Field of the Invention
This invention relates generally to methods and apparatus for electrically connecting semiconductor devices to circuit boards. More particularly, the invention relates to a socket into which one or more bare semiconductor dice may be inserted for connection to a circuit board without wire bonding of the contact pads of the semiconductor die.
State of the Art
The assembly of a semiconductor device from a leadframe and semiconductor die ordinarily includes bonding of the die to a paddle of the leadframe, and wire bonding bond pads on the die to inner leads, i.e., lead fingers of the leadframe. The inner leads, semiconductor die, and bond wires are then encapsulated, and extraneous parts of the leadframe are excised, forming outer leads for connection to a substrate such as a printed wiring board (PWB).
The interconnection of such packaged integrated circuits (IC) with circuit board traces has advanced from simple soldering of package leads to the use of mechanical sockets, also variably known as connectors, couplers, receptacles and carriers. The use of sockets was spurred by the desire for a way to easily connect and disconnect a packaged semiconductor die from a test circuit, leading to zero-insertion-force (ZIF), and low-insertion-force (LIF) apparatus. Examples of such are found in U.S. Pat. No. 5,208,529 of Tsurishima et al., U.S. Pat. No. 4,381,130 of Sprenkle, U.S. Pat. No. 4,397,512 of Barraire et al., U.S. Pat. No. 4,889,499 of Sochor, U.S. Pat. No. 5,244,403 of Smith et al., U.S. Pat. No. 4,266,840 of Seidler, U.S. Pat. No. 3,573,617 of Randolph, U.S. Pat. No. 4,527,850 of Carter, U.S. Pat. No. 5,358,421 of Petersen, U.S. Pat. No. 5,466,169 of Lai, U.S. Pat. No. 5,489,854 of Buck et al., U.S. Pat. No. 5,609,489 of Bickford et al., U.S. Pat. No. 5,266,833 of Capps, U.S. Pat. No. 4,995,825 of Korsunsky et al., U.S. Pat. Nos. 4,710,134 and 5,209,675 of Korsunsky, U.S. Pat. No. 5,020,998 of Ikeya et al., U.S. Pat. No. 5,628,635 of Ikeya, U.S. Pat. No. 4,314,736 of Demnianiuk, U.S. Pat. No. 4,391,408 of Hanlon et al., and U.S. Pat. No. 4,461,525 of Griffin.
New technology has enabled the manufacture of very small high-speed semiconductor dice having large numbers of closely spaced bond pads. However, wire bonding of such semiconductor dice is difficult on a production scale. In addition, the very fine wires are relatively lengthy and have a very fine pitch, leading to electronic noise.
In order to meet space demands, much effort has been expended in developing apparatus for stack-mounting of packaged dice on a substrate in either a horizontal or vertical configuration. For example, vertically oriented semiconductor packages having leads directly connected to circuit board traces are shown in U.S. Pat. No. 5,444,304 of Hara et al., U.S. Pat. No. 5,450,289 of Kweon et al., U.S. Pat. No. 5,451,815 of Taniguchi et al., U.S. Pat. No. 5,592,019 of Ueda et al., U.S. Pat. No. 5,619,067 of Sua et al., U.S. Pat. No. 5,635,760 of Ishikawa, U.S. Pat. No. 5,644,161 of Burns, U.S. Pat. No. 5,668,409 of Gaul, and United States Reissue Patent Re. 34,794 of Farnworth.
However, none of the above patents relate to the socket interconnection of a bare (i.e., unpackaged) semiconductor die to a substrate such as a circuit board.
Sockets also exist for connecting daughter circuit boards to a mother board, as shown in U.S. Pat. No. 5,256,078 of Lwee et al. and U.S. Pat. No. 4,781,612 of Thrush. U.S. Pat. No. 4,501,461 and Re. 28,171 of Anhalt show connectors for connecting a socket to a circuit board, and wiring to an electronic apparatus, respectively.
U.S. Pat. No. 5,593,927 of Farnworth et al. discloses a semiconductor die having an added protective layer and traces, and which is insertable into a multi-die socket. The conductive edges of the semiconductor die are connected through an edge “connector” to circuit board traces. The number of insertable semiconductor dice is limited by the number of semiconductor die compartments in the socket, and using fewer dice is a waste of space.
