1. Technical Field
The present invention relates to an assembly jig and a manufacturing method of a multilayer semiconductor device. More specifically, the present invention relates to an assembly jig and a method appropriately used for manufacturing a multilayer semiconductor device comprising semiconductor chips mounted on a thin printed-wiring board and many layered semiconductor modules each having bumps formed on many interlayer connection lands.
2. Prior Art
As a semiconductor device, a multilayer semiconductor device 100 in
There are formed terminal conductors and appropriate circuit conductors (not shown) for connecting surface electrodes in a region 104b for mounting the semiconductor chip 103 on a first principal plane 104a of the printed-wiring board 104. Around the semiconductor chip mounting region 104b of the printed-wiring board 104, there is formed a plurality of interlayer connection lands 106 and 107 on a first principal plane 104a and a second principal plane 104c, respectively. The interlayer connection lands 106 and 107 are connected to appropriate through-holes whose details are omitted. A bump 108 comprising a solder ball or the like is provided on an interlayer connection land 106 on the first principal plane 104a of the printed-wiring board 104.
The semiconductor module 101 is subject to processes such as mounting the semiconductor chip 103 on the semiconductor chip mounting region 104b of the printed-wiring board 104, applying flux or soldering paste to the interlayer connection land 106 on the printed-wiring board 104, and providing the bump 108 held by adhesion of the flux and the like on the interlayer connection land 106. When the semiconductor module 101 is supplied to a reflow furnace, the bump 108 is melted and is fixed onto the interlayer connection land 106. The semiconductor module 101 is subject to a per-piece inspection by performing burn-in, a function test, and the like, and then is supplied to the next process.
The semiconductor module 101 is subject to a process of applying flux or soldering paste to the bump 108 on the first principal plane 104a and the interlayer connection land 107 on the second principal plane 104c. With the second principal plane 104c as a mounting surface, the semiconductor module 101, as shown in
A first-layer semiconductor module 101a is mounted and held on the base substrate 109 by means of an adhesive strength of soldering paste applied to the interlayer connection land 107. A second-layer semiconductor module 101b is mounted and held on the first principal plane 104a of the first-layer semiconductor module 101a by means of an adhesive strength of soldering paste applied to the bump 108 of the first-layer semiconductor module 101a and to the interlayer connection land 107. Likewise, the respective semiconductor module 101a to 101d are layered in order. This layering state is maintained by the soldering paste.
When a layered unit is supplied to the reflow furnace, the bump 108 is melted and is fixed onto the other interlayer connection land 107. Consequently, a layered semiconductor module unit 110 as shown in
A layered unit of the semiconductor module 101 and the mother substrate 102 is supplied to the reflow furnace. As regards the layered unit of the semiconductor module 101 and the mother substrate 102, the bump 108 on the fourth-layer semiconductor module 101d in the layered semiconductor module unit 110 is melted and is fixed to a connection land 111 of the mother substrate 102. This provides an entire interlayer connection and to complete the multilayer semiconductor device 100.
In a conventional manufacturing process for the multilayer semiconductor device 100, an adhesive strength of the soldering paste maintains a layered state of the semiconductor modules 101 on the base substrate 109 until reflow heat treatment is applied. Accordingly, when a chip mounter is operated during the conventional manufacturing process, for example, positional displacement occurs among many layered semiconductor modules 101, causing a connection failure between layers. It is possible to solve this problem by using a special chip mounter having a positional displacement restriction mechanism. However, such a special-purpose apparatus increases machinery costs and decreases productivity due to a process change a setup process, and the like.
According to the conventional manufacturing process, many semiconductor modules 101 are layered on the base substrate 109 and reflow heat treatment is applied. In such a situation, a connection failure occurred between layers due to a warp on the thin printed-wiring board 104 or variability of a diameter of the bump 108. In the conventional manufacturing process, a similar problem also occurs when the layered semiconductor module unit 110 is mounted on the mother substrate 102 and reflow heat treatment is applied.
It is also important that the multilayer semiconductor device 100 be requested to provide a high-precision thin characteristic on the order of 0.1 mm. The conventional manufacturing process supplies the highly precisely fabricated printed-wiring board 104 and mother substrate 102. A high-precision bump formation apparatus is used for forming the bump 108. However, the conventional manufacturing process provides no measures for restricting the entire height during a process. Consequently, the conventional manufacturing process caused the problem that variability of the entire height increases as the number of layers increases, resulting in large variability in the height of the multilayer semiconductor device 100. This is also due to a warp on the printed-wiring board 104 or variability of a diameter of the bump 108 during the above-mentioned reflow heat treatment.
