High data reliability, high speed of memory access, and reduced chip size are features that are demanded from semiconductor memory.
A dynamic random access memory (DRAM), which is a typical semiconductor memory device, stores information by charges accumulated in cell capacitors, and, therefore, the information is lost unless refresh operations are periodically carried out. Therefore, refresh commands indicating refresh operations are periodically issued from a control device, which controls a DRAM. The refresh commands are issued from the control device at a frequency that all the word lines are certainly refreshed one time in the period of 1 refresh cycle (for example, 64 msec). In addition, the refresh command is periodically stolen as Row-Hammer refresh (Rhr) which maintains data retention of a row-address of a victim caused by Row-Hammer attack.
However, a conventional static Row-Hammer refresh rate control may not prevent bit errors due to Row Hammer effects that may occur at various timings from various causes and dynamic Row Hammer refresh rate control may be desired.
Various embodiments of the present disclosure will be explained below in detail with reference to the accompanying drawings. The following detailed description refers to the accompanying drawings that show, by way of illustration, specific aspects and embodiments in which the present invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the present invention. Other embodiments may be utilized, and structure, logical and electrical changes may be made without departing from the scope of the present invention. The various embodiments disclosed herein are not necessary mutually exclusive, as some disclosed embodiments can be combined with one or more other disclosed embodiments to form new embodiments.
The time based common sampling circuit 11a may include a sampling timing generator circuit 12 and an RHR state-control circuit 13. For example, the sampling timing generator circuit 12 may be provided for the plurality of memory banks 15 or for each memory bank of the plurality of memory banks 15 (e.g., Bank0, . . . Bank7). For example, the RHR state-control circuit 13 may receive an RXCNT signal. from the peripheral circuit 18. For example, the RXCNT signal may be provided at an end of each refresh operation. The RHR state-control circuit 13 may count responsive to the RXCNT signal in an active state, and may provide an instruction signal StealSlot for executing row hammer refresh (RHR) instead of normal refresh. The sampling timing generator circuit 12 may receive the instruction signal StealSlot from the RHR state-control circuit 13 and may further receive a frequency-divided RHR oscillation signal (RhrOsc) from an oscillator block 14 for self-refresh. The sampling timing generator circuit 12 may provide a trigger signal for sampling (ArmSample) to a sampling circuit 16 of each memory bank of the plurality of memory banks 15 (e.g., Bank0, . . . Bank 7) at a random timing. The ArmSample signal may be randomized by randomization of a frequency of the activation of the ArmSample signal and a difference between an interval of RHR execution (e.g., each time auto-refresh command is provided) and an interval (e.g., a cycle) of the frequency-divided RHR oscillation signal (RhrOsc). For example, the time based common sampling circuit 11a may further include an interval measurement circuit 17. The interval measurement circuit 17 may dynamically measure the interval of RHR execution (e.g., each time auto-refresh command is provided) based on the interval of the frequency-divided RHR oscillation signal (RhrOsc) received, and may further generate and provide a steal rate timing signal in four bits (“Y<3:0>”) indicative of a timing of Steal Slot in order to adjust or optimize a steal rate at which the RHR is executed after normal refreshes.
Responsive to the ArmSample signal, the sampling circuit 16 may provide a sampling signal (Sample1). A latch 19 (e.g., a latch, a flip-flop, etc.) of each memory bank of the plurality of memory banks 15 (e.g., Bank0, . . . Bank7) may capture (e.g., latch) a column (X) address responsive to the sampling signal (Sample1), an adjacent address of the column address may be calculated and provided as an RHR refresh address. For example, the sampling circuit 16 may provide the sampling signal (Sample1) a plurality of times in the interval of RHR execution and the captured address may be overwritten each time, and an adjacent address of the address most recently captured becomes a valid address that is to be finally applied to the RHR refresh address and provided as an address to a peripheral circuit 18 that handles clock signals, command signals, address signals and data signals.