A modular bare die socket is provided by which any number of bare (unpackaged) semiconductor dice having bond pads along the edge of one major side may be interconnected with a substrate in a densely packed arrangement. The socket is particularly applicable to high speed, e.g. 300 MHZ dice of small size or those dice of even faster speeds.
The socket comprises a plurality of plates which have a semiconductor die slot structure for aligning and holding a bare die or dice in a vertical orientation, and interconnect structure for aligning and retaining a multi-layer lead tape in contact with conductive bond pads of an inserted die. The interconnect lead tapes have outer ends which are joined to conductive traces on a substrate such as a printed wiring board (PWB).
Each lead tape includes a node portion which is forced against a bond pad to make resilient contact therewith. Various means for providing the contact force include a resilient lead tape, an elastomeric layer or member biasing the lead tape, or a noded arm of the plate, to which the lead tape is fixed.
A multi-layer interconnect lead tape may be formed from a single layer of polymeric film upon which a pattern of fine pitch electrically conductive leads is formed. Methods known in the art for forming lead frames, including negative or positive photoresist optical lithography, may be used to form the lead tape. The lead tape may be shaped under pressure to the desired configuration.
The plates with intervening interconnect lead tapes are bonded together with adhesive or other means to form a permanent structure.
The plates are formed of an electrically insulative material and may be identical. Each plate has “left side structure” and “right side structure” which work together with the opposing structure of adjacent plates to achieve the desired alignment and retaining of the semiconductor die and the lead tape for effective interconnection.
Any number of plates may be joined to accommodate the desired number of bare semiconductor dice. Assembly is easily and quickly accomplished. If desired, end plates having structure on only one side may be used to cap the ends of the socket.
Thus, a socket is formed as a dense stack of semiconductor die-retaining plates by which the footprint per semiconductor die is much reduced.
The modular socket is low in cost and effectively provides the desired interconnection. A short interconnect lead distance is achieved, leading to reduced noise. The impedance may be matched up to the contact or semiconductor die.
The primary use of the modular bare semiconductor die socket is intended to be for permanent attachment to circuit boards of electronic equipment where die replacement will rarely be required. Although the socket may be used in a test stand for temporarily connecting dice during testing, new testing techniques performed at the wafer scale generally obviate the necessity for such later tests.
The invention is illustrated in the following figures, wherein the elements are not necessarily shown to scale:
As depicted in drawing
The internal structures of plates 14C and 14D are depicted in drawing FIG. 2. Each of the plates 14A, 14B, 14C and 14D has a first side 26 and an opposing second side 28. The plates have first ends 30 having die slots 22, and second ends 32 having lead slots 44 through which lead tapes pass.
In these figures, the first side 26 is taken as the left side of each plate and the second side 28 is taken as the right side. The regular plates 14A, 14B and 14C have structures on both sides 26, 28 and may be the exclusive plates of the socket 10. The structure provides for accommodating bare semiconductor dice 18 of a particular size, number and spacing of bond pads, etc. and for electrically interconnecting the semiconductor dice 18 to a substrate 16. Typically, all regular plates 14A, 14B, 14C of a bare die socket 10 are identical but in some cases may differ to accommodate semiconductor dice of different size, bond pad configuration, etc. within different modules 12A, 12B, 12C, etc. of a socket.
Alternatively, one or two end plates 14D may be used to cap any number of intervening regular plates 14A, 14B and 14C. In contrast to the regular plates 14A, 14B and 14C, such end plates 14D have cooperating structure on one side only, i.e. the internal side, and may simply have a flat exterior side which in drawing
The structure of the second side 28 of the regular plates 14A, 14B and 14C is shown as including an upwardly opening die slot 22 with a side wall 34, edge walls 38, and stop end wall 36 of lower beam 40. Lower beam 40 has an exposed surface 42 which is one side of an interconnect lead slot 44. The lower beam 40 is shown as having a width 41 exceeding width 46 for accommodating means for accurate alignment and retention of a multi-layer interconnect lead tape 50, not shown in drawing
The first sides 26 of plates 14A, 14B, 14C and 14D are as shown with respect to end plate 14D. In this embodiment, first side 26 is largely flat with a recess 48 for accommodating portions of the interconnect lead tape. Recess 48 has a width 60 which is shown to approximate the width 46 of the die slot 22, and has a depth 62 which is sufficient to take up the lead tape 50 when it is compliantly moved into the recess upon insertion of a semiconductor die 18 into die slot 22.
