The present principles relate generally to providing a thermally conductive interface for heat management in electronic equipment.
Electronic equipment generates heat when operating and the heat may adversely affect the operation and the reliability of the equipment. Typically, design of such equipment must include components to dissipate excessive heat and maintain desired operating temperatures of the equipment. In particular, active devices such as integrated circuits and other power-consuming components both active and passive such as power transistors, power diodes and power resistors included in electronic equipment may generate heat that requires adding features to the equipment to properly dissipate undesirable heat.
Features added for heat dissipation may include components such as heat sinks and heat spreaders. Such components intended to dissipate heat from a device such as an integrated circuit (IC) may be thermally coupled to the device or to a printed circuit board (PCB) on which the device is mounted to ensure efficient conduction of heat from the device or the PCB to the heat-dissipation component. Achieving thermal coupling typically involves positioning a surface of the heat dissipation component in close proximity to a surface of the device, e.g., the top surface of an IC, or a surface of the PCB.
Despite the surfaces being in close proximity when the heat dissipation component is initially positioned during production, an air gap or space may exist initially between the surfaces due to production tolerances (e.g., to allow space for component movement). Even if the surfaces are touching initially, a gap or space may subsequently form due to surface irregularities, component aging, movement of the equipment, or other movement of the components, e.g., due to repeated cycles of heating and cooling of the apparatus. Any such air gaps significantly reduce the efficiency of the thermal interface between the surfaces, i.e., surface of the heat dissipation component and the surface of the device or PCB.
To minimize such air gaps and increase the thermal efficiency of the interface to an acceptable level, a high-viscosity thermally conductive substance such as a thermal putty may be placed between the surfaces prior to positioning of the passive heat dissipation component. As the heat dissipation component is moved into close proximity to the surface from which the heat is to be removed, the putty is compressed and spreads between the surfaces to fill any gaps that exist and create a thermally efficient interface.
The described thermal interface functions well for equipment, e.g., a digital set top box used for cable television or digital satellite television reception, that typically has been rectangular in shape, installed in a horizontal position flat on a shelf and moved infrequently or not at all. In such conventional installations, the PCBs inside the equipment would usually be in a horizontal position when the equipment was installed. Active components and the heat dissipation components coupled thereto were mounted flat on the PCBs and were also oriented horizontally as were the thermal interfaces between the heat dissipation components and surfaces of the PCBs and/or heat-generating devices. However, modern electronic equipment may have shapes other than rectangular or be relocated frequently or installed in an unconventional orientation. For example, today rectangular set top boxes may be positioned on edge rather than flat or may have unusual configurations such as a pyramid to create a particular look or aesthetic effect. Printed circuit boards in a rectangular box that is installed on edge or in a box having a configuration other than rectangular may be oriented vertically or in an orientation other than horizontal when the equipment is in operation. As a result, the thermal interfaces between the heat dissipation components and surfaces of the PCBs and/or devices mounted on the boards may be oriented vertically or have some orientation other than horizontal.
A thermal interface having an orientation other than horizontal may result in gravity causing a thermal putty to flow out of the thermal interface. The potential for thermal putty to flow may be exacerbated by high temperature in the thermal interface and by movement of components, devices and/or PCBs due to vibration of the equipment, e.g., by movement or relocation of the equipment, and thermal cycling. A loss of thermal putty in a thermal interface may result causing reduced thermal efficiency in the interface and excessive heating of the equipment that could lead to premature device failure. In addition, a substance such as thermal putty flowing out of an interface might contaminate areas or components in the vicinity of the thermal interface and result in reduced performance, improper operation or failure of such nearby components or the equipment.
These and other drawbacks and disadvantages of the prior art are addressed by the present principles.
According to an aspect of the present principles, there is provided apparatus comprising a printed circuit board configured to be thermally coupled to a component to dissipate heat from the printed circuit board wherein the printed circuit board comprises a first surface having an area to be thermally coupled to a second surface of the component with a thermal putty included in a region between the area of the first surface and the second surface, and a pattern of features on a portion of the area of the first surface of the printed circuit board, wherein the features being configured to decrease migration of the thermal putty out of the region.
According to another aspect of the present principles, there is provided apparatus comprising a printed circuit board configured to be thermally coupled to a component to dissipate heat from the printed circuit board wherein the printed circuit board comprises a first surface including a first area to be thermally coupled to a second surface of the component using a thermally conductive substance included in a region between the first area of the first surface and the second surface of the component, and a raised second area in at least a portion of the first area of the first surface, wherein the raised second area comprises a third area configured for providing a target for application of the thermally conductive substance.
These and other aspects, features and advantages of the present principles will become apparent from the following detailed description of exemplary embodiments, which is to be read in connection with the accompanying drawings.
The present principles can be readily understood by considering the following detailed description in conjunction with the accompanying drawings wherein:
It should be understood that the drawings are for purposes of illustrating exemplary aspects of the present principles and are not necessarily the only possible configurations for illustrating the present principles. To facilitate understanding, throughout the various figures like reference designators refer to the same or similar features.
