GAGT



CCAT-3′

[dR](T)[P].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP






].[dR](C)[sP].[LR](A)[sP].[LR](T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](T)[sP].[dR](C)[s
GATGGAT
SEQ ID NO:


CTCATCC
NO: 324
P].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)
AGATGGA
52


ATCTATC

[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](
TGAG



CATC-3′

T)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[LR






]([5meC])[sP].[dR](A)[sP].[LR](T)[sP].[LR]([5






meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR
GGATGGA
SEQ ID NO:


TCATCCA
NO: 325
](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[d
TAGATGG
53


TCTATCC

R](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR](A)[sP].[
ATGA



ATCC-3′

dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP






].[dR](T)[sP].[LR]([5meC])[sP].[LR]([5meC])}$






$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[LR](T)[s
TGGATGG
SEQ ID NO:


CATCCAT
NO: 326
P].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)
ATAGATG
54


CTATCCA

[sP].[dR](C)[sP].[dR](T)[sP].[LR](A)[sP].[dR](
GATG



TCCA-3′

T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[d






R](T)[sP].[dR](C)[sP].[LR]([5meC])[sP].[LR](A






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR
ATGGATG
SEQ ID NO:


ATCCATC
NO: 327
](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[d
GATAGAT
55


TATCCAT

R](T)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[
GGAT



CCAT-3′

dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP






].[dR](C)[aP].[LR](A)[sP].[LR](T)$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[L
CATGGAT
SEQ ID NO:


TCCATCT
NO: 328
R](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](T)[sP].[
GGATAGA
56


ATCCATC

LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP
TGGA



CATG-3′

].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[LR]([5m






eC])[sP].[dR](A)[sP].[LR](T)[sP].[LR](G)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[LR](A)[s
ACATGGA
SEQ ID NO:


CCATCTA
NO: 329
P].[dR](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR](A)
TGGATAG
57


TCCATCC

[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](
ATGG



ATGT-3′

A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[L






R](A)[sP].[dR](T)[sP].[LR](G)[sP].[LR](T)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[LR](T)[s
TACATGG
SEQ ID NO:


CATCTAT
NO: 330
P].[dR](C)[sP].[dR](T)[sP].[LR](A)[sP].[dR](T)
ATGGATA
58


CCATCCA

[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](
GATG



TGTA-3′

T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[d






R](T)[sP].[dR](G)[sP].[LR](T)[sP].[LR](A)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[LR]([5meC])[s
GTACATG
SEQ ID NO:


ATCTATC
NO: 331
P].[dR](T)[sP].[dR](A)[sP].[LR](T)[sP].[dR](C)
GATGGAT
59


CATCCAT

[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](
AGAT



GTAC-3′

C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[d






R](G)[sP].[dR](T)[sP].[LR](A)[sP].[LR]([5meC






])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR
AGTACAT
SEQ ID NO:


TCTATCC
NO: 332
](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[L
GGATGGA
60


ATCCATG

R](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].
TAGA



TACT-3′

[LR](A)[sP].[dR](T)[sP].[LR](G)[sP].[dR](T)[s






P].[dR](A)[sP].[LR]([5meC])[P].[LR](T)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](T)[sP].[LR](A)[s
GAGTACA
SEQ ID NO:


CTATCCA
NO: 333
P].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)
TGGATGG
61


TCCATGT

[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](
ATAG



ACTC-3′

A)[sP].[dR](T)[sP].[dR](G)[sP].[dR](T)[sP].[LR






](A)[sP].[dR](C)[sP].[LR](T)[sP].[LR]([5meC])}






$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[P].[dR](A)[sP].[LR](T)[sP].[dR
TGAGTAC
SEQ ID NO:


TATCCAT
NO: 334
](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[d
ATGGATG
62


CCATGTA

R](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].
GATA



CTCA-3′

[dR](G)[sP].[dR](T)[sP].[LR](A)[sP].[dR](C)[s






P].[dR](T)[sP].[LR]([5meC])[sP].[LR](A)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR
GTGAGTA
SEQ ID NO:


ATCCATC
NO: 335
](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[d
CATGGAT
63


CATGTAC

R](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](G)[sP].
GGAT



TCAC-3′

[dR](T)[sP].[LR](A)[sP].[dR](C)[sP].[dR](T)[sP






].[dR](C)[sP].[LR](A)[sP].[LR]([5meC])}$$$$V






2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[L
GGTGAGT
SEQ ID NO:


TCCATCC
NO: 336
R](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].
ACATGGA
64


ATGTACT

[LR](A)[sP].[dR](T)[sP].[dR](G)[sP].[dR](T)[s
TGGA



CACC-3′

P].[LR](A)[sP].[dR](C)[sP].[dR](T)[sP].[dR](C)






[sP].[LR](A)[sP].[LR]([5meC])[sP].[LR]([5meC






])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[LR](A)[s
GGGTGAG
SEQ ID NO:


CCATCCA
NO: 337
P].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)
TACATGG
65


TGTACTC

[sP].[dR](T)[sP].[dR](G)[sP].[dR](T)[sP].[LR](
ATGG



ACCC-3′

A)[sP].[dR](C)[sP].[dR](T)[sP].[dR](C)[sP].[L






R](A)[sP].[dR](C)[sP].[LR]([5meC])[sP].[LR]([






5meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[LR](T)[s
TGGGTGA
SEQ ID NO:


CATCCAT
NO: 338
P].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)
GTACATG
66


GTACTCA

[sP].[dR](G)[sP].[dR](T)[sP].[LR](A)[sP].[dR](
GATG



CCCA-3′

C)[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)[sP].[d






R](C)[sP].[dR](C)[sP].[LR]([5meC])[sP].[LR](






A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR
ATGGGTG
SEQ ID NO:


ATCCATG
NO: 339
](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](G)[sP].[d
AGTACAT
67


TACTCAC

R](T)[sP].[LR](A)[sP].[dR](C)[sP].[dR](T)[sP].[
GGAT



CCAT-3′

dR](C)[sP].[LR](A)[sP].[dR](C)[sP].[dR](C)[sP






].[dR](C)[sP].[LR](A)[sP].[LR](T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[L
GATGGGT
SEQ ID NO:


TCCATGT
NO: 340
R](A)[sP].[dR](T)[sP].[dR](G)[sP].[dR](T)[sP].
GAGTACA
68


ACTCACC

[LR](A)[sP].[dR](C)[sP].[dR](T)[sP].[dR](C)[s
TGGA



CATC-3′

P].[LR](A)[sP].[dR](C)[sP].[dR](C)[sP].[LR]([5






meC])[sP].[dR](A)[sP].[LR](T)[sP].[LR]([5me






C])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[LR](A)[s
AGATGGG
SEQ ID NO:


CCATGTA
NO: 341
P].[dR](T)[sP].[dR](G)[sP].[dR](T)[sP].[LR](A)
TGAGTAC
69


CTCACCC

[sP].[dR](C)[sP].[dR](T)[sP].[dR](C)[sP].[LR](
ATGG



ATCT-3′

A)[sP].[dR](C)[sP].[dR](C)[sP].[dR](C)[sP].[L






R](A)[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR](T






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[dR](T)[s
GAGATGG
SEQ ID NO:


CATGTAC
NO: 342
P].[LR](G)[sP].[dR](T)[sP].[LR](A)[P].[dR](C)
GTGAGTA
70


TCACCCA

[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR](
CATG



TCTC-3′

C)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[d






R](T)[sP].[dR](C)[sP].[LR](T)[sP].[LR]([5meC]






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](G)[sP].[d
AGAGATG
SEQ ID NO:


ATGTACT
NO: 343
R](T)[sP].[LR](A)[sP].[dR](C)[sP].[dR](T)[sP].[
GGTGAGT
71


CACCCAT

dR](C)[sP].[LR](A)[sP].[dR](C)[sP].[dR](C)[sP
ACAT



CTCT-3′

].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[s






P].[dR](T)[sP].[LR]([5meC])[sP].[LR](T)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](G)[sP].[dR](T)[sP].[LR
GAGAGAT
SEQ ID NO:


TGTACTC
NO: 344
](A)[sP].[dR](C)[sP].[dR](T)[sP].[dR](C)[sP].[L
GGGTGAG
72


ACCCATC

R](A)[sP].[dR](C)[sP].[dR](C)[sP].[dR](C)[sP].
TACA



TCTC-3′

[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[LR](T)[sP






].[dR](C)[sP].[LR](T)[sP].[LR]([5meC])}$$$$V






2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](T)[sP].[LR](A)[sP].[d
GGAGAGA
SEQ ID NO:


GTACTCA
NO: 345
R](C)[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)[sP].
TGGGTGA
73


CCCATCT

[dR](C)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[s
GTAC



CTCC-3′

P].[dR](T)[sP].[dR](C)[sP].[LR](T)[sP].[dR](C)






[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR]([5meC






])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](A)[sP].[dR](C)[sP].[LR
TGGAGAG
SEQ ID NO:


TACTCAC
NO: 346
](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR](C)[sP].[d
ATGGGTG
74


CCATCTC

R](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].
AGTA



TCCA-3′

[dR](C)[sP].[LR](T)[sP].[dR](C)[sP].[dR](T)[s






P].[dR](C)[sP].[LR]([5meC])[sP].[LR](A)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](C)[sP].[dR](T)[sP].[dR
ATGGAGA
SEQ ID NO:


ACTCACC
NO: 347
](C)[sP].[LR](A)[sP].[dR](C)[sP].[dR](C)[sP].[
GATGGGT
75


CATCTCT

dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP
GAGT



CCAT-3′

].[dR](T)[sP].[LR]([5meC])[sP].[dR](T)[sP].[dR






](C)[sP].[dR](C)[sP].[LR](A)[sP].[LR](T)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](T)[sP].[dR](C)[s
GATGGAG
SEQ ID NO:


CTCACCC
NO: 348
P].[LR](A)[sP].[dR](C)[sP].[dR](C)[sP].[dR](C)
AGATGGG
76


ATCTCTC

[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[LR](
TGAG



CATC-3′

T)[sP].[dR](C)[sP].[dR](T)[sP].[dR](C)[sP].[LR






]([5meC])[sP].[dR](A)[sP].[LR](T)[sP].[LR]([5






meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[dR](C)[s
TGGATGG
SEQ ID NO:


CACCCAT
NO: 349
P].[dR](C)[sP].[LR]([5meC])[sP].[dR](A)[sP].[
AGAGATG
77


CTCTCCA

LR](T)[sP].[dR](C)[sP].[dR](T)[sP].[dR](C)[sP
GGTG



TCCA-3′

].[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[s






P].[dR](T)[sP].[dR](C)[sP].[LR]([5meC])[sP].[






LR](A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](C)[sP].[dR](C)[sP].[d
ATGGATG
SEQ ID NO:


ACCCATC
NO: 350
R](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].
GAGAGAT
78


TCTCCAT

[dR](T)[sP].[LR]([5meC])[sP].[dR](T)[sP].[dR]
GGGT



CCAT-3′

(C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[d






R](C)[sP].[dR](C)[sP].[LR](A)[sP].[LR](T)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[dR](C)[s
CATGGAT
SEQ ID NO:


CCCATCT
NO: 351
P].[dR](A)[sP].[LR](T)[sP].[dR](C)[sP].[dR](T)
GGAGAGA
79


CTCCATC

[sP].[dR](C)[sP].[LR](T)[sP].[dR](C)[sP].[dR](
TGGG



CATG-3′

C)[sP].[dR](A)[sP].[LR](T)[sP].[dR](C)[sP].[d






R](C)[sP].[dR](A)[sP].[LR](T)[sP].[LR](G)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[LR](A)[s
GCATGGA
SEQ ID NO:


CCATCTC
NO: 352
P].[dR](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR]([5
TGGAGAG
80


TCCATCC

meC])[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP]
ATGG



ATGC-3′

.[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[s






P].[LR](A)[sP].[LR](T)[sP].[dR]([In])[sP].[LR]([






5meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[LR](T)[s
AGCATGG
SEQ ID NO:


CATCTCT
NO: 353
P].[dR](C)[sP].[dR](T)[sP].[dR](C)[sP].[LR](T)
ATGGAGA
81


CCATCCA

[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](
GATG



TGCT-3′

T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[d






R](T)[sP].[dR]([In])[sP].[LR]([5meC])[sP].[LR](






T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR
AAGCATG
SEQ ID NO:


ATCTCTC
NO: 354
](T)[sP].[LR]([5meC])[sP].[dR](T)[sP].[dR](C)[
GATGGAG
82


CATCCAT

sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](
AGAT



GCTT-3′

C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[d






R]([In])[sP].[dR](C)[sP].[LR](T)[sP].[LR](T)}$$






$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](T)[sP].[dR
AAAGCAT
SEQ ID NO:


TCTCTCC
NO: 355
](C)[sP].[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[L
GGATGGA
83


ATCCATG

R](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].
GAGA



CTTT-3′

[LR](A)[sP].[dR](T)[sP].[dR]([In])[sP].[dR](C)[






sP].[dR](T)[sP].[LR](T)[sP].[LR](T)$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](T)[sP].[dR](C)[s
AAAAGCA
SEQ ID NO:


CTCTCCA
NO: 356
P].[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)
TGGATGG
84


TCCATGC

[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](
AGAG



TTTT-3′

A)[sP].[dR](T)[sP].[dR]([In])[sP].[dR](C)[sP].[L






R](T)[sP].[dR](T)[sP].[LR](T)[sP].[LR](T)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[LR](T)[sP].[dR
TAAAAGC
SEQ ID NO:


TCTCCAT
NO: 357
](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[d
ATGGATG
85


CCATGCT

R](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].
GAGA



TTTA-3′

[dR]([In])[sP].[dR](C)[sP].[LR](T)[sP].[dR](T)[






sP].[dR](T)[sP].[LR](T)[sP].[LR](A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[P].[dR](T)[sP].[dR](C)[s
ATAAAAG
SEQ ID NO:


CTCCATC
NO: 358
P].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)
CATGGAT
86


CATGCTT

[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR]([
GGAG



TTAT-3′

In])[sP].[dR](C)[sP].[LR](T)[sP].[dR](T)[sP].[d






R](T)[sP].[dR](T)[sP].[LR](A)[sP].[LR](T)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[L
GATAAAA
SEQ ID NO:


TCCATCC
NO: 359
R](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].
GCATGGA
87


ATGCTTT

[LR](A)[sP].[dR](T)[sP].[dR]([In])[sP].[dR](C)[
TGGA



TATC-3′

sP].[LR](T)[sP].[dR](T)[sP].[LR](T)[sP].[dR](T






)[sP].[dR](A)[sP].[LR](T)[sP].[LR]([5meC])}$$






$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[LR](A)[s
AGATAAA
SEQ ID NO:


CCATCCA
NO: 360
P].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)
AGCATGG
88


TGCTTTT

[sP].[dR](T)[sP].[dR]([In])[sP].[dR](C)[sP].[LR]
ATGG



ATCT-3′

(T)[sP].[dR](T)[sP].[dR](T)[sP].[dR](T)[sP].[L






R](A)[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR](T






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[LR](T)[s
TAGATAA
SEQ ID NO:


CATCCAT
NO: 361
P].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)
AAGCATG
89


GCTTTTA

[sP].[dR]([In])[sP].[dR](C)[sP].[LR](T)[sP].[dR]
GATG



TCTA-3′

(T)[sP].[dR](T)[sP].[dR](T)[sP].[LR](A)[sP].[d






R](T)[sP].[dR](C)[sP].[LR](T)[sP].[LR](A)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR
GTAGATA
SEQ ID NO:


ATCCATG
NO: 362
](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR]([In])[sP].
AAAGCAT
90


CTTTTATC

[LR]([5meC])[sP].[dR](T)[sP].[dR](T)[sP].[LR]
GGAT



TAC-3′

(T)[sP].[dR](T)[sP].[dR](A)[sP].[dR](T)[sP].[L






R]([5meC])[sP].[dR](T)[sP].[LR](A)[sP].[LR]([






5meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[L
AGTAGAT
SEQ ID NO:


TCCATGC
NO: 363
R](A)[sP].[dR](T)[sP].[dR]([In])[sP].[dR](C)[sP
AAAAGCA
91


TTTTATCT

].[LR](T)[sP].[dR](T)[sP].[dR](T)[sP].[dR](T)[s
TGGA



ACT-3′

P].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](T)






[sP].[LR](A)[sP].[LR]([5meC])[sP].[LR](T)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[LR](A)[s
GAGTAGA
SEQ ID NO:


CCATGCT
NO: 364
P].[dR](T)[sP].[dR]([In])[sP].[dR](C)[sP].[LR](
TAAAAGC
92


TTTATCTA

T)[sP].[dR](T)[sP].[dR](T)[sP].[dR](T)[sP].[LR
ATGG



CTC-3′

](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](T)[sP].[L






R](A)[sP].[dR](C)[sP].[LR](T)[sP].[LR]([5meC]