Since the multilayer semiconductor device 100 employs different interlayer connections between respective layers of the semiconductor modules 101, the bumps 108 are not arranged and formed evenly on the printed-wiring board 104. Accordingly, the manufacturing process for the multilayer-semiconductor device 100 increases a warp on the printed-wiring board 104 of each semiconductor module 101 making the above-mentioned problem more remarkable. The multilayer semiconductor device 100 also presented the problem that the printed-wiring board 104 is bent to concentrate a stress on a connection point of the bump 108, causing peeling or a contact failure.
It is therefore an object of the present invention to provide an assembly jig and a manufacturing method of a multilayer semiconductor device which establishes a secure interlayer connection, maintaining the height precision and reliability, and improves the yield and productivity.
For achieving the above-mentioned objects, a multilayer semiconductor device assembly jig according to the present invention comprises a base member for serially layering a plurality of semiconductor modules each including a semiconductor chip mounted on a thin printed-wiring board and a bump on each of a plurality of interlayer connection lands; a position restriction mechanism for layering the semiconductor modules with mutual positions restricted on the base member; a height restriction mechanism for restricting an entire height of the semiconductor module group layered on the base member; an evenness holding mechanism for maintaining evenness of a top-layer semiconductor module; and an alignment mechanism for providing alignment with reference to a mother substrate where a layered semiconductor module unit is mounted.
An assembly jig for the thus configured multilayer semiconductor device according to the present invention allows many semiconductor modules to be layered on a base member with mutual positions restricted by the position restriction mechanism and the entire height specified by the height restriction mechanism. When the multilayer semiconductor device's assembly jig is transported into the reflow furnace, reflow heating is applied to each semiconductor module. Each bump between interlayer connection lands is melted and hardened for interlayer connection between semiconductor modules. The multilayer semiconductor device's assembly jig mutually positions respective semiconductor modules for securing interlayer connection and maintaining a specified height. For manufacturing a layered semiconductor module unit, the evenness holding mechanism maintains evenness of a top-layer semiconductor module which functions as a junction semiconductor module with the mother substrate.
The multilayer semiconductor device's assembly jig, when inverted, is aligned to and combined with the mother substrate via an alignment mechanism, aligning and mounting the layered semiconductor module unit on this mother substrate. The multilayer semiconductor device's assembly jig holds the layered semiconductor module unit by means of the position restriction mechanism and the height restriction mechanism. With this state maintained, the assembly jig is transported into the reflow furnace together with the mother substrate and is subject to reflow heating. The multilayer semiconductor device's assembly jig manufactures a multilayer semiconductor device in such a manner that a bump on the first-layer semiconductor module is melted and is hardened between this module and an adjacent interlayer connection land for providing an interlayer connection with the mother substrate. The multilayer semiconductor device's assembly jig is removed from the mother substrate. The multilayer semiconductor device's assembly jig makes it possible to effectively manufacture a multilayer semiconductor device by providing a highly precise interlayer connection among the semiconductor modules and the mother substrate and maintaining a precision height.
A multilayer semiconductor device manufacturing method according to the present invention for achieving the above-mentioned objects uses an assembly jig having a base member for serially layering a plurality of semiconductor modules each including a semiconductor chip mounted on a printed-wiring board and a bump on an interlayer connection lands, a position restriction mechanism for layering the semiconductor modules with respective positions restricted on the base member, and a height restriction mechanism for restricting an entire height of the semiconductor module group layered on the base member. The multilayer semiconductor device manufacturing method comprises the steps of: serially layering the specified number of the semiconductor modules on the base member with respective positions restricted by the position restriction mechanism and placing layered modules in the assembly jig with an entire height restricted by the height restriction mechanism; and supplying the assembly jig into a reflow furnace, applying reflow heating to melt the bump for interlayer connection among the semiconductor modules, and forming a layered semiconductor module unit.