The interval measurement circuit 26 may dynamically measure the interval of RHR execution (e.g., each time auto-refresh command is provided) using the interval of the frequency-divided RHR oscillation signal (RhrOsc) received as a count cycle, and may further generate and provide a period of counter circuit in four bits as “Y<3:0>” signals indicative of a timing of StealSlot in order to detect or capture a steal rate at which the RHR is executed after normal refreshes. The interval measurement circuit 26 may include a P-counter unit 261. The P-counter unit 261 may include a P-counter 262 that may continuously count an integer from 0 in an incremental manner responsive to the frequency-divided RHR oscillation signal (RhrOsc), and the P-counter 262 may provide a count signal. The P-counter 262 may be reset responsive to an RHR instruction signal Rhr that is generated from a refresh signal Rfsh and the instruction signal StealSlot. The P-counter unit 261 may also include a latch 265 and a logic circuit 264. The latch 265 may receive a match signal (described later in details) from the sampling timing generator circuit 27, latch the match signal by an inversion of the RHR instruction signal Rhr and provide an intermediate match signal match2. The logic circuit 264 may be a NAND circuit that may receive the intermediate match signal match2 and the RHR instruction signal Rhr and provide a trigger signal Rhr2f to a latch 263. The latch 263 may receive the count signal from the P-counter 262, latch the count signal with the trigger signal Rhr2f and provide the Y<3:0> signals to the sampling timing generator circuit 27.
The sampling timing generator circuit 27 may include an N-counter unit 271 that may receive the Y<3:0> signals, the frequency-divided RHR oscillation signal (RhrOsc) and the RHR instruction signal Rhr. For example, if the Y<3:0> signals represent an integer N (e.g., “5”), an N-counter 275 in the N-counter unit 271 may continuously count an integer from 0 to (N−1) (e.g., “4”) in an incremental manner up to the integer N (e.g., “5”) represented by the Y<3:0> signals, such as 0, 1, 2 . . . , N−1, responsive to the frequency-divided RHR oscillation signal (RhrOsc), and the N-counter 275 may provide a count signal. The N-counter 275 may be reset when the integer matches the integer N (e.g., “5”), responsive to a reset signal. For example, a comparator 274 may be a logic exclusive NOR circuit that may receive the count signal and the Y<3:0> signals and may further provide the reset signal. The RHR instruction signal Rhr may be provided apart from the frequency-divided RHR oscillation signal (RhrOsc) asynchronously, to a latch circuit 276. The latch circuit 276 may latch the count signal (e.g., “3”) responsive to the RHR instruction signal Rhr and may further provide the latched count signal as a latched signal X<3:0> (e.g., indicative of “3”) to an M-counter unit 272. In the M-counter unit 272, an M-counter 278 may start counting in an incremental manner to an integer M (e.g., “3”) responsive to an intermediate frequency-divided RHR oscillation signal (RhrOsc2) that a logic circuit 277 may provide responsive to the frequency-divided RHR oscillation signal (RhrOsc). The M-counter 278 may provide a count to a comparator 279. For example, the comparator 279 may be a logic exclusive NOR circuit. The comparator 279 may compare the count from the M-Counter 278 and the latched signal X<3:0> (e.g., “3”) from the N-counter unit 271. If the count of the M-counter 278 matches the latched signal X<3:0>, the comparator 279 may provide a match signal which may control a logic circuit 277 to stop providing an RhrOsc2 signal to the M-counter 278 and a mixer 280 in a sampling unit 273. For example, the logic circuit 277 may be a NAND circuit that may receive an inversion of the match signal and the frequency-divided RHR oscillation signal (RhrOsc) and may further provide the intermediate frequency-divided RHR oscillation signal (RhrOsc2). For example, the mixer 280 may receive the reset signal from the comparator 274. The mixer 280 may also receive the intermediate frequency-divided RHR oscillation signal (RhrOsc2) and the RHR instruction signal Rhr, and provide the intermediate frequency-divided RHR oscillation signal (RhrOsc2) as the trigger signal for sampling (ArmSample) while the count of M-counter 278 is below (e.g., 0, 1, 2) the latched signal X<3:0> (e.g., “3”) until the count of M-counter 278 matches the latched signal X<3:0>. The latch circuit 19 may update a row address each time responsive to the trigger signal for sampling (ArmSample), and a final updated row address is used for Rhr operation. The value of the latched signal X<3:0> may be randomly determined, thus a latching interval may become random.
