1. Field of the Invention
The present invention relates to high accuracy diffraction interferometry, and more specifically, it relates to the use of embodiments of the Phase Shifting Interferometer to measure the aberrations of convex lenses and negative lenses.
2. Description of Related Art
Interferometry is the preferred method to measure the performance of optical elements and systems. In this method the wavefront of light reflected from or transmitted by the optic to be tested is interfered with the wavefront from a reference surface, to produce an interference fringe pattern. These interference fringes are then analyzed to ascertain the performance of the optic. For high performance imaging systems, such as those found in lithographic steppers used to make integrated circuits, this interferometric measurement must be made to ever increasing accuracy. The accuracy, however, is limited by how well the reference surface is characterized. Reference surfaces are typically no better than λ/50, where λ is the wavelength of visible light, and thus are the limiting factor in fabricating higher performance optical systems. Therefore the fabrication of high accuracy optical systems, such as those needed for extreme ultraviolet projection lithography which require an accuracy of λ/1000, are impossible to qualify with confidence using existing interferometry.
The problem or difficulty with interferometrically measuring a convex mirror or a negative lens is that it is necessary to have a converging spherical wavefront incident on either of these two optics in order to make a measurement with an interferometer. This problem is particularly true of the phase measuring diffraction interferometer since it produces a perfect diverging spherical wavefront.
In order to produce a converging spherical wavefront, it is necessary to introduce a positive auxiliary lens into the interferometer. This will change the perfect diverging spherical wavefront into a converging wavefront. This converging wavefront will not, in general, be a perfect spherical wavefront due to errors in the positive auxiliary lens. This will introduce an error into the measurement. In conventional interferometers this error cannot be eliminated. However, the phase shifting diffraction interferometer is unique in that it can be configured in at least two different ways, permitting exact cancellation of the error.
It is an object of the present invention to provide methods utilizing the phase shifting diffraction interferometer for measuring the aberrations of convex mirrors and negative lenses.
Other objects of the invention will be apparent to thoses skilled in the art based on the teachings herein.
U.S. Pat. Nos. 5,548,403 and 5,933,236, disclose an interferometer that has the capability of measuring optical elements and systems with an accuracy of λ/1000 where λ is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about λ/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. The patented interferometers maximize the signal-to-noise and permit analysis of interference fringe patterns using standard phase extraction algorithms.
The measurement of convex mirrors and negative lenses may be accomplished though the introduction of auxiliary interferometer optics into certain embodiments of the phase shifting interferometers described in the above described patents.
To measure a convex mirror, the reference beam and the measurement beam are first both provided through a single optical fiber. A positive auxiliary lens is placed in the system to give a converging wavefront onto the convex mirror under test. An aperture stop is located immediately after the positive lens. The aperture stop defines where the convex mirror to be tested will be located. The convex mirror is placed right at the aperture stop in such a way that the light is reflected back on itself from the surface of the convex mirror. The wavefront reflected from the convex mirror under test comes to focus on the end of the fiber where it is reflected off the face of the fiber and is combined with the wavefront coming directly out of the fiber. Both wavefronts are imaged onto a CCD camera. An interference pattern is observed at the CCD camera and recorded (stored). The interference pattern is analyzed by standard methods. This constitutes one of the measurements. This measurement includes the aberrations of the convex mirror as well as the errors due to two transmissions through the positive auxiliary lens. A second measurement provides the information to eliminate this error.
To make the second measurement, the first fiber, imaging lens, CCD camera, and aperture stop are left in exactly the same positions. It is important that they are not moved between the two measurements. The convex mirror under test is removed. A second optical fiber is placed at the focal position of the positive lens. For this second measurement, only the reference beam is provided through the original optical fiber and the measurement beam is provided through the second optical fiber. The measurement wavefront from the second optical fiber passes through the aperture stop, goes through the positive auxiliary lens and comes to focus on the face of the original optical fiber. It then reflects off the face of the original optical fiber and is combined with reference wavefront coming directly out of the first fiber. Both wavefronts are imaged onto the CCD camera. The interference pattern is analyzed by standard methods. This constitutes the second measurement. This measurement includes only errors due to a single transmission through the positive auxiliary lens. To obtain the aberration due to just the convex mirror, the second measurement is multiplied by 2 and the result is subtracted from the first measurement. An alternate embodiment for measuring a convex mirror is also provided.
A negative lens can also be measured in a similar way. Again, there are two measurement set-ups. The reference beam is provided from a first optical fiber and the measurement beam is provided from a second optical fiber. A positive auxiliary lens 130 is placed in the system to provide a converging wavefront to the reference beam. An aperture stop is placed immediately after the positive lens. The negative lens under test is placed at the aperture stop. The measurement fiber is placed at the focal position of the negative lens under test. The measurement wavefront passes through the negative lens and aperture stop, goes through the positive lens and comes to focus on the face of the reference optical fiber. It then reflects off the face of the reference optical fiber and is combined with the reference wavefront coming directly out of the reference fiber. Both wavefronts are imaged onto the CCD camera. The interference pattern located at the CCD camera is analyzed by standard methods. This constitutes one of the measurements. This measurement includes the aberrations of the negative lens, as well as the errors due to a single transmission through the positive auxiliary lens. A second measurement provides the information to eliminate this error.