The multilayer semiconductor device manufacturing method uses the above-mentioned assembly jig having the alignment mechanism for alignment with the mother substrate to be mounted. After a layered semiconductor module unit is formed, the assembly jig is inverted and is aligned to a mother substrate via the alignment mechanism. This manufacturing method comprises the steps of combining the layered semiconductor module unit with a topmost semiconductor module as a junction semiconductor module having evenness maintained by an evenness holding mechanism; supplying an assembly of the assembly jig and the mother substrate into a reflow furnace and applying reflow heating for interlayer connection between a first-layer semiconductor module in the layered semiconductor module unit and the mother substrate; and removing the assembly jig from the mother substrate.
According to the manufacturing method comprising the above-mentioned processes for the multilayer semiconductor device, the use of the above-mentioned assembly jig allows the position restriction mechanism to mutually align respective semiconductor modules. In addition, the height restriction mechanism precisely keeps the entire height to a specified value for manufacturing a layered semiconductor module unit. The manufacturing method for multilayer semiconductor devices according to the present invention uses a simple apparatus to suppress effects of a printed-wiring board warp, bump size variability, and the like, and to secure an interlayer connection between the semiconductor modules. Consequently, it is possible to manufacture a highly reliable multilayer semiconductor device with low costs and high productivity.
As mentioned above in detail, the multilayer semiconductor device's assembly jig according to the present invention uses the position restriction mechanism to mutually align many semiconductor modules layered on a base member. The height restriction mechanism restricts the entire height. Further, the evenness holding mechanism maintains evenness. With this state, the reflow heating is applied for interlayer connection. This suppresses effects of a printed-wiring board warp, bump diameter variability, and the like for precise connection between the layers. The entire height is also maintained precisely, making it possible to effectively manufacturing a highly reliable multilayer semiconductor device. The multilayer semiconductor device's assembly jig eliminates the need for a costly chip mounter having an alignment mechanism and the like, provides easy operations, and decreases costs by streamlining inspection processes.
The manufacturing method for multilayer semiconductor devices according to the present invention regulates mutual positions of many semiconductor modules and specifies the entire height. Further, the assembly jig is used for maintaining evenness and performs reflow heating for providing an interlayer connection. Consequently, the simple apparatus suppresses effects of a printed-wiring board warp, bump size variability, and the like for securing an interlayer connection between the semiconductor modules. Therefore, it is possible to manufacture a highly reliable multilayer semiconductor device with low costs and high productivity.
Embodiments of the present invention will be described in further detail with reference to the accompanying drawings. Manufacturing processes for the multilayer semiconductor device 1 according to the embodiment are almost the same as those for the above-mentioned conventional multilayer semiconductor device 100. As shown in
The manufacturing processes for the semiconductor module 2 include a process of mounting a semiconductor chip 7 on a printed-wiring board 6 as a first process. As regards the printed-wiring board 6, a photographic technique or the like is used to form a proper circuit conductor (details omitted) on a thin substrate comprising a copper foil or the like attached to an insulation film as a base material. As shown in
The printed-wiring board 6 is not only designed to mount the semiconductor chip 7 directly on the first principal plane 6a. It may be also preferable to cut out a hole corresponding to the semiconductor chip 7 in the semiconductor chip mounting region 6b and form terminal lands-around this hole. Further the printed-wiring board 6 may be formed like a long tape for serially mounting the semiconductor chip 7 in each region to be cut properly. In this case, perforations and the like are formed on both sides thereof for continuous transportation.
On the printed-wiring board 6, a through-hole (details omitted) is used for connection between the interlayer connection lands 8 and 9 corresponding to each other on first and second surfaces. The printed-wiring board 6 uses common arrangement of the interlayer connection lands 8 and 9 for all the semiconductor modules 2. Accordingly, the printed-wiring board 6 configures a dummy land, say, by removing connection between a circuit conductor and part of the interlayer connection lands 8 and 9.
The semiconductor chip 7 is used as, say, an integrated circuit element, a memory chip, and the like and is thinned by applying a process such as polishing to packaging resin. A proper surface electrode (details omitted) is formed on the surface of the semiconductor chip 7. As shown in
As shown in
During the manufacturing process for the semiconductor module 2, flux or soldering paste 12 is applied to the first interlayer connection land 8 of the printed-wiring board 6 as shown in
As mentioned above, the semiconductor module 2 uses the thin printed-wiring board 6 as a base material. Since the semiconductor module 2 is almost evenly provided with the interlayer connection land 8, dummy lands, and the bump 13, the structure is characterized by improved mechanical rigidity and an adjusted weight balance. Accordingly, the semiconductor module 2 is almost free from deformation and the like during subsequent processes.