The comparator 40 may also include a logic gate 42. The logic gate 42 may receive a combination of X<3> and Y<3> signals that are most significant bits of X and Y signals. The logic gate 42 may provide a match signal in an active state, either when the Y<3> signal is “0” or when the combination of corresponding bits of X<3> and Y<3> signals are indicative of the same values. The comparator 40 may also include an adder circuit 43 that may receive output signals from the exclusive-NOR gates 41a to 41c and the logic gate 42 and may further provide a reset signal that is active responsive to the output signals, when the combination of corresponding bits of X<0:2> and Y<0:2> signals are identical and either if X<3> and Y<3> signals also match or if the Y<3> is zero regardless of match status in the most significant bits of the X and Y signals.
It is possible to provide sampling signals from time based sampling and command (act) based sampling based on the match signal or the trigger signal for sampling (ArmSample).
The hybrid sampling circuit 100 may also include a time based probability adjustment circuit 108. For example, the time based probability adjustment circuit 108 may include a flip-flop (FF) 1081 and a filter circuit 1082. The flip-flop (FF) 1081 may receive the match signal or the ArmSample signal and may further provide an enable signal en2, responsive, at least in part, to the get signal from the latch circuit 107 and the match signal or the ArmSample signal. The filter circuit 1082 may be an AND circuit that may receive the enable signal en2 and the sampling signal (Sample2) from the act based sampling circuit 102 and may further provide a time-adjusted act based sampling signal (Sample2D) that is the sampling signal (Sample2) when the enable signal en2 is in an active state.
For example, the latch circuit 107 may be a flip-flop that may receive the sampling signal (Sample2) from the act based sampling circuit 102 at a clock input, the RHR instruction signal Rhr at a reset input and a positive power potential (Vdd, a logic high level) at a data input, and may provide a latched sampling signal (Sample2) as the get signal, which may be reset by the RHR instruction signal Rhr, to the act based probability adjustment circuit 106 and the time based probability adjustment circuit 108. Responsive to the get signal, the filter circuit 1062 in the act based probability adjustment circuit 106 may provide the sampling signal (Sample1) as the act-adjusted time based sampling signal (Sample1D) until the latched sampling signal (Sample2) reflected as the get signal becomes active and the filter circuit 1062 may stop providing the sampling signal (Sample1) once the get signal becomes active. Thus, sampling within an interval of RHR execution may be suppressed.
A mixer circuit 103 may receive the act-adjusted time based sampling signal (Sample1D) and the time-adjusted act based sampling signal (Sample2D), and may further provide the sampling signal (Sample).
