1. Field of the Invention
The present invention relates generally to epitaxial growth systems for production of semiconductor materials and devices, in particular. More specifically, the invention relates to the design of hydride vapor phase epitaxy (HVPE) growth systems and reactors, the design of internal components of HVPE growth systems and reactors, and HVPE-based processes for growth of group III-nitride materials and devices that can be used in optoelectronics as well as in high-power high-frequency electronics.
2. Prior Art
The development of GaN-based optoelectronics and power electronics has led to widespread research into the growth and applications of compounds of aluminum, gallium, indium, boron, and nitrogen (collectively, the “III-nitrides,” “group III-nitrides,” or “AlxInyGa1-x-yN” in which 0≦x+y≦1). Group III-nitride templates, junctions, heterojunctions, multi-layer structures, thick layers/films, and bulk materials are commonly grown epitaxially via chemical vapor deposition methods including, but not limited to, hydride vapor phase epitaxy (HVPE) and metalorganic chemical vapor deposition (MOCVD, MOVPE, or OMVPE).
During these deposition processes, a group III-nitride is grown upon a substrate or template consisting of, but not limited to, sapphire, silicon, silicon carbide, magnesium aluminate spinel, gallium nitride, aluminum nitride, aluminum-gallium nitride alloys, indium nitride, and/or lithium aluminate. A template shall be understood to be a substrate of one of the preceding materials coated with a layer of group III-nitride material. For the purposes of this invention, the terms “substrate” and “template” will be used interchangeably, though one skilled in the art will recognize that slightly different growth chemistries are required to optimize a group III-nitride deposition process for each. The differences in required chemistries are independent, however, of the implementation of the invention as described below.
The choice of substrate material, the crystallographic orientation of the substrate, and the deposition method/chemistry strongly influence the crystalline and morphological quality of the group III-nitride grown upon the substrate/template.
During active growth of a III-nitride (the process by which group III-nitride material is added to the surface of a substrate), it is common for a substrate or template to be exposed to a “growth atmosphere” that contains both one or more group III precursors (including but not limited to gallium chloride, aluminum chloride, indium chloride, trimethyl gallium, triethylgallium, trimethyl aluminum, gallium hydride, and gallium metal) and an active nitrogen precursor (typically but not limited to ammonia, hydrazine, or dihydrazine). For the purposes of the present invention, the atmosphere or ambient conditions within a group III-nitride epitaxy chamber will be referred to as a “non-growth atmosphere” if either or both a group III precursor or a nitrogen precursor are absent from the gas phase chemistry in the vicinity of the substrates or templates on which the group III-nitride is grown.
Studies of the thermal and chemical stability of GaN and other III-nitride epilayers in various ambient gases have been undertaken that have demonstrated thermal instability of some of the III-nitrides in common growth ambient environments (see M. A. Mastro, O. M. Kryliouk, M. D. Reed, T. J. Anderson, A. Davydov, and A. Shapiro, Thermal Stability of MOCVD and HVPE GaN Layers in H2, HCl, NH3 and N2, Phys. Stat. Sol. (a) 188 (2001) 467-471 and M. A. Mastro, O. M. Kryliouk, T. J. Anderson, A. Davydov, A. Shapiro, Influence of polarity on GaN thermal stability, Journal of Crystal Growth 274 (2005) 38-46.). For example, on heating in N2, H2, NH3, and HCl, gallium nitride (GaN) can undergo dissociative sublimation or thermal decomposition accompanied in some instances by gallium droplet formation. In both cases the flatness and smoothness of the surface of the epilayer will be adversely affected, making it unusable for further device epitaxy.
It has been found that group III-nitride surfaces are generally more stable in non-growth atmospheres containing predominantly N2 and NH3 than in those containing principally H2, HCl, or Ar. The protective properties of nitrogen and ammonia are considered to be very useful when for some reason growth interruption is required and III-nitride surfaces are left exposed to the non-growth atmosphere (an ambient in which the III-nitride is not being actively deposited or grown). One skilled in the art of III-nitride epitaxy/crystal growth will recognize that III-nitride films and crystals are frequently exposed to such non-growth atmospheres during typical deposition/growth processes, such as during a waiting period for gas mixture homogenization at the beginning of an epitaxial run or during a slow cooling process at the end of the run. Growth interruptions also occur in the middle of the deposition cycles or runs for annealing to improve crystalline quality of the epilayer. Protection of the III-nitride surfaces is specifically important during the interruptions of an epitaxial process in which one of the components of a gas mixture may adversely influence surface morphology. An example of such an interruption can be found in the HVPE III-nitride deposition process employing HCl flow for the in-situ GaCl formation. The unreacted portion of the HCl flow is capable of etching unprotected surfaces of the substrate and epilayer. Indeed, such growth interruptions occur too frequently during a typical growth cycle for simple relocation of the epiwafers or crystals away from the growth zone of the reactor to adjacent so-called dwell zones to be sufficient or practical for ultimate preservation of the episurface. It is clear that there is a need for an effective means to protect heated III-nitride films, episurfaces, and crystals from decomposition. More preferably, there is a need for a means of providing protective gases through the dwell zone of the reactor to the III-nitride materials therein.