After the above-mentioned inspection, the semiconductor module 2 is transferred to a manufacturing process using the assembly jig 3 for the layered semiconductor module unit 4. In the manufacturing process for the layered semiconductor module unit 4, the assembly jig 3 is used to align four semiconductor modules 2a to 2d to each other. Further, the height restriction is performed for layering these modules to assemble the layered semiconductor module unit 4. After the flux or soldering paste is applied to the surface of the second interlayer connection land 9 on the second principal plane 2c and the surface of the bump 13, each semiconductor module 2 is placed in the assembly jig 3.
As shown in
As shown in FIGS. 2 (d) and 3, the assembly jig 3 comprises a box-shaped main body 16 further comprising a base 14 and a body 15, a height restriction member 17, and a cover 18. The assembly jig 3 contains four semiconductor modules 2 in a layered state. In the assembly jig 3, an inner face 14a of the base 14 is formed with relatively high precision. The four semiconductor modules 2 are serially layered to assemble the layered semiconductor module unit 4 by using the inner face 14a as a reference plane.
The assembly jig 3 includes an internal space of the body 15 constituting a layering space 19 for the semiconductor module 2. The sectional dimension thereof is formed almost equally to the outside dimension of the semiconductor module 2. The assembly jig 3 is designed for alignment of respective modules in such a way that an inner surface of the body 15 restricts an outer periphery of the semiconductor modules 2 placed in the layering space 19. Accordingly, the assembly jig 3 constitutes a position restriction mechanism in which the body 15 restricts respective positions of the semiconductor modules 2 for layering.
The assembly jig 3 has a positioning hole 20 formed in a height direction at the top end of the body 15. The positioning holes 20 are formed at the top ends of at least three sides and constitute a positioning mechanism for combining the assembly jig 3 with the mother substrate 5 as will be described later. The assembly jig 3 has a support stage 21 formed on the inner surface of the body 15 by maintaining a specified height from the inner face 14a of the base 14. The support stage 21 is recessed on the inner surface of the body 15 in such a way that an opening dimension of the layering space 19 is slightly increased. The support stage 21 is formed equally to a layered dimension of four semiconductor modules 2a to 2d with height “h”.
When the four semiconductor modules 2a to 2d are placed in the layering space 19, the height restriction member 17 is assembled on the top of the assembly jig 3. The height restriction member 17 has an outside dimension slightly larger than the sectional dimension of the body 15 and is formed almost equally to the opening dimension corresponding to the support stage 21. A bottom face 17a thereof is supported by the support stage 21. The height restriction member 17 has its bottom face 17a formed with relatively high flatness accuracy. With the state assembled to the body 15, the bottom face 17a and the inner face 14a of the base 14 restrict the height of the layering space 19 to “h”.
The layered semiconductor module unit 4 comprises the semiconductor modules 2a to 2d which are prone to height variabilities. These variabilities result from variabilities of the thickness of the printed-wiring board 6, the diameter of the bump 13, the thickness of the soldering paste 12, and the like for each of these modules. The assembly jig 3 uses the height restriction member 17 to press the topmost semiconductor module 2d for restricting the height of the layered semiconductor module unit 4 to “h”. The height restriction member 17 is held by a cover 18 provided on the assembly jig 3.
With this state maintained, the assembly jig 3 is supplied to the reflow furnace for performing interlayer connection among the semiconductor modules 2a to 2d. When the reflow heating is applied to the semiconductor modules 2a to 2d, the bump 13 on each layer is melted and is fixed to the corresponding second interlayer connection land 9 on the upper-layer side. This performs the interlayer connection to form the layered semiconductor module unit 4.
A heat load due to the reflow heating causes a warp on each printed-wiring board 6 in the layered semiconductor module unit 4. As mentioned above, the assembly jig 3 restricts the entire height, suppressing deformation due to this warp. The layered semiconductor module unit 4 is characterized by suppressing positional errors among the semiconductor modules 2a to 2d and by precisely maintaining the entire height to the dimension “h”. There is provided a secure connection state between the first interlayer connection land 8 and the facing second interlayer connection land 9. The layered semiconductor module unit 4 also maintains evenness of the semiconductor modules 2a to 2d.