The shift register 114 may include n-stages of flip-flop circuits FF#1 to FF#n, which may latch a row address XADD, are in cascade connection. In other words, an output node of the flip-flop circuit of a former stage is connected to an input node of the flip-flop circuit of a later stage. The flip-flop circuits FF#1 to FF#n may receive the first sampling signal S1 at clock nodes thereof. When the first sampling signal S1 is in an active state, the flip-flop circuit FF#1 of a first stage may latch a current row address XADD, and the flip-flop circuits FF#1 to FF#n−1 may latch the row addresses XADD latched by preceding stages respectively and shift the row addresses XADD to the flip-flop circuits FF#2 to FF#n of following stages. The row address XADD latched by the flip-flop circuit FF#n, which is a last stage, may be discarded in response to next activation of the first sampling signal S1. Comparator circuits XOR1 to XORn may receive the latched row addresses XADD from the corresponding flip-flop circuits FF#1 to FF#n at first input nodes thereof, respectively. The comparator circuits XOR1 to XORn may also receive the current row address XADD at second input nodes thereof, respectively. When the current row address XADD matches any of the row addresses XADD latched by the flip-flop circuits FF#1 to FF#n, the corresponding comparator circuit of the any matched flip-flop circuit may provide a signal in an active state (e.g., a logic low level signal indicative of the match), and a NAND gate circuit 43 may provide a match signal in an active state (e.g., a logic high level signal indicative of the match). An AND gate circuit 44 may receive the match signal and the first sampling signal S1. When both of the match signal and the first sampling signal S1 are both in an active state (e.g., a logic high level signal indicative of the match), the AND gate circuit 44 may provide a second sampling signal S2 in an active state (e.g, a logic high level signal indicative of the match). More specifically, the second sampling signal S2 may be activated, if the row address XADD matches any of past row addresses XADD latched stored in the flip-flop circuits FF#1 to FF#n when the first sampling signal S1 is activated. In other words, the access to the word lines WL may be intermittently monitored, and, if the access to the same word line WL is captured two times or more within a predetermined period of time, the second sampling signal S2 may be activated.
Logic levels of signals, types of transistors, types of data input circuits used in the embodiments described the above are merely examples. However, in other embodiments, combinations of the logic levels of signals, types of transistors, types of data input circuits other than those specifically described in the present disclosure may be used without departing from the scope of the present disclosure.
Although this invention has been disclosed in the context of certain preferred embodiments and examples, it will be understood by those skilled in the art that the inventions extend beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the inventions and obvious modifications and equivalents thereof. In addition, other modifications which are within the scope of this invention will be readily apparent to those of skill in the art based on this disclosure. It is also contemplated that various combination or sub-combination of the specific features and aspects of the embodiments may be made and still fall within the scope of the inventions. It should be understood that various features and aspects of the disclosed embodiments can be combined with or substituted for one another in order to form varying mode of the disclosed invention. Thus, it is intended that the scope of at least some of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above.
This application is a continuation of U.S. application Ser. No. 15/796,340 filed Oct. 27, 2017, which is incorporated herein by reference, in its entirety, for any purpose.