The present principles are directed to apparatus providing a thermal interface addressing problems such as those described above and, as will be apparent to one skilled in the art, may be applied to other situations. While one of ordinary skill in the art will readily contemplate various applications to which the present principles can be applied, the following description will focus on exemplary embodiments of the present principles applied to a printed circuit board (PCB) configured for coupling to a heat transfer component, e.g., a passive component such as a heat spreader, heat sink, etc., for removing heat from the PCB. One of ordinary skill in the art will readily contemplate various other embodiments of the present principles including, for example, a PCB configured for coupling to other heat transfer components, both active and passive, such as heat sinks, fins (structures to expand surface area), cavities (inverted fin structures), cold plates, forced air cooling (structures operating in conjunction with cooling fans), heat pipes and others. It will be readily apparent to one skilled in the art that excessive heat associated with a PCB may originate from various heat-generating devices mounted on the PCB such as an integrated circuit (IC), power transistors, power resistors, power supplies, etc., and create thermal transfer situations suitable for application of the present principles. As a specific example, a high-speed data processor IC packaged in a ball grid array (BGA) package mounted on a printed circuit board (PCB) may generate significant excess heat that is transferred to the PCB. Also, the present principles are applicable to thermal interfaces involving PCBs occurring in various types of electronic equipment including set-top boxes, gateway devices, routers, servers, computers, televisions, monitors, and others. It is to be appreciated that the preceding listing of potential applications of the present principles is merely illustrative and not exhaustive.
Referring now to
A second example of a thermal interface suitable for application of the present principles is shown in
As described above, if PCB 120 and a heat dissipation component such as heat spreader 110 or heat sink 210 are oriented horizontally with respect to gravity as shown in
In accordance with the present principles, the described problem is addressed by thermal interface apparatus such as an exemplary embodiment shown in
As shown in
In accordance with another aspect of the present principles, features 330 may be formed, for example, by etching or otherwise forming copper traces on surface 170 of PCB 120 in a pattern such as the exemplary plurality of parallel lines shown in
In accordance with another aspect of the present principles, an exemplary embodiment of features 330 illustrated as parallel ridges, lines or traces protruding above surface 170 of PCB 120 may be implemented in various other exemplary embodiments of the pattern of features 330 as shown in
In accordance with another aspect of the present principles, improper positioning of a thermally conductive substance may occur when the substance is applied to a heat dissipation component prior to assembly of the component to a device for heat removal. For example, to ensure proper distribution of a substance such as a thermal putty in a thermal interface, the substance should be applied properly, e.g., approximately centered in a planar region of the PCB intended to form a thermal interface with a heat dissipation component. Proper positioning may occur in a factory environment using automated computer-controlled production equipment. However, outside of a factory, proper positioning may be problematic. For example, in a repair facility or when repairs are made in the field, e.g., a consumer's home, if equipment is disassembled such that existing thermal interfaces are separated or disassembled, e.g., a heat dissipation device is removed to access or replace a device coupled thereto, the thermally conductive substance must be reapplied before reassembly of the equipment. Improper positioning of the thermally conductive substance may occur in such a situation, e.g., not centered in the area of PCB intended to form the thermal interface. If so, the substance may fill only a portion of the intended thermal interface resulting in reduced efficiency of the thermal interface.
An aspect of the present principles comprises providing apparatus including a target to aid in proper positioning of a thermally conductive substance, e.g., a thermal putty. An exemplary embodiment of such apparatus comprises a PCB configured to be thermally coupled to a component to dissipate heat from the device. The PCB includes a first surface and the first surface includes a region or area to be thermally coupled to a surface of the component using a thermally conductive substance. The substance is to be included in at least a portion of the region and between the first surface and the surface of the heat dissipation component. The first surface further includes a raised area in at least a portion of the region of the first surface, wherein the raised area comprises a first portion providing a target for application of, or proper positioning of, a the thermally conductive substance, e.g., a thermal putty. In an exemplary embodiment such as that shown in
Also, various embodiments of a target for application of a substance such as thermal putty are possible in accordance with the present principles. As shown in
In accordance with another aspect of the present principles, in the exemplary embodiment depicted in
The present description illustrates the present principles. It will thus be appreciated that those skilled in the art will be able to devise various arrangements that, although not explicitly described or shown herein, embody the present principles and are included within its spirit and scope.
All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the present principles and the concepts contributed by the inventor(s) to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. For example, use in the description when referring to the drawings of “top”, “bottom”, “left”, “right” and other such terms indicating an orientation or relative relationship between areas of the Figures are illustrative only and not limiting as to the present principles.
Moreover, all statements herein reciting principles, aspects, and embodiments of the present principles, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
Reference in the specification to “one embodiment” or “an embodiment” of the present principles, as well as other variations thereof, means that a particular feature, structure, characteristic, and so forth described in connection with the embodiment is included in at least one embodiment of the present principles. Thus, the appearances of the phrase “in one embodiment” or “in an embodiment”, as well any other variations, appearing in various places throughout the specification are not necessarily all referring to the same embodiment.
Although the illustrative embodiments have been described herein with reference to the accompanying drawings, it is to be understood that the present principles are not limited to those precise embodiments, and that various changes and modifications may be effected therein by one of ordinary skill in the pertinent art without departing from the scope or spirit of the present principles. All such changes and modifications are intended to be included within the scope of the present principles as set forth in the appended claims.
This application claims priority from U.S. Provisional Application No. 62/453,026, entitled “Apparatus Providing a Thermal Interface” filed on Feb. 1, 2017, the contents of which are hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62453026 | Feb 2017 | US |