The module 12C including the first side of plate 14D and the second side of plate 14C has alignment posts 52 and matching holes 54 for aligning the plates 14C, 14D to each other. Also shown are alignment/retention posts 56 and matching holes 58 for (a) aligning and retaining an interconnect lead tape 50 in the module, and for (b) aligning the plates 14C, 14D with each other. The posts 52, 56 and matching holes 54, 58 together comprise a module alignment system.
Mating portions of adjacent plates are joined by adhesive following installation of the lead tape 50 on alignment/retention posts 56. Each of the posts 52, 56 is inserted into holes 54, 58 so that all of the plates 14A, 14B, 14C and 14D are precisely aligned with each other to form a monolithic socket 10. In drawing
In the views of drawing
The lead tape 50 has an upper portion 72 which is configured with a total width 76 of leads 70 which generally spans the semiconductor die 18, but will be less than width 46 of die slot 22 (see FIG. 2). A lower portion 74 has a greater width 78 which may correspond generally to width 41 of the lower beam 40 (see FIG. 2). Alignment apertures 80, 82 are formed in the lower portion 74 to be coaxial along axes 84, 86, respectively, with alignment/retention posts 56.
The upper portion 72 includes lead portions which contact the bond pads 90 of the dice. The lower portion 74 includes lead portions which are joined to substrate 16.
In the embodiments of drawing
The lower ends 92 of leads 70 are shown as bent to a nearly horizontal position for surface attachment to a substrate 16.
The lower ends 92 are shown as having the insulative layer 64 removed to provide a metal surface for attachment by soldering or other method to a substrate 16.
In a variation of the lead tape 50 shown in drawing
An alternative embodiment of the interconnect lead tape 50 is depicted in drawing FIG. 6. The lower ends 92 of leads 70 are bent in the opposite direction from drawing
The lead tape 50 may be bent to the desired shape by a suitable stamping tool or the like, wherein the “at-rest” shape is uniform from tape to tape.
The placement of the module components, i.e. the die slot 22, lower beam 40, interconnect lead slot 44, and recess 48 may be varied in the longitudinal direction 94 (see
Turning now to drawing
Referring to drawing
Where a bare semiconductor die 18 has two rows of bond pads 90, illustrated in drawing
As shown in drawing
The foregoing delineates several examples of the use of a multi-layer lead tape with means for contacting the bond pads of a bare die. Other types of biasing apparatus may be used for maintaining contact between interconnect leads 70 and the bond pads 90 of a semiconductor die 18, including mechanical springs suitable for the miniature devices.
The plates 14A, 14B, 14C, 14D, etc. may be molded of a suitable insulative polymeric material, examples of which include polyether sulfone, polyether ether ketone (PEEK), or polyphenylene sulfide.
Following assembly of the modular socket 10 and attachment to a substrate 16, the modular socket, or portions thereof, may be “glob-topped” with insulative sealant material, typically a polymer.
The socket 10 of the invention permits connection of bare semiconductor dice with very fine pitch bond pads to substrates, whereby short leads are used for improved performance. The semiconductor dice may be readily replaced without debonding of wires or other leads. Multiple semiconductor dice may be simultaneously connected to a substrate, and the apparatus permits high density “stacking” of a large number of dice. The socket uses leads which may be produced by well-developed technology, and is easily made in large quantity and at low cost.
It is apparent to those skilled in the art that various changes and modifications may be made to the bare die socket module of the invention, sockets formed therefrom and methods of making and practicing the invention as disclosed herein without departing from the spirit and scope of the invention as defined in the following claims. It is particularly noted that with respect to numbers and dimensions of elements, the illustrated constructions of the various embodiments of the modular bare semiconductor die socket are not presented as a limiting list of features but as examples of the many embodiments of the invention.
This application is a continuation of application Ser. No. 10/158,979, filed May 30, 2002 now U.S. Pat. No. 6,612,872, issued Sep. 2, 2003, which is a continuation of application Ser. No. 09/876,805, filed Jun. 7, 2001, now U.S. Pat. No. 6,478,627, issued Nov. 12, 2002, which is a continuation of application Ser. No. 09/487,935, filed Jan. 20, 2000, now U.S. Pat. No. 6,319,065 B1, issued Nov. 20, 2001, which is a continuation of application Ser. No. 09/072,260, filed May 4, 1998, now U.S. Pat. No. 6,089,920, issued Jul. 18, 2000.