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[LR](T)[s
TGAGTAG
SEQ ID NO:


CATGCTT
NO: 365
P].[dR]([In])[sP].[dR](C)[sP].[LR](T)[sP].[dR](
ATAAAAG
93


TTATCTA

T)[sP].[dR](T)[sP].[dR](T)[sP].[LR](A)[sP].[dR
CATG



CTCA-3′

](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR](A)[sP].[d






R](C)[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR](A






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[LR](T)[sP].[dR]([In])[sP].[d
ATGAGTA
SEQ ID NO:


ATGCTTT
NO: 366
R](C)[sP].[dR](T)[sP].[LR](T)[sP].[dR](T)[sP].[
GATAAAA
94


TATCTAC

LR](T)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP]
GCAT



TCAT-3′

.[dR](T)[sP].[LR](A)[sP].[dR](C)[sP].[dR](T)[s






P].[dR](C)[sP].[LR](A)[P].[LR](T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR]([In])[sP].[dR](C)[sP].[d
GATGAGT
SEQ ID NO:


TGCTTTT
NO: 367
R](T)[sP].[LR](T)[sP].[dR](T)[sP].[dR](T)[sP].[
AGATAAA
95


ATCTACT

LR](A)[sP].[dR](T)[sP].[LR]([5meC])[sP].[dR](
AGCA



CATC-3′

T)[sP].[LR](A)[sP].[dR](C)[sP].[dR](T)[sP].[LR






]([5meC])[sP].[dR](A)[sP].[LR](T)[sP].[LR]([5






meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](C)[sP].[dR](T)[sP].[L
TGATGAG
SEQ ID NO:


GCTTTTA
NO: 368
R](T)[sP].[dR](T)[sP].[dR](T)[sP].[LR](A)[sP].[
TAGATAA
96


TCTACTC

dR](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR](A)[sP]
AAGC



ATCA-3′

.[dR](C)[sP].[LR](T)[sP].[dR](C)[sP].[dR](A)[s






P].[dR](T)[sP].[LR]([5meC])[sP].[LR](A)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[dR](C)[s
GATGGAT
SEQ ID NO:


CCCATCT
NO: 369
P].[dR](A)[P].[LR](T)[sP].[dR](C)[sP].[dR](T)
GGAGAGA
97


CTCCATC

[sP].[dR](C)[sP].[LR](T)[sP].[dR](C)[sP].[dR](
TGGG



CATC-3′

C)[sP].[dR](A)[sP].[LR](T)[sP].[dR](C)[sP].[d






R](C)[sP].[dR](A)[sP].[LR](T)[sP].[LR]([5meC]






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[P].[LR](T)[s
AGGATGG
SEQ ID NO:


CATCTCT
NO: 370
P].[dR](C)[sP].[dR](T)[sP].[dR](C)[sP].[LR](T)
ATGGAGA
98


CCATCCA

[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](
GATG



TCCT-3′

T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[d






R](T)[sP].[dR](C)[P].[LR]([5meC])[sP].[LR](T






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR
AAGGATG
SEQ ID NO:


ATCTCTC
NO: 371
](T)[sP].[LR]([5meC])[sP].[dR](T)[sP].[dR](C)[
GATGGAG
99


CATCCAT

sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[P].[dR](
AGAT



CCTT-3′

C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[d






R](C)[sP].[dR](C)[sP].[LR](T)[sP].[LR](T)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](T)[sP].[dR
AAAGGAT
SEQ ID NO:


TCTCTCC
NO: 372
](C)[sP].[LR](T)[sP].[dR](C)[P].[dR](C)[sP].[L
GGATGGA
100


ATCCATC

R](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].
GAGA



CTTT-3′

[LR](A)[sP].[dR](T)[sP].[LR]([5meC])[sP].[dR]






(C)[sP].[dR](T)[sP].[LR](T)[sP].[LR](T)}$$$$V






2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](T)[sP].[dR](C)[s
AAAAGGA
SEQ ID NO:


CTCTCCA
NO: 373
P].[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)
TGGATGG
101


TCCATCC

[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](
AGAG



TTTT-3′

A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[L






R](T)[sP].[dR](T)[sP].[LR](T)[sP].[LR](T)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[LR](T)[sP].[dR
TAAAAGG
SEQ ID NO:


TCTCCAT
NO: 374
](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[d
ATGGATG
102


CCATCCT

R](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].
GAGA



TTTA-3′

[dR](C)[sP].[dR](C)[sP].[LR](T)[sP].[dR](T)[s






P].[dR](T)[sP].[LR](T)[sP].[LR](A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](T)[sP].[dR](C)[s
ATAAAAG
SEQ ID NO:


CTCCATC
NO: 375
P].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)
GATGGAT
103


CATCCTT

[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](
GGAG



TTAT-3′

C)[sP].[dR](C)[sP].[LR](T)[sP].[dR](T)[sP].[dR






](T)[sP].[dR](T)[sP].[LR](A)[sP].[LR](T)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[L
GATAAAA
SEQ ID NO:


TCCATCC
NO: 376
R](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].
GGATGGA
104


ATCCTTTT

[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[s
TGGA



ATC-3′

P].[LR](T)[sP].[dR](T)[sP].[LR](T)[sP].[dR](T)[






sP].[dR](A)[sP].[LR](T)[sP].[LR]([5meC])}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[LR](A)[s
AGATAAA
SEQ ID NO:


CCATCCA
NO: 377
P].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)
AGGATGG
105


TCCTTTTA

[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](
ATGG



TCT-3′

T)[sP].[dR](T)[sP].[dR](T)[sP].[dR](T)[sP].[LR






](A)[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR](T)}






$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[LR](T)[s
TAGATAA
SEQ ID NO:


CATCCAT
NO: 378
P].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)
AAGGATG
106


CCTTTTAT

[sP].[dR](C)[sP].[dR](C)[sP].[LR](T)[sP].[dR](
GATG



CTA-3′

T)[sP].[dR](T)[sP].[dR](T)[sP].[LR](A)[sP].[dR






](T)[sP].[dR](C)[sP].[LR](T)[sP].[LR](A)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR](A)[P].[dR](T)[sP].[dR](C)[sP].[dR
GTAGATA
SEQ ID NO:


ATCCATC
NO: 379
](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[L
AAAGGAT
107


CTTTTATC

R]([5meC])[sP].[dR](T)[sP].[dR](T)[sP].[LR](T
GGAT



TAC-3′

)[sP].[dR](T)[sP].[dR](A)[sP].[dR](T)[sP].[LR](






[5meC])[sP].[dR](T)[sP].[LR](A)[sP].[LR]([5m






eC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[P].[dR](C)[sP].[dR](C)[sP].[L
AGTAGAT
SEQ ID NO:


TCCATCC
NO: 380
R](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].
AAAAGGA
108


TTTTATCT

[LR](T)[sP].[dR](T)[sP].[dR](T)[sP].[dR](T)[sP
TGGA



ACT-3′

].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](T)[s






P].[LR](A)[sP].[LR]([5meC])[sP].[LR](T)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[LR](A)[s
GAGTAGA
SEQ ID NO:


CCATCCT
NO: 381
P].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](T)
TAAAAGG
109


TTTATCTA

[sP].[dR](T)[sP].[dR](T)[sP].[dR](T)[sP].[LR](
ATGG



CTC-3′

A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR






](A)[sP].[dR](C)[sP].[LR](T)[sP].[LR]([5meC])}






$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[P].[dR](A)[sP].[LR](T)[s
TGAGTAG
SEQ ID NO:


CATCCTT
NO: 382
P].[dR](C)[sP].[dR](C)[sP].[LR](T)[sP].[dR](T)
ATAAAAG
110


TTATCTA

[sP].[dR](T)[sP].[dR](T)[sP].[LR](A)[sP].[dR](
GATG



CTCA-3′

T)[sP].[dR](C)[sP].[dR](T)[sP].[LR](A)[sP].[dR






](C)[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR](A)}






$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[LR]([5meC])[s
ATGAGTA
SEQ ID NO:


ATCCTTTT
NO: 383
P].[dR](C)[sP].[dR](T)[sP].[LR](T)[sP].[dR](T)[
GATAAAA
111


ATCTACT

SP].[LR](T)[P].[LR](A)[sP].[dR](T)[sP].[dR](C
GGAT



CAT-3′

)[sP].[dR](T)[sP].[LR](A)[sP].[dR](C)[sP].[dR](






T)[sP].[dR](C)[sP].[LR](A)[sP].[LR](T)}$$$$V






2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[d
GATGAGT
SEQ ID NO:


TCCTTTTA
NO: 384
R](T)[sP].[LR](T)[sP].[dR](T)[sP].[dR](T)[sP].[
AGATAAA
112


TCTACTC

LR](A)[P].[dR](T)[sP].[LR]([5meC])[sP].[dR](
AGGA



ATC-3′

T)[sP].[LR](A)[sP].[dR](C)[sP].[dR](T)[sP].[LR






]([5meC])[sP].[dR](A)[sP].[LR](T)[P].[LR]([5






meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[dR](T)[s
TGATGAG
SEQ ID NO:


CCTTTTAT
NO: 385
P].[LR](T)[sP].[dR](T)[sP].[dR](T)[sP].[LR](A)[
TAGATAA
113


CTACTCA

sP].[dR](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR](A
AAGG



TCA-3′

)[sP].[dR](C)[sP].[LR](T)[sP].[dR](C)[sP].[dR](






A)[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR](A)}$






$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[LR](T)[sP].[dR](T)[s
GTGATGA
SEQ ID NO:


CTTTTATC
NO: 386
P].[dR](T)[sP].[dR](T)[sP].[LR](A)[sP].[dR](T)[
GTAGATA
114


TACTCAT

sP].[LR]([5meC])[sP].[dR](T)[sP].[LR](A)[sP].[
AAAG



CAC-3′

LR]([5meC])[sP].[dR](T)[sP].[dR](C)[sP].[LR](






A)[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)[sP].[LR






]([5meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[LR](T)[sP].[dR](T)[sP].[dR
AGTGATG
SEQ ID NO:


TTTTATCT
NO: 387
](T)[sP].[LR](A)[sP].[dR](T)[sP].[LR]([5meC])[
AGTAGAT
115


ACTCATC

sP].[dR](T)[sP].[LR](A)[sP].[dR](C)[sP].[LR](T
AAAA



ACT-3′

)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](






C)[sP].[LR](A)[sP].[LR]([5meC])[sP].[LR](T)}$






$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](T)[sP].[dR](T)[sP].[LR
GAGTGAT
SEQ ID NO:


TTTATCTA
NO: 388
](A)[sP].[dR](T)[sP].[LR]([5meC])[sP].[dR](T)[
GAGTAGA
116


CTCATCA

sP].[dR](A)[sP].[dR](C)[sP].[LR](T)[sP].[LR]([
TAAA



CTC-3′

5meC])[sP].[dR](A)[sP].[LR](T)[sP].[dR](C)[s






P].[dR](A)[sP].[dR](C)[sP].[LR](T)[sP].[LR]([5






meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[P].[dR](T)[sP].[LR](A)[sP].[dR
TGAGTGA
SEQ ID NO:


TTATCTA
NO: 389
](T)[sP].[dR](C)[P].[LR](T)[sP].[dR](A)[sP].[d
TGAGTAG
117


CTCATCA

R](C)[sP].[dR](T)[sP].[LR]([5meC])[sP].[dR](A
ATAA



CTCA-3′

)[sP].[LR](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR](






C)[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR](A)}$






$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](A)[sP].[LR](T)[sP].[dR
ATGAGTG
SEQ ID NO:


TATCTAC
NO: 390
](C)[sP].[dR](T)[sP].[dR](A)[P].[LR]([5meC])[
ATGAGTA
118


TCATCAC

SP].[LR](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T
GATA



TCAT-3′

)[sP].[dR](C)[P].[LR](A)[sP].[dR](C)[P].[dR]






(T)[sP].[dR](C)[sP].[LR](A)[sP].[LR](T)}$$$$V






2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR
AATGAGT
SEQ ID NO:


ATCTACT
NO: 391
](T)[sP].[LR](A)[sP].[dR](C)[sP].[dR](T)[sP].[d
GATGAGT
119


CATCACT

R](C)[sP].[LR](A)[sP].[LR](T)[sP].[dR](C)[sP].
AGAT



CATT-3′

[LR](A)[sP].[LR]([5meC])[sP].[dR](T)[sP].[dR]






(C)[sP].[dR](A)[sP].[LR](T)[sP].[LR](T)}$$$$V






2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR
GAATGAG
SEQ ID NO:


TCTACTC
NO: 392
](A)[sP].[LR]([5meC])[sP].[dR](T)[sP].[dR](C)[
TGATGAG
120


ATCACTC

sP].[dR](A)[sP].[LR](T)[sP].[dR](C)[sP].[LR](A
TAGA



ATTC-3′

)[sP].[dR](C)[sP].[dR](T)[sP].[dR](C)[P].[LR](






A)[sP].[dR](T)[sP].[LR](T)[sP].[LR]([5meC])}$






$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](T)[sP].[dR](A)[s
TGAATGA
SEQ ID NO:


CTACTCA
NO: 393
P].[dR](C)[sP].[LR](T)[sP].[dR](C)[sP].[LR](A)
GTGATGA
121


TCACTCA

[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR](
GTAG



TTCA-3′

C)[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)[sP].[d






R](T)[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR](A






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](A)[sP].[dR](C)[sP].[LR
ATGAATG
SEQ ID NO:


TACTCAT
NO: 394
](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[d
AGTGATG
122


CACTCAT

R](C)[sP].[LR](A)[P].[dR](C)[sP].[dR](T)[sP].
AGTA



TCAT-3′

[LR]([5meC])[sP].[dR](A)[sP].[LR](T)[sP].[LR]






(T)[sP].[dR](C)[sP].[LR](A)[sP].[LR](T)}$$$$V






2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](C)[sP].[LR](T)[sP].[dR
GATGAAT
SEQ ID NO:


ACTCATC
NO: 395
](C)[sP].[dR](A)[sP].[LR](T)[sP].[dR](C)[sP].[L
GAGTGAT
123


ACTCATT

R](A)[sP].[dR](C)[sP].[dR](T)[sP].[dR](C)[sP].
GAGT



CATC-3′

[LR](A)[sP].[dR](T)[sP].[dR](T)[sP].[dR](C)[sP






].[LR](A)[sP].[LR](T)[sP].[LR]([5meC])}$$$$V






2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[LR](T)[s
ACAGATG
SEQ ID NO:


CATCACT
NO: 396
P].[dR](C)[sP].[dR](A)[sP].[dR](C)[sP].[LR](T)
AATGAGT
124


CATTCAT

[sP].[dR](C)[P].[LR](A)[sP].[dR](T)[sP].[dR](
GATG



CTGT-3′

T)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR






](C)[sP].[dR](T)[sP].[LR](G)[sP].[LR](T)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[LR
AACAGAT
SEQ ID NO:


ATCACTC
NO: 397
](A)[sP].[dR](C)[sP].[LR](T)[sP].[dR](C)[sP].[L
GAATGAG
125


ATTCATC

R](A)[sP].[dR](T)[sP].[LR](T)[sP].[dR](C)[sP].[
TGAT



TGTT-3′

LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](T)[sP]






.[LR](G)[sP].[LR](T)[sP].[LR](T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](A)[sP].[dR
GAACAGA
SEQ ID NO:


TCACTCA
NO: 398
](C)[sP].[LR](T)[sP].[dR](C)[sP].[LR](A)[sP].[d
TGAATGA
126


TTCATCT

R](T)[sP].[LR](T)[sP].[dR](C)[sP].[dR](A)[sP].[
GTGA



GTTC-3′

LR](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR](G)[sP






].[dR](T)[sP].[LR](T)[sP].[LR]([5meC])}$$$$V






2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](C)[sP].[LR](T)[sP].[dR
TTGAACA
SEQ ID NO:


ACTCATT
NO: 399
](C)[sP].[LR](A)[sP].[LR](T)[sP].[dR](T)[sP].[d
GATGAAT
127


CATCTGT

R](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].
GAGT



TCAA-3′

[dR](T)[sP].[LR](G)[sP].[LR](T)[sP].[dR](T)[sP






].[dR](C)[sP].[LR](A)[sP].[LR](A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](T)[sP].[dR](C)[s
ATTGAAC
SEQ ID NO:


CTCATTC
NO: 400
P].[LR](A)[sP].[dR](T)[sP].[dR](T)[sP].[LR]([5
AGATGAA
128


ATCTGTT

meC])[sP].[dR](A)[sP].[dR](T)[sP].[LR]([5me
TGAG



CAAT-3′

C])[sP].[dR](T)[sP].[LR](G)[sP].[dR](T)[sP].[L






R](T)[sP].[dR](C)[sP].[LR](A)[sP].[LR](A)[sP].






