1. Field of the Invention
The present invention relates to semiconductor integrated circuits, and more particularly, to an apparatus and method for wafer level fabrication of high value inductors directly on top of semiconductor integrated circuits.
2. Background of the Invention
Inductors are commonly used in the electronics industry for storing magnetic energy. An inductor is typically created by providing an electric current though a metal conductor, such as a metal plate or bar. The current passing though the metal conductor creates a magnet field or flux around the conductor. The amount of inductance is measured in terms of Henries. In the semiconductor industry, it is known to form inductors on integrated circuits. The inductors are typically created by fabricating what is commonly called an “air coil” inductor on the chip. The air coil inductor is usually either aluminum or some other metal patterned in a helical, toroidal or a “watch spring” coil shape. By applying a current through the inductor, the magnetic flux is created.
Inductors are used on chips for a number of applications. Perhaps the most common application is direct current to direct current or DC to DC switching regulators. In many situations, however, on chip inductors do not generate enough flux or energy for a particular application. When this occurs, very often an off-chip discrete inductor is used.
There are a number of problems in using off-chip inductors. Foremost, they tend to be expensive. With advances in semiconductor process technology, millions upon millions of transistors can be fabricated onto a single chip. With all these transistors, designers have been able to cram a tremendous amount of functionality onto a single chip and an entire system on just one or a handful of chips. Providing an off-chip inductor can therefore be relatively expensive. Off-chip inductors can also be problematic in situations where space is at a premium. In a cell phone or personal digital assistant (PDA) for example, it may be difficult to squeeze a discrete inductor into a compact package. As a result, the consumer product may not be as small or compact as desired.
An apparatus and method for wafer level fabrication of high value inductors directly on top of semiconductor integrated circuits is therefore needed.
An apparatus and method for wafer level fabrication of high value inductors directly on top of semiconductor integrated circuits is disclosed. The apparatus and method includes fabricating a semiconductor wafer including a plurality of dice, each of the dice including power circuitry and a switching node. Once the wafer is fabricated, then a plurality of inductors are fabricated directly onto the plurality of dice on the wafer respectively. For each die, electrical connections are made between the switching node and the inductor respectively. Each inductor is fabricated by forming a plurality of magnetic core inductor members on an interconnect dielectric layer formed on the wafer. An insulating layer, and then inductor coils, are then formed over the plurality of magnetic core inductor members over each die. A layer of magnetic paste is also optionally provided over each inductor coil to further increase inductance.
Like elements are designated by like reference numbers in the Figures.
Referring to
The present invention is directed to the wafer level fabrication of the inductor 18 directly onto the die 10 in wafer form.
Referring to
Referring to
The initial step in the fabrication of the inductor 18 involves the forming of a plating layer 44 across the top surface of the wafer 40. The plating layer 44 actually includes three layers, including an underlying oxide protection layer, a middle seed layer, and an upper adhesion layer. In one embodiment, the plating layer 44 is formed by sputtering 300 Angstroms of titanium, 3000 Angstroms of copper, and 300 Angstroms of titanium on the wafer surface to form the protection, seed, and adhesion layers respectively. It should be noted that specific embodiment disclosed herein in merely exemplary, and that a plating layer 44 can be formed using any one of a number of well known techniques and materials and the invention should not be construed as limited to the metals and thicknesses disclosed herein.
In the next step as illustrated in
As illustrated in
As illustrated in
The inductor coils 26 are formed is a manner similar to that described above with regard to the inductor members 20. Specifically, another plating layer 27 including an underlying oxide protection layer, a middle seed layer, and an upper adhesion layer, is formed across the wafer surface. Thereafter, a photo resist layer 29 is formed and patterned, forming recess regions which expose the top adhesive of the plating layer 27. The top adhesion layer is then stripped away, and the wafer 40 undergoes a plating operation in a copper bath. The inductor coils 26 are formed by the plating of copper in the bath onto the exposed seed layer within the recess regions. For the sake of brevity, the aforementioned steps are not illustrated in detail in the figure. The process, however, is essentially the same as that described above, and is therefore not repeated herein.
In the next step, the electrical contacts 32 are provided between the coils 26 and the underlying switching nodes (not shown) provided one of the metal layers of interconnect 14. The electrical contacts are formed by etching vias into the top surface of the wafer down to the switching node contact of each die 10. The vias are then filled with an electrically conductive material such as aluminum or copper. For the sake of simplicity, only one electrical contact 32 is illustrated in the Figures.
In the final step, as illustrated in
In accordance with the present invention, the layout of the inductors 20 and coils 26 is arbitrary and can be done in any desirable manner. It should be made clear that the patterns shown in
While this invention has been described in terms of several preferred embodiments, there are alteration, permutations, and equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. For example, the steps of the present invention may be used to form a plurality of high value inductors 10 across many die on a semiconductor wafer. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
Number | Name | Date | Kind |
---|---|---|---|
5204809 | Andersen | Apr 1993 | A |
5355301 | Saito et al. | Oct 1994 | A |
5541135 | Pfeifer et al. | Jul 1996 | A |
5869148 | Silverscholtz et al. | Feb 1999 | A |
6166422 | Qian et al. | Dec 2000 | A |
6249039 | Harvey et al. | Jun 2001 | B1 |
6396122 | Howard et al. | May 2002 | B1 |
6462976 | Olejniczak et al. | Oct 2002 | B1 |
6867903 | Imajuku et al. | Mar 2005 | B2 |
6940147 | Crawford et al. | Sep 2005 | B2 |
7232733 | Lotfi et al. | Jun 2007 | B2 |
20020097129 | Johnson | Jul 2002 | A1 |
20030005569 | Hiatt et al. | Jan 2003 | A1 |
20040263310 | Ding et al. | Dec 2004 | A1 |