Number | Name | Date | Kind |
---|---|---|---|
5299159 | Balistreri | Mar 1994 | A |
5943283 | Wong et al. | Aug 1999 | A |
7830742 | Han | Nov 2010 | B2 |
8625360 | Iwamoto et al. | Jan 2014 | B2 |
8811100 | Ku | Aug 2014 | B2 |
9032141 | Bains et al. | May 2015 | B2 |
9117544 | Bains et al. | Aug 2015 | B2 |
9805783 | Ito et al. | Oct 2017 | B2 |
10032501 | Ito et al. | Jul 2018 | B2 |
10170174 | Ito et al. | Jan 2019 | B1 |
20040130959 | Kawaguchi | Jul 2004 | A1 |
20080181048 | Han | Jul 2008 | A1 |
20100329069 | Ito et al. | Dec 2010 | A1 |
20110299352 | Fujishiro et al. | Dec 2011 | A1 |
20110310648 | Iwamoto et al. | Dec 2011 | A1 |
20120155206 | Kodama et al. | Jun 2012 | A1 |
20120327734 | Sato | Dec 2012 | A1 |
20140006703 | Bains et al. | Jan 2014 | A1 |
20140006704 | Greenfield et al. | Jan 2014 | A1 |
20140095786 | Moon et al. | Apr 2014 | A1 |
20140237307 | Kobla et al. | Aug 2014 | A1 |
20140241099 | Seo et al. | Aug 2014 | A1 |
20140281206 | Crawford et al. | Sep 2014 | A1 |
20150089326 | Joo et al. | Mar 2015 | A1 |
20150213872 | Mazumder et al. | Jul 2015 | A1 |
20150255140 | Song | Sep 2015 | A1 |
20150294711 | Gaither et al. | Oct 2015 | A1 |
20150380073 | Joo et al. | Dec 2015 | A1 |
20160078911 | Fujiwara et al. | Mar 2016 | A1 |
20160086649 | Hong et al. | Mar 2016 | A1 |
20160125931 | Doo et al. | May 2016 | A1 |
20160196863 | Shin et al. | Jul 2016 | A1 |
20170263305 | Cho | Sep 2017 | A1 |
20170287547 | Ito et al. | Oct 2017 | A1 |
20180005690 | Morgan et al. | Jan 2018 | A1 |
20180025770 | Ito et al. | Jan 2018 | A1 |
20180182445 | Lee et al. | Jun 2018 | A1 |
20180261268 | Hyun et al. | Sep 2018 | A1 |
20180308539 | Ito et al. | Oct 2018 | A1 |
20190122722 | Yamada et al. | Apr 2019 | A1 |
20190122723 | Ito et al. | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
2005-216429 | Aug 2005 | JP |
2011-258259 | Dec 2011 | JP |
2013-004158 | Jan 2013 | JP |
2017171927 | Oct 2017 | WO |
2019079157 | Apr 2019 | WO |
Entry |
---|
U.S. Appl. No. 15/881,256 entitled ‘Apparatuses and Methods for Detecting a Row Hammer Attack With a Bandpass Filter’ filed on Jan. 26, 2018. |
U.S. Appl. No. 15/789,897, entitled “Apparatus and Methods for Refreshing Memory”, filed Oct. 20, 2017; pp. all. |
U.S. Appl. No. 15/796,340, entitled: “Apparatus and Methods for Refreshing Memory” filed on Oct. 27, 2017; pp. all. |
U.S. Appl. No. 16/012,679, titled “Apparatuses and Methods for Multiple Row Hammer Refresh Address Sequences”, filed Jun. 19, 2018. |
U.S. Appl. No. 16/020,863, titled “Semiconductor Device”, filed Jun. 27, 2018. |
U.S. Appl. No. 16/025,844, titled “Apparatus and Methods for Triggering Row Hammer Address Sampling”, filed Jul. 2, 2018. |
U.S. Appl. No. 15/876,566, entitled ‘Apparatuses and Methods for Calculating Row Hammer Refresh Addresses in a Semiconductor Device’ filed Jan. 22, 2018. |
Kim, et al.. “Flipping Bits in MemoryWithout Accessing Them: An Experimental Study of DRAM Disturbance Errors”, IEEE, Jun. 2014, 12 pgs. |
International Search Report and Written Opinion dated Feb. 12, 2019 for PCT Application PCT/US2018/056871, 9 pages. |
U.S. Appl. No. 16/176,932, titled “Apparatuses and Methods for Access Based Refresh Timing”, filed Oct. 31, 2018. |
U.S. Appl. No. 16/228,446, titled “Apparatuses and Methods for Variable Address Sample Timing”, filed Dec. 20, 2018. |
U.S. Appl. No. 16/228,484, titled “Apparatuses and Methods for Sample Signal Timing With Multiple Clocks”, filed Dec. 20, 2018. |
U.S. Appl. No. 16/268,818, titled “Apparatuses and Methods for Managing Row Access Counts”, filed Feb. 6, 2019. |
U.S. Appl. No. 16/386,775 titled “Apparatuses and Methods for Random Signal Generation” filed Apr. 17, 2019. |
U.S. Appl. No. 16/545,489 titled “Apparatuses and Methods for Detecting a Row Hammer Attack With a Bandpass Filter” filed Aug. 20, 2019. |
Number | Date | Country | |
---|---|---|---|
20190139599 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15796340 | Oct 2017 | US |
Child | 16237291 | US |