[LR](T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](A)[sP].[LR
GATTGAA
SEQ ID NO:


TCATTCA
NO: 401
](T)[sP].[dR](T)[sP].[dR](C)[sP].[dR](A)[sP].[L
CAGATGA
129


TCTGTTC

R](T)[sP].[dR](C)[sP].[LR](T)[sP].[dR](G)[sP].
ATGA



AATC-3′

[LR](T)[sP].[LR](T)[sP].[dR](C)[sP].[dR](A)[sP






].[dR](A)[sP].[LR](T)[sP].[LR]([5meC])}$$$$V






2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[LR](T)[s
TGATTGA
SEQ ID NO:


CATTCAT
NO: 402
P].[dR](T)[sP].[LR]([5meC])[sP].[dR](A)[sP].[d
ACAGATG
130


CTGTTCA

R](T)[sP].[LR]([5meC])[sP].[dR](T)[P].[dR](G
AATG



ATCA-3′

)[sP].[dR](T)[sP].[LR](T)[sP].[dR](C)[sP].[LR](






A)[sP].[dR](A)[sP].[dR](T)[sP].[LR]([5meC])[s






P].[LR](A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](T)[sP].[dR
ATGATTG
SEQ ID NO:


ATTCATC
NO: 403
](C)[sP].[LR](A)[sP].[LR](T)[sP].[dR](C)[sP].[L
AACAGAT
131


TGTTCAA

R](T)[sP].[dR](G)[sP].[dR](T)[sP].[LR](T)[sP].[
GAAT



TCAT-3′

dR](C)[sP].[dR](A)[sP].[LR](A)[sP].[LR](T)[sP






].[dR](C)[sP].[LR](A)[sP].[LR](T)$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[LR](T)[sP].[dR](C)[sP].[dR
AATGATT
SEQ ID NO:


TTCATCT
NO: 404
](A)[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR](T)[
GAACAGA
132


GTTCAAT

sP].[dR](G)[sP].[dR](T)[sP].[LR](T)[sP].[dR](
TGAA



CATT-3′

C)[sP].[dR](A)[sP].[LR](A)[sP].[dR](T)[sP].[dR






](C)[sP].[dR](A)[sP].[LR](T)[sP].[LR](T)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR
GAATGAT
SEQ ID NO:


TCATCTG
NO: 405
](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR](G)[sP].[d
TGAACAG
133


TTCAATC

R](T)[sP].[LR](T)[sP].[LR]([5meC])[sP].[dR](A
ATGA



ATTC-3′

)[sP].[dR](A)[sP].[dR](T)[sP].[LR]([5meC])[sP]






[dR](A)[sP].[LR](T)[sP].[LR](T)[sP].[LR]([5me






C])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[dR](T)[s
TGAATGA
SEQ ID NO:


CATCTGT
NO: 406
P].[LR]([5meC])[sP].[dR](T)[sP].[dR](G)[sP].[
TTGAACA
134


TCAATCA

dR](T)[sP].[LR](T)[P].[dR](C)[sP].[LR](A)[sP]
GATG



TTCA-3′

.[dR](A)[sP].[dR](T)[sP].[LR]([5meC])[sP].[dR






](A)[sP].[LR](T)[sP].[dR](T)[sP].[LR]([5meC])[






SP].[LR](A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[LR](T)[sP].[dR](C)[sP].[LR
ATGAATG
SEQ ID NO:


ATCTGTT
NO: 407
](T)[sP].[dR](G)[sP].[dR](T)[sP].[LR](T)[sP].[d
ATTGAAC
135


CAATCAT

R](C)[sP].[dR](A)[sP].[LR](A)[sP].[LR](T)[sP].
AGAT



TCAT-3′

[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](T)[sP






].[dR](C)[sP].[LR](A)[sP].[LR](T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[LR](T)[sP].[dR
AATGAAT
SEQ ID NO:


TCTGTTC
NO: 408
](G)[sP].[LR](T)[sP].[LR](T)[sP].[dR](C)[sP].[d
GATTGAA
136


AATCATT

R](A)[sP].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].
CAGA



CATT-3′

[LR](A)[sP].[LR](T)[sP].[dR](T)[sP].[dR](C)[sP






].[dR](A)[sP].[LR](T)[sP].[LR](T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](T)[sP].[dR](G)[s
GAATGAA
SEQ ID NO:


CTGTTCA
NO: 409
P].[dR](T)[sP].[LR](T)[sP].[dR](C)[sP].[LR](A)
TGATTGA
137


ATCATTC

[sP].[dR](A)[sP].[LR](T)[sP].[dR](C)[sP].[dR](
ACAG



ATTC-3′

A)[P].[LR](T)[sP].[dR](T)[sP].[LR]([5meC])[s






P].[LR](A)[sP].[dR](T)[sP].[LR](T)[sP].[LR]([5






meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[LR](G)[sP].[dR](T)[sP].[LR
TGAATGA
SEQ ID NO:


TGTTCAA
NO: 410
](T)[sP].[dR](C)[sP].[dR](A)[sP].[LR](A)[sP].[d
ATGATTG
138


TCATTCA

R](T)[sP].[dR](C)[sP].[dR](A)[sP].[LR](T)[sP].[
AACA



TTCA-3′

dR](T)[P].[LR]([5meC])[sP].[dR](A)[sP].[dR](






T)[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR](A)}$






$$$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](T)[sP].[dR](T)[sP].[LR
ATGAATG
SEQ ID NO:


GTTCAAT
NO: 411
]([5meC])[sP].[LR](A)[sP].[dR](A)[sP].[dR](T)[
AATGATT
139


CATTCAT

SP].[LR]([5meC])[sP].[dR](A)[sP].[LR](T)[sP].[
GAAC



TCAT-3′

dR](T)[sP].[LR]([5meC])[sP].[dR](A)[sP].[dR](






T)[sP].[LR](T)[sP].[dR](C)[sP].[LR](A)[sP].[LR






((T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[LR](T)[sP].[dR](C)[sP].[dR
AATGAAT
SEQ ID NO:


TTCAATC
NO: 412
](A)[sP].[dR](A)[sP].[LR](T)[sP].[LR]([5meC])[
GAATGAT
140


ATTCATT

sP].[dR](A)[sP].[dR](T)[sP].[LR](T)[sP].[LR]([
TGAA



CATT-3′

5meC])[sP].[dR](A)[sP].[dR](T)[sP].[LR](T)[s






P].[dR](C)[P].[LR](A)[sP].[LR](T)[sP].[LR](T)






}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](A)[sP].[LR
GAATGAA
SEQ ID NO:


TCAATCA
NO: 413
](A)[sP].[LR](T)[sP].[dR](C)[sP].[dR](A)[sP].[d
TGAATGA
141


TTCATTC

R](T)[sP].[LR](T)[P].[LR]([5meC])[sP].[dR](A
TTGA



ATTC-3′

)[sP].[dR](T)[sP].[LR](T)[sP].[LR]([5meC])[sP]






.[dR](A)[sP].[dR](T)[sP].[LR](T)[sP].[LR]([5me






C])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[dR](A)[s
TGAATGA
SEQ ID NO:


CAATCAT
NO: 414
P].[LR](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)
ATGAATG
142


TCATTCA

[sP].[dR](T)[sP].[LR]([5meC])[sP].[dR](A)[sP].
ATTG



TTCA-3′

[LR](T)[sP].[LR](T)[sP].[dR](C)[sP].[LR](A)[sP






].[LR](T)[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR






[(A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[LR](A)[sP].[dR](T)[sP].[LR
GTGAATG
SEQ ID NO:


AATCATT
NO: 415
]([5meC])[sP].[dR](A)[sP].[dR](T)[sP].[dR](T)[
AATGAAT
143


CATTCAT

SP].[LR]([5meC])[sP].[dR](A)[sP].[LR](T)[sP].[
GATT



TCAC-3′

LR](T)[sP].[dR](C)[sP].[dR](A)[sP].[LR](T)[sP]






.[dR](T)[sP].[LR]([5meC])[sP].[LR](A)[sP].[LR






[[5meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR
GGTGAAT
SEQ ID NO:


ATCATTC
NO: 416
](A)[sP].[LR](T)[sP].[dR](T)[sP].[dR](C)[sP].[L
GAATGAA
144


ATTCATT

R](A)[sP].[dR](T)[sP].[LR](T)[sP].[dR](C)[sP].[
TGAT



CACC-3′

dR](A)[sP].[LR](T)[sP].[dR](T)[sP].[dR](C)[sP]






.[dR](A)[sP].[LR]([5meC])[sP].[LR]([5meC])}$






$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR
TGGTGAA
SEQ ID NO:


TCATTCA
NO: 417
](T)[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)[sP].[d
TGAATGA
145


TTCATTC

R](T)[sP].[dR](T)[sP].[LR]([5meC])[sP].[dR](A
ATGA



ACCA-3′

)[sP].[dR](T)[sP].[LR](T)[sP].[dR](C)[sP].[dR](






A)[sP].[dR](C)[sP].[LR]([5meC])[sP].[LR](A)}$






$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[LR](T)[s
CTGGTGA
SEQ ID NO:


CATTCAT
NO: 418
P].[dR](T)[sP].[LR]([5meC])[sP].[dR](A)[sP].[L
ATGAATG
146


TCATTCA

R](T)[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)[sP].[
AATG



CCAG-3′

dR](T)[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)[sP]






.[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[LR](G)}$






$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](T)[sP].[dR
GCTGGTG
SEQ ID NO:


ATTCATT
NO: 419
](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](T)[sP].[d
AATGAAT
147


CATTCAC

R](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](T)[sP].[
GAAT



CAGC-3′

dR](C)[sP].[LR](A)[sP].[dR](C)[sP].[dR](C)[sP






].[dR](A)[sP].[LR](G)[P].[LR]([5meC])}$$$$V






2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](T)[sP].[dR](C)[sP].[LR
TGCTGGT
SEQ ID NO:


TTCATTC
NO: 420
](A)[sP].[dR](T)[sP].[dR](T)[sP].[dR](C)[sP].[L
GAATGAA
148


ATTCACC

R](A)[sP].[dR](T)[sP].[dR](T)[sP].[dR](C)[sP].[
TGAA



AGCA-3′

LR](A)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP






].[dR](G)[sP].[LR]([5meC])[sP].[LR](A)}$$$$V






2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR
ATGCTGG
SEQ ID NO:


TCATTCA
NO: 421
](T)[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)[sP].[d
TGAATGA
149


TTCACCA

R](T)[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)[sP].[
ATGA



GCAT-3′

dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](G)[sP






].[dR](C)[sP].[LR](A)[sP].[LR](T)$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[dR](T)[s
AATGCTG
SEQ ID NO:


CATTCAT
NO: 422
P].[LR](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)
GTGAATG
150


TCACCAG

[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR](
AATG



CATT-3′

C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](G)[sP].[d






R](C)[sP].[dR](A)[sP].[LR](T)[sP].[LR](T)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[LR](T)[sP].[dR
AAATGCT
SEQ ID NO:


ATTCATT
NO: 423
](C)[sP].[LR](A)[P].[dR](T)[sP].[LR](T)[sP].[d
GGTGAAT
151


CACCAGC

R](C)[sP].[LR](A)[sP].[dR](C)[sP].[dR](C)[sP].
GAAT



ATTT-3′

[dR](A)[sP].[LR](G)[sP].[dR](C)[sP].[LR](A)[s






P].[dR](T)[sP].[LR](T)[sP].[LR](T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](T)[sP].[dR](C)[sP].[LR
TAAATGC
SEQ ID NO:


TTCATTC
NO: 424
](A)[sP].[dR](T)[sP].[dR](T)[sP].[LR]([5meC])[
TGGTGAA
152


ACCAGCA

sP].[dR](A)[sP].[dR](C)[sP].[dR](C)[sP].[LR](
TGAA



TTTA-3′

A)[sP].[dR](G)[sP].[dR](C)[P].[LR](A)[sP].[d






R](T)[sP].[dR](T)[sP].[LR](T)[P].[LR](A)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](A)[sP].[LR
ATAAATG
SEQ ID NO:


TCATTCA
NO: 425
](T)[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)[sP].[d
CTGGTGA
153


CCAGCAT

R](C)[sP].[dR](C)[sP].[dR](A)[sP].[LR](G)[sP].
ATGA



TTAT-3′

[dR](C)[sP].[dR](A)[sP].[LR](T)[sP].[dR](T)[sP






].[dR](T)[sP].[LR](A)[sP].[LR](T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[dR](T)[s
AATAAAT
SEQ ID NO:


CATTCAC
NO: 426
P].[LR](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR](C)
GCTGGTG
154


CAGCATT

[sP].[dR](C)[P].[LR](A)[sP].[dR](G)[sP].[dR](
AATG



TATT-3′

C)[sP].[dR](A)[sP].[LR](T)[sP].[dR](T)[sP].[LR






](T)[sP].[dR](A)[sP].[LR](T)[sP].[LR](T)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](T)[sP].[LR
GAATAAA
SEQ ID NO:


ATTCACC
NO: 427
]([5meC])[sP].[dR](A)[sP].[dR](C)[sP].[LR]([5
TGCTGGT
155


AGCATTT

meC])[sP].[dR](A)[sP].[dR](G)[sP].[LR]([5me
GAAT



ATTC-3′

C])[sP].[dR](A)[sP].[dR](T)[sP].[LR](T)[sP].[d






R](T)[sP].[LR](A)[sP].[dR](T)[sP].[LR](T)[sP].[






LR]([5meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](T)[sP].[dR](C)[sP].[LR
TGAATAA
SEQ ID NO:


TTCACCA
NO: 428
](A)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[d
ATGCTGG
156


GCATTTA

R](G)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].
TGAA



TTCA-3′

[LR](T)[sP].[dR](T)[sP].[LR](A)[sP].[dR](T)[sP






].[dR](T)[sP].[LR]([5meC])[sP].[LR](A)}$$$$V






2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR
TTGAATA
SEQ ID NO:


TCACCAG
NO: 429
](C)[sP].[dR](C)[sP].[dR](A)[sP].[LR](G)[sP].[
AATGCTG
157


CATTTATT

dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](T)[sP]
GTGA



CAA-3′

.[dR](T)[sP].[LR](A)[sP].[dR](T)[sP].[dR](T)[s






P].[LR]([5meC])[sP].[LR](A)[sP].[LR](A)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[dR](C)[s
GTTGAAT
SEQ ID NO:


CACCAGC
NO: 430
P].[dR](C)[sP].[LR](A)[sP].[dR](G)[sP].[dR](C
AAATGCT
158


ATTTATTC

)[sP].[LR](A)[sP].[dR](T)[sP].[dR](T)[sP].[LR](
GGTG



AAC-3′

T)[sP].[LR](A)[sP].[dR](T)[sP].[dR](T)[sP].[dR






](C)[sP].[LR](A)[sP].[LR](A)[sP].[LR]([5meC])}






$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[dR](A)[s
TTGTTGA
SEQ ID NO:


CCAGCAT
NO: 431
P].[dR](G)[sP].[LR]([5meC])[sP].[LR](A)[sP].[
ATAAATG
159


TTATTCAA

dR](T)[sP].[dR](T)[sP].[LR](T)[sP].[dR](A)[sP]
CTGG



CAA-3′

.[LR](T)[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)[s






P].[LR](A)[sP].[dR](C)[sP].[LR](A)[sP].[LR](A)






}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[LR](A)[sP].[dR](G)[s
TTTGTTG
SEQ ID NO:


CAGCATT
NO: 432
P].[LR]([5meC])[sP].[dR](A)[sP].[dR](T)[sP].[L
AATAAAT
160


TATTCAA

R](T)[sP].[LR](T)[sP].[dR](A)[sP].[dR](T)[sP].[
GCTG



CAAA-3′

LR](T)[sP].[LR]([5meC])[sP].[dR](A)[sP].[dR](






A)[P].[LR]([5meC])[sP].[dR](A)[sP].[LR](A)[s






P].[LR](A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[LR](G)[sP].[dR](C)[sP].[d
GTTTGTT
SEQ ID NO:


AGCATTT
NO: 433
R](A)[sP].[dR](T)[sP].[LR](T)[sP].[LR](T)[sP].[
GAATAAA
161


ATTCAAC

dR](A)[sP].[LR](T)[sP].[LR](T)[sP].[dR](C)[sP]
TGCT



AAAC-3′

.[LR](A)[sP].[dR](A)[sP].[LR]([5meC])[sP].[LR






](A)[sP].[dR](A)[sP].[LR](A)[sP].[LR]([5meC])}






$$$$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[LR]([5meC])[sP].[dR](A)[s
AGTTTGT
SEQ ID NO:


GCATTTA
NO: 434
P].[LR](T)[sP].[LR](T)[sP].[dR](T)[sP].[dR](A)[
TGAATAA
162


TTCAACA

sP].[LR](T)[sP].[LR](T)[sP].[dR](C)[sP].[LR](A
ATGC



AACT-3′

)[sP].[dR](A)[sP].[dR](C)[P].[LR](A)[sP].[dR](






A)[sP].[dR](A)[sP].[LR]([5meC])[sP].[LR](T)}$






$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[LR](T)[sP].[dR](T)[sP].[LR
CTAGTTT
SEQ ID NO:


ATTTATTC
NO: 435
](T)[sP].[LR](A)[sP].[dR](T)[sP].[LR](T)[sP].[L
GTTGAAT
163


AACAAAC

R]([5meC])[sP].[dR](A)[P].[dR](A)[sP].[LR]([
AAAT



TAG-3′

5meC])[sP].[dR](A)[sP].[LR](A)[sP].[LR](A)[s






P].[dR](C)[sP].[LR](T)[sP].[LR](A)[sP].[LR](G)






}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[LR](T)[sP].[dR](T)[sP].[LR
ACTAGTT
SEQ ID NO:


TTTATTCA
NO: 436
](A)[sP].[dR](T)[sP].[LR](T)[sP].[LR]([5meC])[
TGTTGAA
164


ACAAACT

sP].[dR](A)[sP].[dR](A)[sP].[LR]([5meC])[sP].[
TAAA



AGT-3′

LR](A)[sP].[dR](A)[sP].[LR](A)[sP].[LR]([5me






C])[sP].[dR](T)[sP].[dR](A)[sP].[LR](G)[sP].[L






R](T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[LR](T)[sP].[dR](A)[sP].[dR
AACTAGT
SEQ ID NO:


TTATTCAA
NO: 437
](T)[sP].[LR](T)[sP].[LR]([5meC])[sP].[dR](A)[
TTGTTGA
165


CAAACTA

SP].[LR](A)[sP].[LR]([5meC])[sP].[dR](A)[sP].[
ATAA



GTT-3′

LR](A)[sP].[dR](A)[sP].[LR]([5meC])|sP].[dR](






T)[sP].[dR](A)[sP].[LR](G)[P].[LR](T)[sP].[LR






](T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[LR](A)[sP].[dR](T)[sP].[dR
GAACTAG
SEQ ID NO:


TATTCAA
NO: 438
](T)[sP].[LR]([5meC])[sP].[LR](A)[sP].[dR](A)[
TTTGTTG
166


CAAACTA

sP].[LR]([5meC])[sP].[LR](A)[sP].[dR](A)[sP].[
AATA



GTTC-3′

LR](A)[sP].[dR](C)[sP].[dR](T)[sP].[dR](A)[sP






].[LR](G)[sP].[dR](T)[sP].[LR](T)[sP].[LR]([5m






eC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[LR](T)[sP].[dR](T)[sP].[dR
GGAACTA
SEQ ID NO:


ATTCAAC
NO: 439
](C)[sP].[dR](A)[sP].[LR](A)[sP].[dR](C)[sP].[d
GTTTGTT
167


AAACTAG

R](A)[sP].[LR](A)[sP].[dR](A)[sP].[LR]([5meC]
GAAT



TTCC-3′

)[sP].[dR](T)[sP].[dR](A)[sP].[dR](G)[sP].[LR](






T)[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR]([5m






eC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](T)[sP].[LR]([5meC])[s
AGGAACT
SEQ ID NO:


TTCAACA
NO: 440
P].[dR](A)[sP].[dR](A)[sP].[LR]([5meC])[sP].[
AGTTTGT
168


AACTAGT

dR](A)[sP].[dR](A)[sP].[LR](A)[sP].[dR](C)[sP
TGAA



TCCT-3′

].[LR](T)[sP].[dR](A)[sP].[dR](G)[sP].[LR](T)[s






P].[dR](T)[sP].[dR](C)[sP].[LR]([5meC])[sP].[






LR](T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[LR](A)[sP].[dR
CAGGAAC
SEQ ID NO:


TCAACAA
NO: 441
](A)[sP].[dR](C)[sP].[LR](A)[sP].[dR](A)[sP].[L
TAGTTTG
169


ACTAGTT

R](A)[sP].[dR](C)[sP].[dR](T)[sP].[dR](A)[sP].
TTGA



CCTG-3′

[LR](G)[sP].[dR](T)[sP].[LR](T)[sP].[dR](C)[s






P].[LR]([5meC])[sP].[LR](T)[sP].[LR](G)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[dR](A)[s
CCAGGAA
SEQ ID NO:


CAACAAA
NO: 442
P].[dR](C)[sP].[LR](A)[sP].[dR](A)[sP].[dR](A)
CTAGTTT
170


CTAGTTC

[sP].[LR]([5meC])[sP].[dR](T)[sP].[LR](A)[sP].
GTTG



CTGG-3′

[dR](G)[sP].[dR](T)[sP].[dR](T)[sP].[LR]([5me






C])[sP].[dR](C)[sP].[dR](T)[sP].[LR](G)[sP].[L






R](G)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](A)[sP].[dR](C)[sP].[d
CCCAGGA
SEQ ID NO:


AACAAAC
NO: 443
R](A)[sP].[LR](A)[sP].[dR](A)[sP].[dR](C)[sP].
ACTAGTT
171


TAGTTCC

[dR](T)[sP].[LR](A)[sP].[dR](G)[sP].[dR](T)[s
TGTT



TGGG-3′

P].[dR](T)[sP].[LR]([5meC])[sP].[dR](C)[sP].[






dR](T)[sP].[dR](G)[P].[LR](G)[sP].[LR](G)}$






$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](C)[sP].[dR](A)[sP].[L
CCCCAGG
SEQ ID NO:


ACAAACT
NO: 444
R](A)[sP].[dR](A)[sP].[dR](C)[sP].[dR](T)[sP].
AACTAGT
172


AGTTCCT

[LR](A)[sP].[dR](G)[sP].[dR](T)[sP].[LR](T)[s
TTGT



GGGG-3′

P].[dR](C)[sP].[dR](C)[sP].[dR](T)[sP].[LR](G)






[sP].[dR](G)[sP].[LR](G)[sP].[LR](G)}$$$$V2.






0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[LR](A)[s
TCCCCAG
SEQ ID NO:


CAAACTA
NO: 445
P].[dR](A)[sP].[dR](C)[P].[dR](T)[sP].[LR](A)
GAACTAG
173


GTTCCTG

[sP].[dR](G)[sP].[dR](T)[sP].[LR](T)[sP].[dR](
TTTG



GGGA-3′

C)[sP].[dR](C)[sP].[dR](T)[sP].[LR](G)[sP].[d






R](G)[sP].[dR](G)[sP].[LR](G)[sP].[LR](A)}$$






$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](A)[sP].[dR](A)[sP].[dR
ATCCCCA
SEQ ID NO:


AAACTAG
NO: 446
](C)[sP].[LR](T)[sP].[dR](A)[sP].[dR](G)[sP].[d
GGAACTA
174


TTCCTGG

R](T)[sP].[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].
GTTT



GGAT-3′

[dR](T)[sP].[LR](G)[sP].[dR](G)[sP].[dR](G)[s






P].[dR](G)[sP].[LR](A)[sP].[LR](T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](A)[sP].[dR](C)[sP].[d
TATCCCC
SEQ ID NO:


AACTAGT
NO: 447
R](T)[sP].[LR](A)[sP].[dR](G)[sP].[dR](T)[sP].
AGGAACT
175


TCCTGGG

[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[dR](T)[s
AGTT



GATA-3′

P].[LR](G)[sP].[dR](G)[sP].[dR](G)[sP].[LR](G






)[sP].[dR](A)[sP].[LR](T)[sP].[LR](A)}$$$$V2.






0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](C)[sP].[dR](T)[sP].[LR
TTATCCC
SEQ ID NO:


ACTAGTT
NO: 448
](A)[sP].[dR](G)[sP].[dR](T)[sP].[LR](T)[sP].[d
CAGGAAC
176


CCTGGGG

R](C)[sP].[dR](C)[sP].[dR](T)[sP].[LR](G)[sP].
TAGT



ATAA-3′

[dR](G)[sP].[dR](G)[sP].[dR](G)[sP].[LR](A)[s






P].[dR](T)[sP].[LR](A)[sP].[LR](A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](T)[sP].[LR](A)[s
CTTATCC
SEQ ID NO:


CTAGTTC
NO: 449
P].[dR](G)[sP].[dR](T)[sP].[LR](T)[sP].[dR](C)
CCAGGAA
177


CTGGGGA

[sP].[dR](C)[sP].[dR](T)[sP].[LR](G)[sP].[dR](
CTAG



TAAG-3′

G)[sP].[dR](G)[sP].[dR](G)[sP].[LR](A)[sP].[d






R](T)[sP].[dR](A)[sP].[LR](A)[sP].[LR](G)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](A)[sP].[dR](G)[sP].[d
TCTTATC
SEQ ID NO:


TAGTTCC
NO: 450
R](T)[sP].[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].
CCCAGGA
178


TGGGGAT

[dR](T)[sP].[LR](G)[sP].[dR](G)[sP].[dR](G)[s
ACTA



AAGA-3′

P].[dR](G)[sP].[LR](A)[sP].[dR](T)[sP].[dR](A)






[sP].[dR](A)[sP].[LR](G)[sP].[LR](A)}$$$$V2.






0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](G)[sP].[dR](T)[sP].[L
CTCTTAT
SEQ ID NO:


AGTTCCT
NO: 451
R](T)[sP].[dR](C)[sP].[dR](C)[sP].[dR](T)[sP].
CCCCAGG
179


GGGGATA

[LR](G)[sP].[dR](G)[sP].[dR](G)[sP].[dR](G)[s
AACT



AGAG-3′

P].[LR](A)[sP].[dR](T)[sP].[LR](A)[sP].[dR](A)






[sP].[dR](G)[sP].[LR](A)[sP].[LR](G)}$$$$V2.






0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](T)[sP].[LR](T)[sP].[dR
ACTCTTA
SEQ ID NO:


GTTCCTG
NO: 452
](C)[sP].[dR](C)[sP].[dR](T)[sP].[LR](G)[sP].[
TCCCCAG
180


GGGATAA

dR](G)[sP].[dR](G)[sP].[dR](G)[sP].[LR](A)[s
GAAC



GAGT-3′

P].[dR](T)[sP].[LR](A)[sP].[dR](A)[sP].[dR](G)






[sP].[dR](A)[sP].[LR](G)[sP].[LR](T)}$$$$V2.






0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](T)[sP].[dR](C)[sP].[dR
AACTCTT
SEQ ID NO:


TTCCTGG
NO: 453
](C)[P].[LR](T)[sP].[dR](G)[sP].[dR](G)[sP].[
ATCCCCA
181


GGATAAG

dR](G)[sP].[LR](G)[sP].[dR](A)[sP].[dR](T)[sP
GGAA



AGTT-3′

].[dR](A)[sP].[LR](A)[sP].[dR](G)[sP].[dR](A)[






sP].[dR](G)[sP].[LR](T)[sP].[LR](T)$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[d
GAACTCT
SEQ ID NO:


TCCTGGG
NO: 454
R](T)[sP].[LR](G)[sP].[dR](G)[sP].[dR](G)[sP]
TATCCCC
182


GATAAGA

.[dR](G)[sP].[LR](A)[P].[dR](T)[sP].[dR](A)[s
AGGA



GTTC-3′

P].[dR](A)[sP].[LR](G)[sP].[dR](A)[sP].[dR](G






)[sP].[dR](T)[sP].[LR](T)[sP].[LR]([5meC])}$$






$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[dR](T)[s
AGAACTC
SEQ ID NO:


CCTGGGG
NO: 455
P].[LR](G)[sP].[dR](G)[sP].[dR](G)[sP].[dR](G
TTATCCC
183


ATAAGAG

)[sP].[LR](A)[sP].[dR](T)[sP].[LR](A)[sP].[dR](
CAGG



TTCT-3′

A)[sP].[dR](G)[sP].[dR](A)[sP].[LR](G)[sP].[d






R](T)[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR](T






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](T)[sP].[LR](G)[s
AAGAACT
SEQ ID NO:


CTGGGGA
NO: 456
P].[dR](G)[sP].[dR](G)[sP].[dR](G)[sP].[LR](A
CTTATCC
184


TAAGAGT

)[sP].[dR](T)[sP].[LR](A)[sP].[dR](A)[sP].[dR](
CCAG



TCTT-3′

G)[sP].[dR](A)[sP].[LR](G)[sP].[dR](T)[sP].[d






R](T)[sP].[dR](C)[sP].[LR](T)[sP].[LR](T)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](G)[sP].[dR](G)[sP].[L
AAAGAAC
SEQ ID NO:


TGGGGAT
NO: 457
R](G)[sP].[dR](G)[sP].[dR](A)[sP].[dR](T)[sP].
TCTTATC
185


AAGAGTT

[LR](A)[sP].[dR](A)[sP].[LR](G)[sP].[dR](A)[s
CCCA



CTTT-3′

P].[dR](G)[sP].[dR](T)[sP].[LR](T)[sP].[dR](C)






[sP].[dR](T)[sP].[LR](T)[sP].[LR](T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](G)[sP].[dR](G)[sP].[d
GAAAGAA
SEQ ID NO:


GGGGATA
NO: 458
R](G)[sP].[LR](A)[sP].[dR](T)[sP].[LR](A)[sP].
CTCTTAT
186


AGAGTTC

[dR](A)[sP].[LR](G)[sP].[dR](A)[sP].[dR](G)[s
CCCC



TTTC-3′

P].[dR](T)[sP].[LR](T)[sP].[dR](C)[sP].[dR](T)[






sP].[dR](T)[sP].[LR](T)[sP].[LR]([5meC])}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](G)[sP].[dR](G)[sP].[L
GGAAAGA
SEQ ID NO:


GGGATAA
NO: 459
R](A)[sP].[dR](T)[sP].[dR](A)[sP].[dR](A)[sP].[
ACTCTTA
187


GAGTTCT

LR](G)[sP].[dR](A)[sP].[dR](G)[P].[dR](T)[sP
TCCC



TTCC-3′

].[LR](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR](T)[s






P].[dR](T)[sP].[LR]([5meC])[sP].[LR]([5meC])






}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](G)[sP].[dR](A)[sP].[d
TGGAAAG
SEQ ID NO:


GGATAAG
NO: 460
R](T)[sP].[LR](A)[sP].[dR](A)[sP].[dR](G)[sP].
AACTCTT
188


AGTTCTT

[dR](A)[sP].[LR](G)[sP].[dR](T)[sP].[dR](T)[s
ATCC



TCCA-3′

P].[dR](C)[sP].[LR](T)[sP].[dR](T)[sP].[dR](T)[






sP].[dR](C)[sP].[LR]([5meC])[sP].[LR](A)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](A)[sP].[dR](T)[sP].[L
CTGGAAA
SEQ ID NO:


GATAAGA
NO: 461
R](A)[sP].[dR](A)[sP].[LR](G)[P].[dR](A)[sP].
GAACTCT
189


GTTCTTT

[LR](G)[sP].[dR](T)[sP].[LR](T)[sP].[dR](C)[s
TATC



CCAG-3′

P].[LR](T)[sP].[dR](T)[sP].[LR](T)[sP].[dR](C)[






sP].[dR](C)[sP].[LR](A)[sP].[LR](G)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[dR](A)[sP].[dR
CCTGGAA
SEQ ID NO:


ATAAGAG
NO: 462
](A)[sP].[LR](G)[sP].[dR](A)[sP].[dR](G)[sP].[
AGAACTC
190


TTCTTTC

dR](T)[sP].[LR](T)[sP].[dR](C)[sP].[dR](T)[sP]
TTAT



CAGG-3′

.[dR](T)[sP].[LR](T)[sP].[dR](C)[sP].[dR](C)[s






P].[dR](A)[sP].[LR](G)[sP].[LR](G)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[P].[dR](A)[sP].[dR](A)[sP].[LR
TCCTGGA
SEQ ID NO:


TAAGAGT
NO: 463
](G)[sP].[dR](A)[sP].[dR](G)[sP].[dR](T)[sP].[
AAGAACT
191


TCTTTCC

LR](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR](T)[sP]
CTTA



AGGA-3′

.[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[s






P].[dR](G)[sP].[LR](G)[sP].[LR](A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](A)[sP].[dR](G)[sP].[L
TTCCTGG
SEQ ID NO:


AAGAGTT
NO: 464
R](A)[sP].[dR](G)[sP].[dR](T)[sP].[dR](T)[sP].
AAAGAAC
192


CTTTCCA

[LR]([5meC])[sP].[dR](T)[sP].[dR](T)[sP].[LR]
TCTT



GGAA-3′

(T)[sP].[dR](C)[sP].[LR]([5meC])[sP].[dR](A)[






sP].[dR](G)[sP].[dR](G)[sP].[LR](A)[sP].[LR](






A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](G)[sP].[dR](A)[sP].[d
TTTCCTG
SEQ ID NO:


AGAGTTC
NO: 465
R](G)[sP].[LR](T)[sP].[dR](T)[sP].[LR]([5meC]
GAAAGAA
193


TTTCCAG

)[sP].[dR](T)[sP].[dR](T)[sP].[LR](T)[sP].[dR](
CTCT



GAAA-3′

C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](G)[sP].[d






R](G)[sP].[dR](A)[sP].[LR](A)[P].[LR](A)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](A)[sP].[dR](G)[sP].[L
GTTTCCT
SEQ ID NO:


GAGTTCT
NO: 466
R](T)[sP].[dR](T)[sP].[dR](C)[sP].[dR](T)[sP].[
GGAAAGA
194


TTCCAGG

LR](T)[sP].[dR](T)[sP].[LR]([5meC])[sP].[dR](
ACTC



AAAC-3′

C)[sP].[dR](A)[sP].[dR](G)[sP].[LR](G)[sP].[d






R](A)[sP].[dR](A)[sP].[LR](A)[sP].[LR]([5meC]






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](G)[sP].[dR](T)[sP].[L
GGTTTCC
SEQ ID NO:


AGTTCTT
NO: 467
R](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR](T)[sP].[
TGGAAAG
195


TCCAGGA

dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP
AACT



AACC-3′

].[dR](G)[sP].[dR](G)[sP].[dR](A)[sP].[LR](A)[






sP].[dR](A)[P].[LR]([5meC])[sP].[LR]([5meC]






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](T)[sP].[LR](T)[sP].[dR
GGGTTTC
SEQ ID NO:


GTTCTTT
NO: 468
](C)[sP].[dR](T)[sP].[LR](T)[sP].[dR](T)[sP].[d
CTGGAAA
196


CCAGGAA

R](C)[sP].[dR](C)[P].[LR](A)[sP].[dR](G)[sP].
GAAC



ACCC-3′

[dR](G)[sP].[dR](A)[sP].[LR](A)[sP].[dR](A)[s






P].[dR](C)[sP].[LR]([5meC])[sP].[LR]([5meC])






}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](T)[sP].[dR](C)[sP].[dR
TGGGTTT
SEQ ID NO:


TTCTTTC
NO: 469
](T)[sP].[LR](T)[sP].[dR](T)[sP].[dR](C)[sP].[d
CCTGGAA
197


CAGGAAA

R](C)[sP].[LR](A)[sP].[dR](G)[sP].[dR](G)[sP]
AGAA



CCCA-3′

.[dR](A)[sP].[LR](A)[sP].[dR](A)[sP].[dR](C)[s






P].[dR](C)[sP].[LR]([5meC])[sP].[LR](A)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](T)[sP].[LR
CTGGGTT
SEQ ID NO:


TCTTTCC
NO: 470
](T)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[L
TCCTGGA
198


AGGAAAC

R](A)[sP].[dR](G)[sP].[dR](G)[sP].[LR](A)[sP].
AAGA



CCAG-3′

[dR](A)[sP].[LR](A)[sP].[dR](C)[sP].[dR](C)[s






P].[dR](C)[sP].[LR](A)[sP].[LR](G)$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](T)[sP].[LR](T)[s
CCTGGGT
SEQ ID NO:


CTTTCCA
NO: 471
P].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)
TTCCTGG
199


GGAAACC

[sP].[dR](G)[sP].[dR](G)[sP].[dR](A)[sP].[LR](
AAAG



CAGG-3′

A)[sP].[dR](A)[sP].[dR](C)[sP].[dR](C)[sP].[L






R]([5meC])[sP].[dR](A)[sP].[LR](G)[sP].[LR](






G)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[L
CTGCCTG
SEQ ID NO:


TCCAGGA
NO: 472
R](A)[sP].[dR](G)[sP].[dR](G)[sP].[LR](A)[sP].
GGTTTCC
200


AACCCAG

[dR](A)[sP].[LR](A)[sP].[dR](C)[sP].[dR](C)[s
TGGA



GCAG-3′

P].[dR](C)[sP].[LR](A)[sP].[dR](G)[sP].[dR](G






)[sP].[dR](C)[sP].[LR](A)[sP].[LR](G)}$$$$V2.






0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[P].[LR](A)[s
GCTGCCT
SEQ ID NO:


CCAGGAA
NO: 473
P].[dR](G)[sP].[dR](G)[sP].[dR](A)[P].[LR](A
GGGTTTC
201


ACCCAGG

)[sP].[dR](A)[sP].[dR](C)[sP].[dR](C)[sP].[LR]
CTGG



CAGC-3′

([5meC])[sP].[dR](A)[sP].[dR](G)[sP].[dR](G)[






sP].[LR]([5meC])[sP].[dR](A)[sP].[LR](G)[sP].






LR]([5meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[dR](G)[s
AGCTGCC
SEQ ID NO:


CAGGAAA
NO: 474
P].[dR](G)[sP].[LR](A)[sP].[dR](A)[sP].[LR](A)
TGGGTTT
202


CCCAGGC

[sP].[dR](C)[sP].[dR](C)[sP].[dR](C)[sP].[LR](
CCTG



AGCT-3′

A)[sP].[dR](G)[sP].[dR](G)[sP].[dR](C)[sP].[L






R](A)[sP].[dR](G)[sP].[LR]([5meC])[sP].[LR](






T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](G)[sP].[dR](G)[sP].[d
CAGCTGC
SEQ ID NO:


AGGAAAC
NO: 475
R](A)[P].[LR](A)[sP].[dR](A)[sP].[dR](C)[sP].
CTGGGTT
203


CCAGGCA

[dR](C)[sP].[LR]([5meC])[sP].[dR](A)[sP].[dR]
TCCT



GCTG-3′

(G)[sP].[dR](G)[sP].[LR]([5meC])[sP].[dR](A)[






sP].[dR](G)[sP].[dR](C)[sP].[LR](T)[sP].[LR](






G)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](G)[sP].[dR](A)[sP].[d
CCAGCTG
SEQ ID NO:


GGAAACC
NO: 476
R](A)[sP].[LR](A)[sP].[dR](C)[sP].[dR](C)[sP].
CCTGGGT
204


CAGGCAG

[dR](C)[sP].[LR](A)[sP].[dR](G)[sP].[dR](G)[s
TTCC



CTGG-3′

P].[dR](C)[sP].[LR](A)[sP].[dR](G)[sP].[dR](C






)[sP].[dR](T)[sP].[LR](G)[sP].[LR](G)}$$$$V2.






0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](A)[sP].[dR](A)[sP].[L
TCCAGCT
SEQ ID NO:


GAAACCC
NO: 477
R](A)[sP].[dR](C)[sP].[dR](C)[sP].[dR](C)[sP].
GCCTGGG
205


AGGCAGC

[LR](A)[sP].[dR](G)[sP].[dR](G)[sP].[dR](C)[s
TTTC



TGGA-3′

P].[LR](A)[sP].[dR](G)[sP].[dR](C)[sP].[LR](T)






[sP].[dR](G)[sP].[LR](G)[sP].[LR](A)}$$$$V2.






0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](A)[sP].[LR](A)[sP].[dR
TTCCAGC
SEQ ID NO:


AAACCCA
NO: 478
](C)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[
TGCCTGG
206


GGCAGCT

dR](G)[sP].[dR](G)[sP].[dR](C)[P].[LR](A)[s
GTTT



GGAA-3′

P].[dR](G)[sP].[dR](C)[sP].[dR](T)[sP].[LR](G






)[sP].[dR](G)[sP].[LR](A)[sP].[LR](A)}$$$$V2.






0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](A)[sP].[dR](C)[sP].[d
CTTCCAG
SEQ ID NO:


AACCCAG
NO: 479
R](C)[sP].[LR]([5meC])[sP].[dR](A)[sP].[dR](
CTGCCTG
207


GCAGCTG

G)[sP].[dR](G)[sP].[LR]([5meC])[sP].[dR](A)[s
GGTT



GAAG-3′

P].[dR](G)[sP].[dR](C)[sP].[LR](T)[sP].[dR](G






)[sP].[dR](G)[sP].[dR](A)[sP].[LR](A)[sP].[LR]






(G)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](C)[sP].[dR](C)[sP].[d
TCTTCCA
SEQ ID NO:


ACCCAGG
NO: 480
R](C)[sP].[LR](A)[sP].[dR](G)[sP].[dR](G)[sP]
GCTGCCT
208


CAGCTGG

.[dR](C)[sP].[LR](A)[sP].[dR](G)[sP].[dR](C)[s
GGGT



AAGA-3′

P].[dR](T)[sP].[LR](G)[sP].[dR](G)[sP].[dR](A)






[sP].[dR](A)[sP].[LR](G)[sP].[LR](A)}$$$$V2.






0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[dR](C)[s
CTCTTCC
SEQ ID NO:


CCCAGGC
NO: 481
P].[LR](A)[P].[dR](G)[sP].[dR](G)[sP].[dR](C
AGCTGCC
209


AGCTGGA

)[sP].[LR](A)[sP].[dR](G)[sP].[dR](C)[sP].[dR]
TGGG



AGAG-3′

(T)[sP].[LR](G)[sP].[dR](G)[sP].[LR](A)[sP].[d






R](A)[sP].[dR](G)[sP].[LR](A)[sP].[LR](G)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[LR](A)[s
TCTCTTC
SEQ ID NO:


CCAGGCA
NO: 482
P].[dR](G)[sP].[dR](G)[sP].[dR](C)[sP].[LR](A
CAGCTGC
210


GCTGGAA

)[sP].[dR](G)[sP].[dR](C)[sP].[dR](T)[sP].[LR]
CTGG



GAGA-3′

(G)[sP].[dR](G)[sP].[LR](A)[sP].[dR](A)[sP].[d






R](G)[sP].[dR](A)[sP].[LR](G)[sP].[LR](A)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[dR](G)[s
GTCTCTT
SEQ ID NO:


CAGGCAG
NO: 483
P].[dR](G)[sP].[LR]([5meC])[sP].[dR](A)[sP].[
CCAGCTG
211


CTGGAAG

dR](G)[sP].[dR](C)[sP].[LR](T)[sP].[dR](G)[sP
CCTG



AGAC-3′

].[dR](G)[sP].[dR](A)[sP].[LR](A)[sP].[dR](G)[






sP].[dR](A)[sP].[dR](G)[sP].[LR](A)[sP].[LR]([






5meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](G)[sP].[dR](G)[sP].[d
TGTCTCT
SEQ ID NO:


AGGCAGC
NO: 484
R](C)[sP].[LR](A)[sP].[dR](G)[sP].[dR](C)[sP].
TCCAGCT
212


TGGAAGA

[dR](T)[sP].[LR](G)[sP].[dR](G)[sP].[dR](A)[s
GCCT



GACA-3′

P].[dR](A)[sP].[LR](G)[sP].[dR](A)[sP].[dR](G






)[sP].[dR](A)[sP].[LR]([5meC])[sP].[LR](A)}$$






$$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](C)[sP].[dR](A)[sP].[d
TATGTCT
SEQ ID NO:


GCAGCTG
NO: 485
R](G)[sP].[LR]([5meC])[sP].[dR](T)[sP].[dR](
CTTCCAG
213


GAAGAGA

G)[sP].[dR](G)[sP].[LR](A)[sP].[dR](A)[sP].[d
CTGC



CATA-3′

R](G)[sP].[dR](A)[sP].[LR](G)[sP].[dR](A)[sP].






[dR](C)[sP].[dR](A)[sP].[LR](T)[sP].[LR](A)}$






$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[dR](G)[s
GTATGTC
SEQ ID NO:


CAGCTGG
NO: 486
P].[dR](C)[sP].[LR](T)[sP].[dR](G)[sP].[dR](G
TCTTCCA
214


AAGAGAC

)[sP].[LR](A)[sP].[dR](A)[sP].[dR](G)[sP].[LR]
GCTG



ATAC-3′

(A)[sP].[dR](G)[sP].[LR](A)[sP].[dR](C)[sP].[L






R](A)[sP].[dR](T)[sP].[LR](A)[sP].[LR]([5meC]






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](G)[sP].[dR](C)[sP].[d
GGTATGT
SEQ ID NO:


AGCTGGA
NO: 487
R](T)[sP].[LR](G)[P].[dR](G)[sP].[LR](A)[sP].
CTCTTCC
215


AGAGACA

[dR](A)[sP].[dR](G)[sP].[dR](A)[sP].[LR](G)[s
AGCT



TACC-3′

P].[dR](A)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)






[sP].[dR](A)[sP].[LR]([5meC])[sP].[LR]([5meC






])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](C)[sP].[dR](T)[sP].[d
GGGTATG
SEQ ID NO:


GCTGGAA
NO: 488
R](G)[sP].[LR](G)[sP].[dR](A)[sP].[dR](A)[sP].
TCTCTTC
216


GAGACAT

[dR](G)[sP].[LR](A)[sP].[dR](G)[sP].[dR](A)[s
CAGC



ACCC-3′

P].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](A)






[sP].[dR](C)[sP].[LR]([5meC])[sP].[LR]([5meC






])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](T)[sP].[dR](G)[s
TGGGTAT
SEQ ID NO:


CTGGAAG
NO: 489
P].[dR](G)[sP].[LR](A)[sP].[dR](A)[sP].[dR](G
GTCTCTT
217


AGACATA

)[sP].[dR](A)[sP].[LR](G)[sP].[dR](A)[sP].[dR]
CCAG



CCCA-3′

(C)[sP].[LR](A)[sP].[dR](T)[sP].[LR](A)[sP].[d






R](C)[sP].[dR](C)[sP].[LR]([5meC])[sP].[LR](






A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[P].[dR](G)[sP].[dR](G)[sP].[L
CTGGGTA
SEQ ID NO:


TGGAAGA
NO: 490
R](A)[sP].[dR](A)[sP].[dR](G)[sP].[dR](A)[sP].
TGTCTCT
218


GACATAC

[LR](G)[sP].[dR](A)[sP].[dR](C)[sP].[LR](A)[s
TCCA



CCAG-3′

P].[dR](T)[sP].[LR](A)[sP].[dR](C)[sP].[dR](C)






[sP].[dR](C)[sP].[LR](A)[sP].[LR](G)}$$$$V2.






0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](G)[sP].[LR](A)[sP].[d
TCTGGGT
SEQ ID NO:


GGAAGAG
NO: 491
R](A)[sP].[dR](G)[sP].[dR](A)[sP].[LR](G)[sP].
ATGTCTC
219


ACATACC

[dR](A)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[s
TTCC



CAGA-3′

P].[dR](A)[sP].[dR](C)[sP].[LR]([5meC])[sP].[






dR](C)[sP].[dR](A)[sP].[LR](G)[sP].[LR](A)}$$






$$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](A)[sP].[dR](A)[sP].[L
GTCTGGG
SEQ ID NO:


GAAGAGA
NO: 492
R](G)[sP].[dR](A)[sP].[dR](G)[sP].[LR](A)[sP].
TATGTCT
220


CATACCC

[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](A)[s
CTTC



AGAC-3′

P].[dR](C)[sP].[LR]([5meC])[sP].[dR](C)[sP].[






dR](A)[sP].[dR](G)[sP].[LR](A)[sP].[LR]([5me






C])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](A)[sP].[dR](G)[sP].[d
TGTCTGG
SEQ ID NO:


AAGAGAC
NO: 493
R](A)[sP].[LR](G)[sP].[dR](A)[P].[dR](C)[sP].
GTATGTC
22


ATACCCA

[LR](A)[sP].[dR](T)[sP].[LR](A)[sP].[dR](C)[s
TCTT



GACA-3′

P].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](G






)[sP].[dR](A)[sP].[LR]([5meC])[sP].[LR](A)}$$






$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](G)[sP].[dR](A)[sP].[d
GTGTCTG
SEQ ID NO:


AGAGACA
NO: 494
R](G)[sP].[LR](A)[sP].[dR](C)[sP].[dR](A)[sP].
GGTATGT
222


TACCCAG

[dR](T)[sP].[LR](A)[sP].[dR](C)[sP].[dR](C)[s
CTCT



ACAC-3′

P].[dR](C)[sP].[LR](A)[sP].[dR](G)[sP].[dR](A)






[sP].[dR](C)[sP].[LR](A)[sP].[LR]([5meC])}$$






$$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](A)[sP].[dR](G)[sP].[L
TGTGTCT
SEQ ID NO:


GAGACAT
NO: 495
R](A)[sP].[dR](C)[sP].[dR](A)[sP].[dR](T)[sP].
GGGTATG
223


ACCCAGA

[LR](A)[sP].[dR](C)[sP].[dR](C)[sP].[dR](C)[s
TCTC



CACA-3′

P].[LR](A)[sP].[dR](G)[sP].[dR](A)[sP].[dR](C)






[sP].[LR](A)[sP].[LR]([5meC])[sP].[LR](A)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](G)[sP].[LR](A)[sP].[d
TTGTGTC
SEQ ID NO:


AGACATA
NO: 496
R](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](A)[sP].
TGGGTAT
224