After the assembly jig 3 is taken out of the reflow furnace and is cooled as specified, it is supplied to a process of mounting the layered semiconductor module unit 4 on the mother substrate 5. The height restriction member 17 and the cover 18 are removed from the assembly jig 3. Then, the assembly jig 3 is reversed by a handling apparatus and is placed on the mother substrate 5. In the semiconductor module unit 4, the top-layer semiconductor module 2d is used as a junction module for the mother substrate 5.
The assembly jig 3 is manipulated by a proper holding mechanism so that the layered semiconductor module unit 4 is retained in the layering space 19. As shown in FIGS. 2 (e) and 4, the assembly jig 3 is positioned to the mother substrate 5 and is combined therewith in such a way that a positioning pin 22 provided in a marginal region 5a of the mother substrate 5 fits in the positioning hole 20. This combination state in the assembly jig 3 is maintained by a mechanical clamper, an adhesive tape, or a weight (details omitted).
The mother substrate 5 comprises a printed-wiring board having mechanical rigidity and a thickness larger than that of printed-wiring board 6 for the semiconductor module 2 and constitutes a base for the multilayer semiconductor device 1. The mother substrate 5 constitutes an external connection member in which a proper connection terminal or circuit conductor (details omitted) is formed. The mother substrate 5 includes an interlayer connection land 23 formed corresponding to the second interlayer connection land 9 for the semiconductor module 2. When the layered semiconductor module unit 4 is mounted soldering paste or the like is applied onto the interlayer connection land 23 of the mother substrate 5.
An assembly of the assembly jig 3 and the mother substrate 5 is supplied to the reflow furnace for performing an interlayer connection between the mother substrate 5 and the semiconductor module 2d. Namely, when the reflow heating is applied, the bump 13 is melted and hardened between the corresponding interlayer connection land 23 and the first interlayer connection land 8, performing an interlayer connection between the mother substrate 5 and the semiconductor module 2d. After the assembly jig 3 is taken out of the reflow furnace and is cooled as specified, the assembly jig 3 is removed from the mother substrate 5. A dicer or the like is used for cutting off the marginal region 5a from the mother substrate 5 to form the multilayer semiconductor device 1 with the layered semiconductor module unit 4 mounted thereon.
The assembly jig 3 has the main body 16 comprising the box-shaped body 15 formed integrally to the base 14 as mentioned above, but is not limited to such a structure. An assembly jig 30 in
Positioning guide pins 32 are provided around the layering region 31b of the base plate 31. As shown in
On the base plate 31, a height restriction spacer 33 is provided between a pair of positioning guide pins 32. As shown in
In the assembly jig 30, four semiconductor modules 2a to 2d are serially layered on the base plate 31. The assembly jig 30 aligns the semiconductor modules 2a to 2d to each other by restricting outer layers using each positioning guide pin 32. After the semiconductor modules 2 are layered, the cover 34 is mounted on the height restriction spacer 33 of the assembly jig 30. The assembly jig 30 restricts the entire height and maintains evenness in such a manner that the cover 34 presses the semiconductor modules 2.
As is the case with the above-mentioned assembly jig 3, the assembly jig 30 is supplied to the reflow furnace. The assembly jig 30 then is subject to processes of performing interlayer connection among semiconductor modules 2 and mounting them on the mother substrates. Thereafter, the assembly jig 30 is removed from the mother substrate 5 to manufacture the multilayer semiconductor device 1. As shown in
The assembly jig 30 uses the positioning guide pins 32 to partially regulate the outer periphery of the printed-wiring board 6. This structure eases an operation of layering the semiconductor modules 2 on the base plate 31. The assembly jig 30 also allows easy maintenance for cleaning of members and the like.
An assembly jig 40 in
According to this assembly jig 40, the semiconductor modules 2 are serially layered so that each positioning guide pin 41 pierces the corresponding positioning hole 42. Hence, the assembly jig 40 highly precisely aligns the semiconductor modules 2 and securely maintains this alignment state. When the assembly jig 40 and the semiconductor module 2 are relatively small, it may be preferable to form the positioning guide pins 41 and the positioning holes 42 fitting to each other at three different positions.
Number | Date | Country | Kind |
---|---|---|---|
P2000-171059 | Jun 2000 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 09876290 | Jun 2001 | US |
Child | 11646158 | Dec 2006 | US |