Number | Name | Date | Kind |
---|---|---|---|
2971179 | Heuer | Feb 1961 | A |
3573617 | Randolph et al. | Apr 1971 | A |
RE28171 | Anhalt | Sep 1974 | E |
3924915 | Conrad | Dec 1975 | A |
4113981 | Fujita et al. | Sep 1978 | A |
4266840 | Seidler | May 1981 | A |
4302706 | DuBois | Nov 1981 | A |
4314736 | Demnianiuk | Feb 1982 | A |
4381130 | Sprenkle | Apr 1983 | A |
4391408 | Hanlon et al. | Jul 1983 | A |
4397512 | Barraire et al. | Aug 1983 | A |
4418475 | Ammon et al. | Dec 1983 | A |
4461525 | Griffin | Jul 1984 | A |
4501461 | Anhalt | Feb 1985 | A |
4527850 | Carter | Jul 1985 | A |
4710134 | Korsunsky | Dec 1987 | A |
4781612 | Thrush | Nov 1988 | A |
4811165 | Currier et al. | Mar 1989 | A |
4889499 | Sochor | Dec 1989 | A |
4892487 | Dranchak et al. | Jan 1990 | A |
4995825 | Korsunsky et al. | Feb 1991 | A |
5020998 | Ikeya et al. | Jun 1991 | A |
5038250 | Uenaka et al. | Aug 1991 | A |
5061845 | Pinnavala | Oct 1991 | A |
5208529 | Tsurishima et al. | May 1993 | A |
5209675 | Korsunsky | May 1993 | A |
5242310 | Leung | Sep 1993 | A |
5244403 | Smith et al. | Sep 1993 | A |
5256078 | Lwee et al. | Oct 1993 | A |
5266833 | Capps | Nov 1993 | A |
5358421 | Petersen | Oct 1994 | A |
RE34794 | Farnworth | Nov 1994 | E |
5444304 | Hara et al. | Aug 1995 | A |
5450289 | Kweon et al. | Sep 1995 | A |
5451815 | Taniguchi et al. | Sep 1995 | A |
5466169 | Lai | Nov 1995 | A |
5489854 | Buck et al. | Feb 1996 | A |
5496182 | Yasumura | Mar 1996 | A |
5592019 | Ueda et al. | Jan 1997 | A |
5593927 | Farnworth et al. | Jan 1997 | A |
5609489 | Bickford et al. | Mar 1997 | A |
5619067 | Sua et al. | Apr 1997 | A |
5628635 | Ikeya | May 1997 | A |
5635760 | Ishikawa | Jun 1997 | A |
5644161 | Burns | Jul 1997 | A |
5668409 | Gaul | Sep 1997 | A |
5745349 | Lemke | Apr 1998 | A |
5751553 | Clayton | May 1998 | A |
5832601 | Eldridge et al. | Nov 1998 | A |
5834366 | Akram | Nov 1998 | A |
5866949 | Schueller | Feb 1999 | A |
5990545 | Schueller et al. | Nov 1999 | A |
6015652 | Ahlquist et al. | Jan 2000 | A |
6040739 | Wedeen et al. | Mar 2000 | A |
6089920 | Farnworth et al. | Jul 2000 | A |
6091252 | Akram et al. | Jul 2000 | A |
6150717 | Wood et al. | Nov 2000 | A |
6253266 | Ohanian | Jun 2001 | B1 |
6319065 | Farnworth et al. | Nov 2001 | B1 |
6333555 | Farnworth et al. | Dec 2001 | B1 |
6453550 | Farnworth et al. | Sep 2002 | B1 |
6469532 | Akram et al. | Oct 2002 | B1 |
6478627 | Farnworth et al. | Nov 2002 | B1 |
6594150 | Creason et al. | Jul 2003 | B1 |
6612872 | Farnworth et al. | Sep 2003 | B1 |
6621709 | Schnabel et al. | Sep 2003 | B1 |
6696754 | Sato et al. | Feb 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20030190843 A1 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10158979 | May 2002 | US |
Child | 10401199 | US | |
Parent | 09876805 | Jun 2001 | US |
Child | 10158979 | US | |
Parent | 09487935 | Jan 2000 | US |
Child | 09876805 | US | |
Parent | 09072260 | May 1998 | US |
Child | 09487935 | US |