CCCAGAC

[dR](C)[sP].[LR]([5meC])[sP].[dR](C)[sP].[dR]
GTCT



ACAA-3′

(A)[sP].[dR](G)[sP].[LR](A)[sP].[dR](C)[sP].[L






R](A)[sP].[dR](C)[sP].[LR](A)[sP].[LR](A)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](A)[sP].[LR]([5meC])[s
TTTGTGT
SEQ ID NO:


GACATAC
NO: 497
P].[dR](A)[sP].[LR](T)[sP].[dR](A)[sP].[dR](C)
CTGGGTA
225


CCAGACA

[sP].[LR]([5meC])[sP].[dR](C)[sP].[LR](A)[sP]
TGTC



CAAA-3′

.[dR](G)[sP].[dR](A)[sP].[dR](C)[sP].[LR](A)[s






P].[dR](C)[sP].[dR](A)[sP].[LR](A)[sP].[LR](A)






}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](C)[sP].[dR](A)[sP].[d
GTTTGTG
SEQ ID NO:


ACATACC
NO: 498
R](T)[sP].[LR](A)[sP].[dR](C)[sP].[dR](C)[sP].
TCTGGGT
226


CAGACAC

[LR]([5meC])[sP].[dR](A)[sP].[LR](G)[sP].[dR]
ATGT



AAAC-3′

(A)[sP].[LR]([5meC])[sP].[dR](A)[sP].[LR]([5m






eC])[sP].[dR](A)[sP].[dR](A)[sP].[LR](A)[sP].[






LR]([5meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[dR](T)[s
CGTTTGT
SEQ ID NO:


CATACCC
NO: 499
P].[LR](A)[sP].[dR](C)[sP].[dR](C)[sP].[dR](C)
GTCTGGG
227


AGACACA

[sP].[LR](A)[sP].[dR](G)[sP].[dR](A)[sP].[LR]([
TATG



AACG-3′

5meC])[sP].[dR](A)[sP].[dR](C)[sP].[LR](A)[s






P].[dR](A)[sP].[dR](A)[sP].[LR]([5meC])[sP].[






LR](G)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[LR](A)[sP].[dR
CCGTTTG
SEQ ID NO:


ATACCCA
NO: 500
](C)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[
TGTCTGG
228


GACACAA

dR](G)[sP].[dR](A)[sP].[dR](C)[sP].[LR](A)[sP
GTAT



ACGG-3′

].[dR](C)[sP].[LR](A)[sP].[dR](A)[sP].[dR](A)[s






P].[dR](C)[sP].[LR](G)[sP].[LR](G)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](A)[sP].[dR](C)[sP].[dR
GCCGTTT
SEQ ID NO:


TACCCAG
NO: 501
](C)[sP].[LR]([5meC])[sP].[dR](A)[sP].[dR](G)
GTGTCTG
229


ACACAAA

[sP].[dR](A)[sP].[LR]([5meC])[sP].[dR](A)[sP].
GGTA



CGGC-3′

[dR](C)[sP].[dR](A)[sP].[LR](A)[sP].[dR](A)[s






P].[dR]([5meC])[sP].[dR](G)[sP].[LR](G)[sP].[






LR]([5meC])]$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](C)[sP].[dR](C)[sP].[d
GGCCGTT
SEQ ID NO:


ACCCAGA
NO: 502
R](C)[sP].[LR](A)[sP].[dR](G)[sP].[dR](A)[sP].
TGTGTCT
230


CACAAAC

[dR](C)[sP].[LR](A)[sP].[dR](C)[sP].[dR](A)[s
GGGT



GGCC-3′

P].[dR](A)[sP].[LR](A)[sP].[dR]([5meC])[sP].[






dR](G)[sP].[dR](G)[sP].[LR]([5meC])[sP].[LR]






([5meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[dR](C)[s
GGGCCGT
SEQ ID NO:


CCCAGAC
NO: 503
P].[LR](A)[sP].[dR](G)[sP].[dR](A)[sP].[dR](C)
TTGTGTC
231


ACAAACG

[sP].[LR](A)[sP].[dR](C)[sP].[LR](A)[sP].[dR](
TGGG



GCCC-3′

A)[sP].[dR](A)[sP].[LR]([5meC])[sP].[dR](G)[s






P].[dR](G)[sP].[dR](C)[sP].[LR]([5meC])[sP].[






LR]([5meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[dR](A)[s
TGGGCCG
SEQ ID NO:


CCAGACA
NO: 504
P].[dR](G)[sP].[LR](A)[sP].[dR](C)[sP].[dR](A)
TTTGTGT
232


CAAACGG

[sP].[dR](C)[sP].[LR](A)[sP].[dR](A)[sP].[dR](
CTGG



CCCA-3′

A)[sP].[dR](C)[sP].[LR](G)[sP].[dR](G)[sP].[d






R](C)[sP].[dR](C)[sP].[LR]([5meC])[sP].[LR](






A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[dR](G)[s
TTGGGCC
SEQ ID NO:


CAGACAC
NO: 505
P].[dR](A)[sP].[LR]([5meC])[sP].[dR](A)[sP].[
GTTTGTG
233


AAACGGC

dR](C)[sP].[dR](A)[sP].[LR](A)[sP].[dR](A)[sP
TCTG



CCAA-3′

].[dR]([5meC])[sP].[dR](G)[P].[LR](G)[sP].[d






R](C)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].






[LR](A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[P].[dR](G)[sP].[dR](A)[sP].[d
ATTGGGC
SEQ ID NO:


AGACACA
NO: 506
R](C)[sP].[LR](A)[sP].[dR](C)[sP].[dR](A)[sP].
CGTTTGT
234


AACGGCC

[dR](A)[sP].[LR](A)[sP].[dR]([5meC])[sP].[dR]
GTCT



CAAT-3′

(G)[sP].[dR](G)[sP].[LR]([5meC])[sP].[dR](C)[






sP].[dR](C)[sP].[dR](A)[sP].[LR](A)[sP].[LR](T






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[P].[dR](C)[sP].[dR](A)[sP].[d
GGATTGG
SEQ ID NO:


ACACAAA
NO: 507
R](C)[sP].[LR](A)[sP].[dR](A)[sP].[dR](A)[sP].
GCCGTTT
235


CGGCCCA

[dR](C)[sP].[LR](G)[sP].[dR](G)[sP].[dR](C)[s
GTGT



ATCC-3′

P].[dR](C)[sP].[LR]([5meC])[sP].[dR](A)[sP].[






dR](A)[sP].[dR](T)[sP].[LR]([5meC])[sP].[LR](






[5meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[dR](C)[s
AGGATTG
SEQ ID NO:


CACAAAC
NO: 508
P].[dR](A)[sP].[LR](A)[sP].[dR](A)[sP].[dR]([5
GGCCGTT
236


GGCCCAA

meC])[sP].[dR](G)[sP].[LR](G)[sP].[dR](C)[sP
TGTG



TCCT-3′

].[dR](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](A)[






sP].[dR](T)[sP].[dR](C)[sP].[LR]([5meC])[sP].[






LR](T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](C)[sP].[dR](A)[sP].[d
CAGGATT
SEQ ID NO:


ACAAACG
NO: 509
R](A)[P].[LR](A)[sP].[dR]([5meC])[sP].[dR](
GGGCCGT
237


GCCCAAT

G)[sP].[dR](G)[sP].[LR]([5meC])[sP].[dR](C)[
TTGT



CCTG-3′

sP].[dR](C)[sP].[dR](A)[sP].[LR](A)[sP].[dR](T






)[sP].[dR](C)[sP].[dR](C)[sP].[LR](T)[sP].[LR](






G)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[LR](A)[s
TCAGGAT
SEQ ID NO:


CAAACGG
NO: 510
P].[dR](A)[sP].[dR]([5meC])[sP].[dR](G)[sP].[
TGGGCCG
238


CCCAATC

LR](G)[sP].[dR](C)[sP].[dR](C)[sP].[dR](C)[s
TTTG



CTGA-3′

P].[LR](A)[sP].[dR](A)[sP].[LR](T)[sP].[dR](C)






[sP].[dR](C)[sP].[dR](T)[sP].[LR](G)[sP].[LR](






A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](A)[sP].[dR](A)[sP].[dR
CTCAGGA
SEQ ID NO:


AAACGGC
NO: 511
](C)[sP].[LR](G)[sP].[dR](G)[sP].[dR](C)[sP].[
TTGGGCC
239


CCAATCC

dR](C)[P].[LR]([5meC])[sP].[dR](A)[sP].[dR](
GTTT



TGAG-3′

A)[sP].[dR](T)[sP].[LR]([5meC])[sP].[dR](C)[s






P].[dR](T)[sP].[dR](G)[sP].[LR](A)[sP].[LR](G)






}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](A)[sP].[dR]([5meC])[s
ACTCAGG
SEQ ID NO:


AACGGCC
NO: 512
P].[dR](G)[sP].[LR](G)[sP].[dR](C)[sP].[dR](C
ATTGGGC
240


CAATCCT

)[sP].[dR](C)[sP].[LR](A)[sP].[dR](A)[sP].[LR](
CGTT



GAGT-3′

T)[sP].[dR](C)[sP].[dR](C)[sP].[dR](T)[sP].[LR






](G)[sP].[dR](A)[sP].[LR](G)[sP].[LR](T)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR]([5meC])[sP].[dR](G)[s
CACTCAG
SEQ ID NO:


ACGGCCC
NO: 513
P].[LR](G)[sP].[dR](C)[sP].[dR](C)[sP].[dR](C
GATTGGG
241


AATCCTG

)[sP].[LR](A)[sP].[dR](A)[sP].[LR](T)[sP].[dR](
CCGT



AGTG-3′

C)[sP].[dR](C)[sP].[dR](T)[sP].[LR](G)[sP].[d






R](A)[sP].[dR](G)[sP].[LR](T)[sP].[LR](G)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](G)[sP].[dR](G)[s
CCACTCA
SEQ ID NO:


CGGCCCA
NO: 514
P].[dR](C)[sP].[LR]([5meC])[sP].[dR](C)[sP].[
GGATTGG
242


ATCCTGA

dR](A)[sP].[dR](A)[sP].[LR](T)[sP].[dR](C)[sP
GCCG



GTGG-3′

].[dR](C)[sP].[dR](T)[sP].[LR](G)[sP].[dR](A)[






sP].[dR](G)[sP].[dR](T)[sP].[LR](G)[sP].[LR](






G)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](G)[sP].[dR](C)[sP].[d
ACCACTC
SEQ ID NO:


GGCCCAA
NO: 515
R](C)[sP].[LR]([5meC])[sP].[dR](A)[sP].[dR](
AGGATTG
243


TCCTGAG

A)[sP].[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[d
GGCC



TGGT-3′

R](T)[sP].[LR](G)[sP].[dR](A)[sP].[LR](G)[sP].






[dR](T)[sP].[dR](G)[sP].[LR](G)[sP].[LR](T)}$






$$$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](C)[sP].[dR](C)[sP].[d
AACCACT
SEQ ID NO:


GCCCAAT
NO: 516
R](C)[sP].[LR](A)[sP].[dR](A)[sP].[LR](T)[sP].
CAGGATT
244


CCTGAGT

[dR](C)[sP].[dR](C)[sP].[dR](T)[sP].[LR](G)[s
GGGC



GGTT-3′

P].[dR](A)[sP].[dR](G)[sP].[dR](T)[sP].[LR](G)






[sP].[dR](G)[sP].[LR](T)[sP].[LR](T)}$$$$V2.






0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[dR](C)[s
TAACCAC
SEQ ID NO:


CCCAATC
NO: 517
P].[LR](A)[sP].[dR](A)[sP].[LR](T)[sP].[dR](C)
TCAGGAT
245


CTGAGTG

[sP].[dR](C)[sP].[dR](T)[sP].[LR](G)[sP].[dR](
TGGG



GTTA-3′

A)[sP].[dR](G)[sP].[dR](T)[sP].[LR](G)[sP].[d






R](G)[sP].[dR](T)[sP].[LR](T)[sP].[LR](A)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[dR](A)[s
CTAACCA
SEQ ID NO:


CCAATCC
NO: 518
P].[dR](A)[sP].[LR](T)[sP].[dR](C)[sP].[dR](C)
CTCAGGA
246


TGAGTGG

[sP].[dR](T)[sP].[LR](G)[sP].[dR](A)[sP].[dR](
TTGG



TTAG-3′

G)[sP].[dR](T)[sP].[LR](G)[sP].[dR](G)[sP].[d






R](T)[sP].[dR](T)[sP].[LR](A)[sP].[LR](G)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[P].[dR](A)[sP].[dR](A)[s
CCTAACC
SEQ ID NO:


CAATCCT
NO: 519
P].[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[dR](T)
ACTCAGG
247


GAGTGGT

[sP].[LR](G)[sP].[dR](A)[sP].[dR](G)[sP].[dR](
ATTG



TAGG-3′

T)[sP].[LR](G)[sP].[dR](G)[P].[LR](T)[sP].[d






R](T)[sP].[dR](A)[sP].[LR](G)[sP].[LR](G)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](A)[sP].[LR](T)[sP].[dR
CCCTAAC
SEQ ID NO:


AATCCTG
NO: 520
](C)[sP].[dR](C)[sP].[dR](T)[sP].[LR](G)[sP].[
CACTCAG
248


AGTGGTT

dR](A)[sP].[dR](G)[sP].[dR](T)[sP].[LR](G)[sP
GATT



AGGG-3′

].[dR](G)[sP].[dR](T)[sP].[dR](T)[sP].[LR](A)[s






P].[dR](G)[sP].[LR](G)[sP].[LR](G)$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[LR]([5meC])[s
GCCCTAA
SEQ ID NO:


ATCCTGA
NO: 521
P].[dR](C)[sP].[dR](T)[sP].[LR](G)[sP].[dR](A)
CCACTCA
249


GTGGTTA

[sP].[dR](G)[sP].[dR](T)[sP].[LR](G)[sP].[dR](
GGAT



GGGC-3′

G)[sP].[dR](T)[sP].[dR](T)[sP].[LR](A)[sP].[dR






](G)[sP].[dR](G)[sP].[LR](G)[sP].[LR]([5meC])






}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[d
AGCCCTA
SEQ ID NO:


TCCTGAG
NO: 522
R](T)[sP].[LR](G)[sP].[dR](A)[sP].[dR](G)[sP].
ACCACTC
250


TGGTTAG

[dR](T)[sP].[LR](G)[sP].[dR](G)[sP].[dR](T)[s
AGGA



GGCT-3′

P].[dR](T)[sP].[LR](A)[sP].[dR](G)[sP].[dR](G)






[sP].[dR](G)[sP].[LR]([5meC])[sP].[LR](T)}$$






$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[dR](T)[s
CAGCCCT
SEQ ID NO:


CCTGAGT
NO: 523
P].[LR](G)[sP].[dR](A)[sP].[dR](G)[sP].[dR](T)
AACCACT
251


GGTTAGG

[sP].[LR](G)[sP].[dR](G)[sP].[dR](T)[sP].[dR](
CAGG



GCTG-3′

T)[sP].[LR](A)[sP].[dR](G)[sP].[dR](G)[sP].[L






R](G)[sP].[dR](C)[sP].[LR](T)[sP].[LR](G)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](T)[sP].[LR](G)[s
CCAGCCC
SEQ ID NO:


CTGAGTG
NO: 524
P].[dR](A)[sP].[dR](G)[sP].[dR](T)[sP].[LR](G)
TAACCAC
252


GTTAGGG

[sP].[dR](G)[sP].[dR](T)[sP].[dR](T)[sP].[LR](
TCAG



CTGG-3′

A)[sP].[dR](G)[sP].[dR](G)[sP].[LR](G)[sP].[d






R](C)[sP].[dR](T)[sP].[LR](G)[sP].[LR](G)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](G)[sP].[dR](A)[sP].[d
TCCAGCC
SEQ ID NO:


TGAGTGG
NO: 525
R](G)[sP].[LR](T)[sP].[dR](G)[sP].[dR](G)[sP]
CTAACCA
253


TTAGGGC

.[dR](T)[sP].[LR](T)[sP].[dR](A)[sP].[dR](G)[s
CTCA



TGGA-3′

P].[dR](G)[sP].[LR](G)[sP].[dR](C)[sP].[dR](T






)[sP].[dR](G)[sP].[LR](G)[sP].[LR](A)}$$$$V2






0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](A)[sP].[dR](G)[sP].[d
TTCCAGC
SEQ ID NO:


GAGTGGT
NO: 526
R](T)[sP].[LR](G)[sP].[dR](G)[sP].[dR](T)[sP].
CCTAACC
254


TAGGGCT

[dR](T)[sP].[LR](A)[sP].[dR](G)[sP].[dR](G)[s
ACTC



GGAA-3′

P].[dR](G)[sP].[LR]([5meC])[sP].[dR](T)[sP].[






dR](G)[sP].[dR](G)[sP].[LR](A)[sP].[LR](A)}$$






$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](G)[sP].[dR](T)[sP].[L
ATTCCAG
SEQ ID NO:


AGTGGTT
NO: 527
R](G)[sP].[dR](G)[sP].[dR](T)[sP].[dR](T)[sP].
CCCTAAC
255


AGGGCTG

[LR](A)[sP].[dR](G)[sP].[dR](G)[sP].[LR](G)[s
CACT



GAAT-3′

P].[dR](C)[sP].[dR](T)[sP].[dR](G)[sP].[LR](G






)[sP].[dR](A)[sP].[LR](A)[sP].[LR](T)}$$$$V2.