To make the second measurement, the reference fiber, imaging lens, CCD camera, and aperture stop are left in exactly the same positions. It is important that they are not moved between the two measurements. The negative lens is removed. The measurement optical fiber is moved to the focal position of the positive auxiliary lens. The measurement wavefront from the measurement optical fiber passes through the aperture stop, goes through the positive auxiliary lens and comes to focus on the original optical fiber. It then reflects off the face of the original optical fiber and is combined with the reference wavefront coming directly out of the reference fiber. Both wavefronts are imaged onto the CCD camera. The interference pattern located at the CCD camera is analyzed by standard methods. This constitutes the second measurement. This measurement includes only errors due to a single transmission through the positive auxiliary lens. To obtain the aberration due to just the negative lens, the second measurement is subtracted from the first measurement. This eliminates the error due to the positive auxiliary lens and gives just the wavefront transmitted by the negative lens.
The accompanying drawings which are incorporated into and form a part of the disclosure, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
The measurement of convex mirrors and negative lenses may be accomplished though the introduction of auxiliary interferometer optics into the phase shifting interferometers described in U.S. Pat. No. 5,548,403, titled “Phase Shifting Diffraction Interferometer” and U.S. Pat. No. 5,933,236, titled “Phase Shifting Interferometer”, both patents incorporated herein by reference. These auxiliary optics would introduce measurement errors in conventional interferometers that are impossible to eliminate. However, the phase shifting diffraction interferometer is uniquely suited to measure convex mirrors and negative lenses with absolute accuracy. This is due to the ability to configure the interferometer two ways, unlike conventional interferometers.
In
In
Measuring a Convex Mirror
To make the second measurement, the fiber 86, imaging lens 106, CCD camera 108, and aperture stop 102 are left in exactly the same positions. It is important that they are not moved between the two measurements. The convex mirror 104 is removed. A second optical fiber 87 is placed at the focal position of the positive lens 100. For this second measurement,
To obtain the aberration due to just the convex mirror, the second measurement is multiplied by 2 and the result is subtracted from the first measurement. This eliminates the error due to the positive auxiliary lens. To get the surface figure of the convex mirror, the result is divided by two.
An alternate embodiment for measuring a convex mirror is illustrated in
In the second measurement, the interferometer is configured as shown in FIG. 2D. Both the measurement and the reference wavefront are provided from a single fiber optic 86, as shown in FIG. 1B. The measurement beam passes through positive lens 100 and converges onto the convex mirror 104 under test located at the aperture stop 102. Convex mirror 104 reflects the beam back through the positive lens 100 that refocuses the beam onto the face of fiber optic 86, which reflects the beam to imaging lens 106 and onto CCD camera 108. This produces an interference pattern that is analyzed to produce a second measurement that includes the errors due to the convex mirror 104 and the errors due to two passes through the positive lens 100. The aberrations due to a single transmission through the positive lens 100, as determined from the first measurement, as discussed with respect to
Measuring a Negative Lens
A negative lens can also be measured in a similar way. Again, there are two measurement set-ups as shown in
To make the second measurement, the reference fiber 86, imaging lens 136, CCD camera 138, and aperture stop 132 are left in exactly the same positions. It is important that they are not moved between the two measurements. The negative lens 134 is removed. The measurement optical fiber 87 is moved to the focal position 131 of the positive auxiliary lens 130 as shown in FIG. 3B. The measurement wavefront from the measurement optical fiber 87 passes through the aperture stop 132, goes through the positive auxiliary lens 130 and comes to focus on the original optical fiber 86. It then reflects off the face of the original optical fiber 86 and is combined with the reference wavefront coming directly out of the fiber 86. Both wavefronts again go through the small imaging lens 136 which images the aperture stop 132 on to the CCD camera 138. At the CCD camera 138 is located an interference pattern of the reference wavefront coming directly from the fiber and the measurement wavefront transmitted by the positive auxiliary lens. The interference pattern is analyzed by standard methods. This constitutes the second measurement. This measurement includes only errors due to a single transmission through the positive auxiliary lens.
To obtain the aberration due to just the negative lens, subtract the second measurement from the first measurement. This eliminates the error due to the positive auxiliary lens and gives just the wavefront transmitted by the negative lens.
The foregoing description of the invention has been presented for purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described to best explain the principles of the invention and its practical application to thereby enable others skilled in the art to best use the invention in various embodiments and with various modifications suited to the particular use contemplated. The scope of the invention is to be defined by the following claims.
This is a Divisional of U.S. patent application Ser. No. 09/690,935, titled “Application Of The Phase Shifting Diffraction Interferometer for Measuring Convex Mirrors And Negative Lenses,” filed Oct. 17, 2000 U.S. Pat. No. 6,704,112 and incorporated herein by reference.
The United States Government has rights in this invention pursuant to Contract No. W-7405-ENG-48 between the United States Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.
| Number | Name | Date | Kind |
|---|---|---|---|
| 5815268 | LaFleur | Sep 1998 | A |
| 5933236 | Sommargren | Aug 1999 | A |
| Number | Date | Country | |
|---|---|---|---|
| 20040150834 A1 | Aug 2004 | US |
| Number | Date | Country | |
|---|---|---|---|
| Parent | 09690935 | Oct 2000 | US |
| Child | 10764042 | US |