0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](T)[sP].[dR](G)[sP].[d
TATTCCA
SEQ ID NO:


GTGGTTA
NO: 528
R](G)[sP].[LR](T)[sP].[dR](T)[sP].[dR](A)[sP].
GCCCTAA
256


GGGCTG

[dR](G)[sP].[LR](G)[sP].[dR](G)[sP].[dR](C)[s
CCAC



GAATA-3′

P].[dR](T)[sP].[LR](G)[sP].[dR](G)[sP].[dR](A)






[sP].[dR](A)[sP].[LR](T)[sP].[LR](A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](G)[sP].[dR](G)[sP].[d
CTATTCC
SEQ ID NO:


TGGTTAG
NO: 529
R](T)[sP].[LR](T)[sP].[dR](A)[sP].[dR](G)[sP].
AGCCCTA
257


GGCTGGA

[dR](G)[sP].[LR](G)[sP].[dR](C)[sP].[dR](T)[
ACCA



ATAG-3′

P].[dR](G)[sP].[LR](G)[sP].[dR](A)[sP].[dR](A






)[sP].[dR](T)[sP].[LR](A)[sP].[LR](G)}$$$$V2.






0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](G)[sP].[dR](T)[sP].[d
TCTATTC
SEQ ID NO:


GGTTAGG
NO: 530
R](T)[sP].[LR](A)[sP].[dR](G)[sP].[dR](G)[sP].
CAGCCCT
258


GCTGGAA

[dR](G)[sP].[LR]([5meC])[sP].[dR](T)[sP].[dR]
AACC



TAGA-3′

(G)[sP].[dR](G)[sP].[LR](A)[sP].[dR](A)[sP].[d






R](T)[sP].[dR](A)[sP].[LR](G)[sP].[LR](A)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](T)[sP].[dR](T)[sP].[LR
TTCTATTC
SEQ ID NO:


GTTAGGG
NO: 531
](A)[sP].[dR](G)[sP].[dR](G)[sP].[LR](G)[sP].[
CAGCCCT
259


CTGGAAT

dR](C)[sP].[LR](T)[sP].[dR](G)[sP].[dR](G)[sP
AAC



AGAA-3′

].[dR](A)[sP].[LR](A)[sP].[dR](T)[sP].[dR](A)[s






P].[dR](G)[sP].[LR](A)[sP].[LR](A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](T)[sP].[LR](A)[sP].[dR
CTTCTATT
SEQ ID NO:


TTAGGGC
NO: 532
](G)[sP].[dR](G)[sP].[LR](G)[sP].[dR](C)[sP].[
CCAGCCC
260


TGGAATA

dR](T)[sP].[dR](G)[sP].[LR](G)[sP].[dR](A)[sP
TAA



GAAG-3′

].[LR](A)[sP].[dR](T)[sP].[LR](A)[sP].[dR](G)[s






P].[dR](A)[sP].[LR](A)[sP].[LR](G)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](A)[sP].[dR](G)[sP].[d
CCTTCTA
SEQ ID NO:


TAGGGCT
NO: 533
R](G)[sP].[LR](G)[sP].[dR](C)[sP].[dR](T)[sP].
TTCCAGC
26


GGAATAG

[dR](G)[sP].[LR](G)[sP].[dR](A)[sP].[dR](A)[s
CCTA



AAGG-3′

P].[dR](T)[sP].[LR](A)[sP].[dR](G)[sP].[dR](A)






[sP].[dR](A)[sP].[LR](G)[sP].[LR](G)}$$$$V2.






0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](G)[sP].[dR](G)[sP].[d
TCCTTCT
SEQ ID NO:


AGGGCTG
NO: 534
R](G)[sP].[LR]([5meC])[sP].[dR](T)[sP].[dR](
ATTCCAG
262


GAATAGA

G)[sP].[dR](G)[sP].[LR](A)[sP].[dR](A)[sP].[d
CCCT



AGGA-3′

R](T)[sP].[dR](A)[sP].[LR](G)[sP].[dR](A)[sP].






[dR](A)[sP].[dR](G)[sP].[LR](G)[sP].[LR](A)}$






$$$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](G)[sP].[dR](G)[sP].[d
TTCCTTC
SEQ ID NO:


GGGCTG
NO: 535
R](C)[sP].[LR](T)[sP].[dR](G)[sP].[dR](G)[sP].
TATTCCA
263


GAATAGA

[dR](A)[sP].[LR](A)[sP].[dR](T)[sP].[LR](A)[sP
GCCC



AGGAA-3′

].[dR](G)[sP].[LR](A)[sP].[dR](A)[sP].[dR](G)[






sP].[dR](G)[sP].[LR](A)[sP].[LR](A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](G)[sP].[dR](C)[sP].[d
CTTCCTT
SEQ ID NO:


GGCTGGA
NO: 536
R](T)[sP].[LR](G)[sP].[dR](G)[sP].[dR](A)[sP].
CTATTCC
264


ATAGAAG

[LR](A)[sP].[dR](T)[sP].[dR](A)[sP].[dR](G)[s
AGCC



GAAG-3′

P].[LR](A)[sP].[dR](A)[sP].[dR](G)[sP].[LR](G






)[sP].[dR](A)[sP].[LR](A)[sP].[LR](G)}$$$$V2.






0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](C)[sP].[dR](T)[sP].[d
TCTTCCT
SEQ ID NO:


GCTGGAA
NO: 537
R](G)[sP].[LR](G)[sP].[dR](A)[sP].[LR](A)[sP].
TCTATTC
265


TAGAAGG

[dR](T)[sP].[dR](A)[sP].[dR](G)[sP].[LR](A)[s
CAGC



AAGA-3′

P].[LR](A)[sP].[dR](G)[sP].[dR](G)[sP].[LR](A






)[sP].[dR](A)[sP].[LR](G)[sP].[LR](A)}$$$$V2.






0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[LR](T)[sP].[dR](G)[s
TTCTTCC
SEQ ID NO:


CTGGAAT
NO: 538
P].[dR](G)[sP].[dR](A)[sP].[LR](A)[sP].[dR](T)
TTCTATTC
266


AGAAGGA

[sP].[dR](A)[sP].[LR](G)[sP].[LR](A)[sP].[dR](
CAG



AGAA-3′

A)[sP].[LR](G)[sP].[dR](G)[sP].[dR](A)[sP].[L






R](A)[sP].[dR](G)[sP].[LR](A)[sP].[LR](A)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](G)[sP].[LR](G)[sP].[L
GTTCTTC
SEQ ID NO:


TGGAATA
NO: 539
R](A)[sP].[dR](A)[sP].[dR](T)[sP].[LR](A)[sP].[
CTTCTATT
267


GAAGGAA

LR](G)[sP].[dR](A)[sP].[dR](A)[sP].[dR](G)[sP
CCA



GAAC-3′

].[LR](G)[sP].[dR](A)[sP].[LR](A)[sP].[LR](G)[






sP].[dR](A)[sP].[LR](A)[sP].[LR]([5meC])}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](G)[sP].[LR](A)[sP].[d
GGTTCTT
SEQ ID NO:


GGAATAG
NO: 540
R](A)[P].[LR](T)[sP].[dR](A)[sP].[dR](G)[sP].
CCTTCTA
268


AAGGAAG

[dR](A)[sP].[LR](A)[sP].[dR](G)[sP].[dR](G)[s
TTCC



AACC-3′

P].[LR](A)[sP].[dR](A)[sP].[dR](G)[sP].[dR](A)






[sP].[LR](A)[sP].[LR]([5meC])[sP].[LR]([5meC






])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](G)[sP].[dR](A)[sP].[dR](A)[sP].[L
AGGTTCT
SEQ ID NO:


GAATAGA
NO: 541
R](T)[sP].[dR](A)[sP].[dR](G)[sP].[LR](A)[sP].
TCCTTCT
269


AGGAAGA

[LR](A)[sP].[dR](G)[sP].[LR](G)[sP].[dR](A)[s
ATTC



ACCT-3′

P].[LR](A)[sP].[LR](G)[sP].[dR](A)[sP].[dR](A)






[sP].[dR](C)[sP].[LR]([5meC])[sP].[LR](T)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[LR](A)[sP].[dR](T)[sP].[dR
CAGGTTC
SEQ ID NO:


AATAGAA
NO: 542
](A)[sP].[dR](G)[sP].[LR](A)[sP].[dR](A)[sP].[L
TTCCTTC
270


GGAAGAA

R](G)[sP].[LR](G)[sP].[dR](A)[sP].[dR](A)[sP].
TATT



CCTG-3′

[dR](G)[sP].[LR](A)[sP].[dR](A)[sP].[dR](C)[s






P].[LR]([5meC])[sP].[LR](T)[sP].[LR](G)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[LR](A)[sP].[dR
TCAGGTT
SEQ ID NO:


ATAGAAG
NO: 543
](G)[sP].[LR](A)[sP].[dR](A)[sP].[dR](G)[sP].[
CTTCCTT
271


GAAGAAC

LR](G)[sP].[dR](A)[sP].[LR](A)[sP].[LR](G)[sP
CTAT



CTGA-3′

].[dR](A)[sP].[dR](A)[sP].[LR]([5meC])[sP].[d






R](C)[sP].[dR](T)[sP].[LR](G)[sP].[LR](A)}$$$






$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](T)[sP].[LR](A)[s
GAGTACA
SEQ ID NO:


CTATCCA
NO: 544
P].[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)
TGGATGG
272


TCCATGT

[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](
ATAG



ACTC-3′

A)[sP].[dR](T)[sP].[dR](G)[sP].[dR](T)[sP].[LR






](A)[sP].[dR](C)[sP].[LR](T)[sP].[LR]([5meC])}






$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[dR](A)[sP].[LR](T)[sP].[dR
TGAGTAC
SEQ ID NO:


TATCCAT
NO: 545
](C)[sP].[dR](C)[sP].[LR](A)[P].[LR](T)[sP].[d
ATGGATG
273


CCATGTA

R](C)[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[P].
GATA



CTCA-3′

[dR](G)[sP].[dR](T)[sP].[LR](A)[sP].[dR](C)[s






P].[dR](T)[sP].[LR]([5meC])[sP].[LR](A)}$$$$






V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[dR](T)[sP].[LR]([5meC])[s
GTGAGTA
SEQ ID NO:


ATCCATC
NO: 546
P].[dR](C)[sP].[LR](A)[P].[dR](T)[sP].[dR](C)
CATGGAT
274


CATGTAC

[sP].[dR](C)[sP].[LR](A)[sP].[dR](T)[sP].[dR](
GGAT



TCAC-3′

G)[sP].[dR](T)[P].[LR](A)[sP].[dR](C)[sP].[d






R](T)[sP].[dR](C)[sP].[LR](A)[sP].[LR]([5meC]






)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[LR]([5meC])[sP].[dR](C)[s
GGTGAGT
SEQ ID NO:


TCCATCC
NO: 547
P].[LR](A)[sP].[dR](T)[sP].[dR](C)[sP].[dR](C)
ACATGGA
275


ATGTACT

[sP].[LR](A)[sP].[dR](T)[sP].[dR](G)[sP].[dR](
TGGA



CACC-3′

T)[sP].[LR](A)[sP].[dR](C)[sP].[dR](T)[sP].[dR






](C)[sP].[LR](A)[sP].[LR]([5meC])[sP].[LR]([5






meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](C)[sP].[LR](A)[s
GGGTGAG
SEQ ID NO:


CCATCCA
NO: 548
P].[LR](T)[sP].[dR](C)[sP].[dR](C)[sP].[LR](A)
TACATGG
276


TGTACTC

[sP].[dR](T)[sP].[dR](G)[sP].[dR](T)[sP].[LR](
ATGG



ACCC-3′

A)[sP].[dR](C)[sP].[dR](T)[sP].[dR](C)[sP].[L






R](A)[sP].[dR](C)[sP].[LR]([5meC])[sP].[LR]([






5meC])}$$$$V2.0







5′-
SEQ ID
RNA1{[LR]([5meC])[sP].[dR](A)[sP].[LR](T)[s
TGGGTGA
SEQ ID NO:


CATCCAT
NO: 549
P].[LR]([5meC])[sP].[dR](C)[sP].[LR](A)[sP].[
GTACATG
277


GTACTCA

dR](T)[sP].[dR](G)[sP].[dR](T)[sP].[LR](A)[sP
GATG



CCCA-3′

].[dR](C)[sP].[dR](T)[sP].[dR](C)[sP].[LR](A)[s






P].[dR](C)[sP].[dR](C)[sP].[LR]([5meC])[sP].[






LR](A)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](A)[sP].[LR](T)[sP].[dR](C)[sP].[dR
ATGGGTG
SEQ ID NO:


ATCCATG
NO: 550
](C)[P].[LR](A)[sP].[dR](T)[sP].[dR](G)[sP].[d
AGTACAT
278


TACTCAC

R](T)[sP].[LR](A)[sP].[dR](C)[sP].[dR](T)[sP].[
GGAT



CCAT-3′

dR](C)[sP].[LR](A)[sP].[dR](C)[sP].[dR](C)[sP






].[dR](C)[sP].[LR](A)[sP].[LR](T)}$$$$V2.0







5′-
SEQ ID
RNA1{[LR](T)[sP].[LR]([5meC])[sP].[dR](C)[s
GATGGGT
SEQ ID NO:


TCCATGT
NO: 551
P].[LR](A)[sP].[dR](T)[sP].[dR](G)[sP].[dR](T)
GAGTACA
279


ACTCACC

[sP].[LR](A)[sP].[dR](C)[sP].[dR](T)[sP].[dR](
TGGA



CATC-3′

C)[sP].[LR](A)[sP].[dR](C)[sP].[dR](C)[sP].[L






R]([5meC])[sP].[dR](A)[sP].[LR](T)[sP].[LR]([






5meC])}$$$$V2.0







5′-
SEQ ID
RNA1[LR](T)[sP].[LR]([5meC])[sP].[dR](C)[s
GGTTTGT
SEQ ID NO:


TCCACAC
NO: 553
P].[dR](A)[sP].[dR](C)[sP].[dR](A)[sP].[dR](C)
TCAGTGT
552


TGAACAA

[sP].[dR](T)[sP].[dR](G)[sP].[dR](A)[sP].[dR](
GGA



ACC-3′

A)[sP].[dR](C)[sP][dR](A)[sP][LR](A)[sP].[L






R](A)[sP].[LR]([5meC])[sP].[LR]([5meC])}$$$






$V2.0





Helm Annotation Key:


[LR](G) is a beta-D-oxy-LNA guanine nucleoside,


[LR](T) is a beta-D-oxy-LNA thymine nucleoside,


[LR](A) is a beta-D-oxy-LNA adenine nucleoside,


[LR]([5meC] is a beta-D-oxy-LNA 5-methyl cytosine nucleoside,


[MOE](G) is a 2′-O-methoxyethyl-RNA guanine nucleoside,


[MOE](T) 2′-O-methoxyethyl-RNA thymine nucleoside,


[MOE](A) 2′-O-methoxyethyl-RNA adenine nucleoside,


[MOE]([5meC] 2′-O-methoxyethyl-RNA 5-methyl cytosine nucleoside,


[dR](G) is a DNA guanine nucleoside,


[dR](T) is a DNA thymine nucleoside,


[dR](A) is a DNA adenine nucleoside,


[dR]([C] is a DNA cytosine nucleoside,


[mR](G) is a 2′-O-methyl RNA guanine nucleoside,


[mR](U) is a 2′-O-methyl RNA DNA uracil nucleoside,


[mR](A) is a 2′-O-methyl RNA DNA adenine nucleoside,


[mR]([C] is a 2′-O-methyl RNA DNA cytosine nucleoside,


Further details regarding how to read a HELM sequence are provided at www.pistoiaalliance.org/helm-tools/.





Claims
  • 1. An antisense oligonucleotide Unc-13 homolog A (UNC13A) splice modulator, wherein said antisense oligonucleotide splice modulator is 8 to 40 nucleotides in length and comprises a contiguous nucleotide sequence of at least 8 nucleotides in length which is complementary to the UNC13A precursor-mRNA.
  • 2. The antisense oligonucleotide splice modulator of claim 1, wherein the UNC13A precursor-mRNA has the sequence of SEQ ID NO: 1.
  • 3. The antisense oligonucleotide splice modulator of claim 1 or claim 2, wherein the antisense oligonucleotide splice modulator is capable of increasing the expression of Unc-13 homolog A (UNC13A) in a TDP-43 depleted cell.
  • 4. The antisense oligonucleotide splice modulator of claim 3, wherein UNC13A is encoded by the nucleotide sequence of SEQ ID NO: 2, or a fragment or variant thereof.
  • 5. The antisense oligonucleotide splice modulator of claim 3 or claim 4, wherein the UNC13A protein has the sequence of SEQ ID NO: 3, or a fragment or variant thereof.
  • 6. The antisense oligonucleotide splice modulator of any one of claims 1-5, wherein the antisense oligonucleotide splice modulator is capable of decreasing expression of an UNC13A mutant polypeptide in a TDP-43 depleted cell.
  • 7. The antisense oligonucleotide splice modulator of claim 6, wherein the UNC13A mutant polypeptide is a splicing variant of UNC13A.
  • 8. The antisense oligonucleotide splice modulator of claim 7, wherein the UNC13A mutant polypeptide comprises a polypeptide sequence encoded by an additional exon, when compared to the wild-type UNC13A polypeptide sequence.
  • 9. The antisense oligonucleotide splice modulator of claim 8, wherein the UNC13A mutant polypeptide comprises an insertion, when compared to the wild-type UNC13A polypeptide sequence.
  • 10. The antisense oligonucleotide splice modulator of any one of claims 6-9, wherein the UNC13A mutant polypeptide is encoded by the nucleotide sequence of SEQ ID NO: 4, or a fragment or variant thereof.
  • 11. The antisense oligonucleotide splice modulator of any one of claims 6-10, wherein the UNC13A mutant polypeptide has the sequence of SEQ ID NO: 5, or a fragment or variant thereof.
  • 12. The antisense oligonucleotide splice modulator of any one of claims 6-9, wherein the UNC13A mutant polypeptide is encoded by the nucleotide sequence of SEQ ID NO: 6, or a fragment or variant thereof.
  • 13. The antisense oligonucleotide splice modulator of any one of claims 6-10, wherein the UNC13A mutant polypeptide has the sequence of SEQ ID NO: 7, or a fragment or variant thereof.
  • 14. The antisense oligonucleotide splice modulator of claim 6, wherein expression of the UNC13A mutant polypeptide is decreased due to nonsense mediated degradation of the mature mRNA.
  • 15. The antisense oligonucleotide splice modulator of any one of claims 6-14, wherein the contiguous nucleotide sequence is complementary to a splice enhancer site in the UNC13A precursor-mRNA.
  • 16. The antisense oligonucleotide splice modulator of any one of claims 1 to 15, wherein the contiguous nucleotide sequence is complementary to SEQ ID NO554.
  • 17. The antisense oligonucleotide splice modulator of any one of claims 1 to 16, wherein the contiguous nucleotide sequence is complementary to SEQ ID NO 555.
  • 18. The antisense oligonucleotide splice modulator of any one of claims 1 to 17, wherein the contiguous nucleotide sequence is complementary to SEQ ID NO 556.
  • 19. The antisense oligonucleotide splice modulator of any one of claims 1 to 18, wherein the contiguous nucleotide sequence is complementary to SEQ ID NO 557.
  • 20. The antisense oligonucleotide splice modulator of any one of claims 1 to 18, wherein the contiguous nucleotide sequence is complementary to SEQ ID NO 558.
  • 21. The antisense oligonucleotide splice modulator of one of claims 1 to 20, wherein the contiguous nucleotide sequence is complementary to a sequence selected from SEQ ID NOs 8-279.
  • 22. The antisense oligonucleotide splice modulator of claim 21, wherein the contiguous nucleotide sequence is complementary to a sequence selected SEQ ID NO: 62; SEQ ID NO: 66, SEQ ID NO: 68, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 112, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 117, SEQ ID NO: 122, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 134, SEQ ID NO: 135, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 141, SEQ ID NO: 142, SEQ ID NO: 143, SEQ ID NO: 146, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153, SEQ ID NO: 154, SEQ ID NO: 155, SEQ ID NO: 156, SEQ ID NO: 162, SEQ ID NO: 163, SEQ ID NO: 178, SEQ ID NO: 179, SEQ ID NO: 183, SEQ ID NO: 187, SEQ ID NO: 189, SEQ ID NO: 192, SEQ ID NO: 193, SEQ ID NO: 214, SEQ ID NO: 247, SEQ ID NO: 252, SEQ ID NO: 254, SEQ ID NO: 258, SEQ ID NO: 273, SEQ ID NO: 276, SEQ ID NO: 277, SEQ ID NO: 278, and SEQ ID NO: 279.
  • 23. The antisense oligonucleotide splice modulator of claim 22, wherein the contiguous nucleotide sequence is complementary to a sequence selected from SEQ ID NO: 66, SEQ ID NO: 70, SEQ ID NO: 72, SEQ ID NO: 73, SEQ ID NO: 74, SEQ ID NO: 76, SEQ ID NO: 122, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 133, SEQ ID NO: 134, SEQ ID NO: 135, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 141, SEQ ID NO: 142, SEQ ID NO: 143, SEQ ID NO: 146, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 154, SEQ ID NO: 155, SEQ ID NO: 156, SEQ ID NO: 162, SEQ ID NO: 163, SEQ ID NO: 273, SEQ ID NO: 276, SEQ ID NO: 277, and SEQ ID NO: 279.
  • 24. The antisense oligonucleotide splice modulator of any one of claims 1 to 23, wherein the contiguous nucleotide sequence is a sequence selected from SEQ ID Nos 280-551, or at least 10 contiguous nucleotides thereof.
  • 25. The antisense oligonucleotide splice modulator of claim 24, wherein the contiguous nucleotide sequence is a sequence selected from SEQ ID NO: 334; SEQ ID NO: 338; SEQ ID NO: 340; SEQ ID NO: 342; SEQ ID NO: 344; SEQ ID NO: 345; SEQ ID NO: 346; SEQ ID NO: 348; SEQ ID NO: 384; SEQ ID NO: 386; SEQ ID NO: 387; SEQ ID NO: 389; SEQ ID NO: 394; SEQ ID NO: 397; SEQ ID NO: 398; SEQ ID NO: 399; SEQ ID NO: 400; SEQ ID NO: 401; SEQ ID NO: 402; SEQ ID NO: 403; SEQ ID NO: 405; SEQ ID NO: 406; SEQ ID NO: 407; SEQ ID NO: 408; SEQ ID NO: 409; SEQ ID NO: 410; SEQ ID NO: 411; SEQ ID NO: 412; SEQ ID NO: 413; SEQ ID NO: 414; SEQ ID NO: 415; SEQ ID NO: 418; SEQ ID NO: 423; SEQ ID NO: 424; SEQ ID NO: 425; SEQ ID NO: 426, SEQ ID NO: 427, SEQ ID NO: 428, SEQ ID NO: 434, SEQ ID NO: 435, SEQ ID NO: 450, SEQ ID NO: 451, SEQ ID NO: 455, SEQ ID NO: 459, SEQ ID NO: 461, SEQ ID NO: 464, SEQ ID NO: 465, SEQ ID NO: 486, SEQ ID NO: 519, SEQ ID NO: 524, SEQ ID NO: 526, SEQ ID NO: 530, SEQ ID NO: 545, SEQ ID NO: 548, SEQ ID NO: 549, SEQ ID NO: 550, and SEQ ID NO: 551, or at least 10 contiguous nucleotides thereof.
  • 26. The antisense oligonucleotide splice modulator of claim 25, wherein the contiguous nucleotide sequence is a sequence selected from SEQ ID NO: 338, SEQ ID NO: 342, SEQ ID NO: 344, SEQ ID NO: 345, SEQ ID NO: 346, SEQ ID NO: 348, SEQ ID NO: 394, SEQ ID NO: 397, SEQ ID NO: 398, SEQ ID NO: 399, SEQ ID NO: 400, SEQ ID NO: 401, SEQ ID NO: 402, SEQ ID NO: 403, SEQ ID NO: 405, SEQ ID NO: 406, SEQ ID NO: 407, SEQ ID NO: 408, SEQ ID NO: 409, SEQ ID NO: 410, SEQ ID NO: 411, SEQ ID NO: 412, SEQ ID NO: 413, SEQ ID NO: 414, SEQ ID NO: 415, SEQ ID NO: 418, SEQ ID NO: 423, SEQ ID NO: 424, SEQ ID NO: 426, SEQ ID NO: 427, SEQ ID NO: 428, SEQ ID NO: 434, SEQ ID NO: 435, SEQ ID NO: 545, SEQ ID NO: 548, SEQ ID NO: 549, and SEQ ID NO: 551, or at least 10 contiguous nucleotides thereof.
  • 27. The antisense oligonucleotide splice modulator of any one of claims 1 to 26, wherein the contiguous nucleotide sequence is at least 12 nucleotides in length.
  • 28. The antisense oligonucleotide splice modulator of any one of claims 1 to 27, wherein the contiguous nucleotide sequence is at least 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 or 32 nucleotides in length.
  • 29. The antisense oligonucleotide splice modulator of any one of claims 1 to 28, wherein the contiguous nucleotide sequence is the same length as the antisense oligonucleotide splice modulator.
  • 30. The antisense oligonucleotide splice modulator of any one of claims 1 to 29, wherein the antisense oligonucleotide splice modulator is isolated, purified or manufactured.
  • 31. The antisense oligonucleotide splice modulator of any one of claims 1 to 30, wherein the contiguous nucleotide sequence comprises one or more modified nucleosides.
  • 32. The antisense oligonucleotide splice modulator of any one of claims 1 to 31, wherein the antisense oligonucleotide splice modulator is a morpholino antisense oligonucleotide.
  • 33. The antisense splice modulator oligonucleotide of claim 31 or claim 32, wherein the one or more modified nucleosides, is a 2′ sugar modified nucleoside, such as a 2′ sugar modified nucleoside independently selected from the group consisting of 2′-O-alkyl-RNA; 2′-O-methyl RNA (2′-OMe); 2′-alkoxy-RNA; 2′-O-methoxyethyl-RNA (2′-MOE); 2′-amino-DNA; 2′-fluro-RNA; 2′-fluoro-DNA; arabino nucleic acid (ANA); 2′-fluoro-ANA; locked nucleic acid (LNA), or any combination thereof.
  • 34. The antisense oligonucleotide splice modulator of claim 33, wherein the 2′ sugar modified nucleoside is an affinity enhancing 2′ sugar modified nucleoside.
  • 35. The antisense oligonucleotide splice modulator of any one of claims 1 to 34, wherein the contiguous nucleotide sequence of the antisense oligonucleotide splice modulator comprises 2′-O-methoxyethyl-RNA (2′-MOE) nucleosides.
  • 36. The antisense oligonucleotide splice modulator of claim 35, wherein all the nucleosides of the contiguous nucleotide sequence are 2′-O-methoxyethyl-RNA (2′-MOE) nucleosides, optionally linked by phosphorothioate internucleoside linkages.
  • 37. The antisense oligonucleotide splice modulator of any one of claims 31 to 36, wherein one or more of the modified nucleosides is a locked nucleic acid nucleoside (LNA), such as an LNA nucleoside selected from the group consisting of constrained ethyl nucleoside (cEt), and ß-D-oxy-LNA.
  • 38. The antisense oligonucleotide splice modulator of claim 37, wherein the contiguous nucleotide sequence of the antisense oligonucleotide splice modulator comprises or consists of LNA nucleosides and DNA nucleosides.
  • 39. The antisense oligonucleotide splice modulator of any one of claims 1 to 38, wherein the contiguous nucleotide sequence is at least 75% complementary to the UNC13A precursor-mRNA sequence.
  • 40. The antisense oligonucleotide splice modulator of claim 39, wherein the contiguous nucleotide sequence is at least 80%, at least 85%, at least 90% or at least 95% complementary to the UNC13A precursor-mRNA sequence.
  • 41. The antisense oligonucleotide splice modulator of any one of claims 1 to 38 wherein the contiguous nucleotide sequence is fully complementary to the UNC13A precursor-mRNA.
  • 42. The antisense oligonucleotide splice modulator of any one of claims 1 to 40, wherein the contiguous nucleotide sequence comprises 1, 2, 3 or more mismatches to the UNC13A precursor-mRNA sequence.
  • 43. The antisense oligonucleotide splice modulator of any one of claims 1 to 42, wherein the Gibbs free energy of the antisense oligonucleotide splice modulator to a complementary target RNA is lower than about −10ΔG, such as lower than about −15 ΔG, such as lower than about −17 ΔG.
  • 44. The antisense oligonucleotide splice modulator of any one of claims 1 to 43, wherein the antisense oligonucleotide splice modulator does not comprise a region of more than 3, or more than 4, contiguous DNA nucleosides.
  • 45. The antisense oligonucleotide splice modulator of any one of claims 1 to 44, wherein the antisense oligonucleotide splice modulator is not capable of mediating RNAseH cleavage.
  • 46. The antisense oligonucleotide splice modulator of any one of claims 1 to 45, wherein the antisense oligonucleotide splice modulator or contiguous nucleotide sequence thereof is a mixmer or a totalmer.
  • 47. The antisense oligonucleotide splice modulator of any one of claims 1 to 46, wherein the cytosine bases present in the antisense oligonucleotide splice modulator or contiguous nucleotide sequence thereof are independently selected from the group consisting of cytosine and 5-methyl cytosine.
  • 48. The antisense oligonucleotide splice modulator of any one of claims 1 to 47, wherein the cytosine bases present in the antisense oligonucleotide splice modulator or contiguous nucleotide sequence thereof are 5-methyl cytosine.
  • 49. The antisense oligonucleotide splice modulator of any one of claims 1 to 48, wherein one or more of the internucleoside linkages positioned between the nucleosides on the contiguous nucleotide sequence are modified.
  • 50. The antisense oligonucleotide splice modulator of any one of claims 1 to 49, wherein at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, or about 100% of the internucleoside linkages positioned between the nucleosides on the contiguous nucleotide sequence are modified.
  • 51. The antisense oligonucleotide splice modulator of any one of claims 1 to 50, wherein one or more, or all of the modified internucleoside linkages comprise a phosphorothioate linkage.
  • 52. The antisense oligonucleotide splice modulator of any one of claims 1 to 51, wherein all the internucleoside linkages present in the antisense oligonucleotide splice modulator are phosphorothioate internucleoside linkages.
  • 53. The antisense oligonucleotide splice modulator of any one of claims 1 to 52, wherein the antisense oligonucleotide splice modulator is covalently attached to at least one conjugate moiety.
  • 54. The antisense oligonucleotide splice modulator of any one of claims 1 to 53, wherein the antisense oligonucleotide splice modulator is in the form of a pharmaceutically acceptable salt.
  • 55. The antisense oligonucleotide splice modulator of claim 54, wherein the pharmaceutically acceptable salt is a sodium salt or a potassium salt.
  • 56. A pharmaceutical composition comprising the antisense oligonucleotide splice modulator of any one of claims 1 to 55, and a pharmaceutically acceptable diluent, solvent, carrier, salt and/or adjuvant.
  • 57. A method, such as an in vivo or in vitro method, for increasing UNC13A expression in a cell, said method comprising administering an antisense oligonucleotide splice modulator of any one of claims 1 to 55, or the pharmaceutical composition of claim 56, in an effective amount to said cell.
  • 58. The method of claim 57, wherein said cell expresses aberrant or exhibits depleted levels of TDP-43.
  • 59. A method for treating or preventing a disease in a subject comprising administering a therapeutically or prophylactically effective amount of an antisense oligonucleotide splice modulator of any one of claims 1 to 55, or the pharmaceutical composition of claim 56 to a subject suffering from or susceptible to the disease.
  • 60. The antisense oligonucleotide splice modulator of any one of claims 1 to 55, or the pharmaceutical composition of claim 56, for use as a medicament.
  • 61. The antisense oligonucleotide splice modulator of any one of claims 1 to 55, or the pharmaceutical composition of claim 56, for use in the treatment or prevention of disease in a subject.
  • 62. The antisense oligonucleotide splice modulator of any one of claims 1 to 55 or the pharmaceutical composition of claim 56, for the preparation of a medicament for treatment or prevention of a disease in a subject.
  • 63. The method of any one of claims 57 to 59 or the antisense oligonucleotide splice modulator for use of any one of claims 60 to 62, wherein the disease is a neurological disorder selected from the group consisting of amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Progressive supranuclear palsy (PSP), Primary lateral sclerosis, Progressive muscular atrophy, Alzheimer's disease, Parkinsons disease, Autism, Hippocampal sclerosis dementia, Down syndrome, Huntington's disease, polyglutamine diseases, such as spinocerebellar ataxia 3, myopathies and Chronic Traumatic Encephalopathy.
  • 64. The method or antisense oligonucleotide splice modulator for use of claim 63, wherein the disease is a neurological disorder selected from the group consisting of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD).
Priority Claims (1)
Number Date Country Kind
21216561.7 Dec 2021 EP regional
Continuations (1)
Number Date Country
Parent PCT/EP2022/086915 Dec 2022 WO
Child 18746978 US