It was emphasized during the study of the first steps of the HVPE GaN growth on sapphire substrates that the results of the growth can be significantly influenced by the initial nucleation and nitridation conditions (see S. Gu, R. Zhang, Y. Shi, Y. Zheng, L. Zhang, F. Dwikusuma, T. F. Kuech, The impact of initial growth and substrate nitridation on thick GaN growth on sapphire by hydride vapor phase epitaxy, Journal of Crystal Growth 231 (2001) 342-351). To preserve the surface of the substrates or templates up to the growth temperature of 1100° C., an additional region, called a backflow tube, was introduced into a vertical HVPE reactor. The gas ambient within the backflow tube was chosen to be either pure N2 or N2+NH3 mixture depending on the choice of pregrowth treatment. The study confirmed that in the reactor with the backflow tube, improved initiation of the growth can be achieved. Apart from the improvement in the crystalline structure of GaN epilayers, their surface was generally smoother and had reduced density of surface pits, which was a common morphological feature of the grown epilayers. However, there was no specific consideration given to the geometry and position of the backflow tube inside the reactor that would help to prevent potential eddy backflows in the growth zone that could adversely affect III-nitride uniformity and quality. From the point of view of the present invention, when the position of the end of the backflow tube is too close to the growth zone or shape of this end coincides with the shape of the growth zone, gases flowing through the backflow tube will effectively block outflow of the reactive gasses from the growth zone. This blocking will negatively influence epitaxy in the growth zone and reduce all benefits of the backflow use to a minimum by unfavorably modifying the gas phase chemistry in the vicinity of the substrates.
In reference F. Dwikusuma and T. F. Kuech, X-ray photoelectron spectroscopic study on sapphire nitridation for GaN growth by hydride vapor phase epitaxy: Nitridation mechanism, Journal of Applied Physics 94 (2003) 5656-5664 the study of the sapphire nitridation in the backflow region of a vertical HVPE system under a NH3 and N2 ambient was described. It was mentioned that the backflow region allowed the sample to be heated to the temperature of 1100° C. under a countercurrent gas flow, protecting the sample from a gallium precursor stream. Nitridation was carried out by exposing the sapphire to a mixture of NH3 and N2 at a total flow rate of 2 slpm and a total pressure of 1 atm. The nominal reactor diameter near the sample that corresponded to the diameter of backflow region was 6 cm. The strict correspondence of the diameters and shapes of the backflow and growth regions inevitably leads to the generation of the gas vortexes in the growth zone resulting in irreproducible epitaxial condition. Indeed, the prior art has focused on the use of radially symmetrical backflow liners in vertical configurations that are of no use in horizontally configured flow paths and fail to address deleterious eddy current formation.
In a series of patents, the use of a backflow of ammonia for protection of the grown epilayers is claimed. For example, in U.S. Pat. No. 7,727,333 at a final step of the HVPE deposition of indium gallium nitride epilayer, the backflow of ammonia is provided into the reactor to prevent thermal decomposition of the grown epilayer. In the backflow, the substrate with the epilayer is allowed to cool down to the temperature at which decomposition is negligibly small even without ammonia.
In U.S. Pat. Nos. 6,656,272 and 7,670,435 to achieve sharp interlayer interfaces in multilayer structures the backflow gas sources and substrate movement within the growth zone are proposed. Once the growth of one sublayer is completed, the substrate is moved into the growth interruption zone where the backflow of an inert gas insures the interruption of the growth. While the substrate is in the growth interruption zone, the growth zone can be purged with the inert gas and active gas mixture including ammonia is reintroduced. After the growth mixture is uniformly distributed, the substrate is moved back into the growth zone. The Patents description does not include any specifications for optimal geometry of the growth interruption zone.
In U.S. Pat. No. 6,890,809 the backflow direction of argon and/or ammonia gases in the HVPE reactor is proposed to prevent undesirable growth during cooling the substrate with already grown epitaxial structure. In the preferred embodiment, the epitaxial structure comprises a GaN—AlGaN p-n heterojunction and p-type GaN capping layer helping to avoid surface oxidation of p-type AlGaN.
Along with a number of advantages that substantially increase flexibility of the HVPE process, the use of the backflow streams as disclosed in the prior art suffers a major drawback: it is a cause for induced eddy currents that can destroy the laminar pattern of the main gas flow and compromise stability and reproducibility of the group III-nitride growth process (see E. Richter, Ch. Hennig, M. Weyers, F. Habel, J. D. Tsay, W. Y. Liu, P. Brückner, F. Scholz, Yu. Makarov, A. Segal, J. Kaeppeler, Reactor and growth process optimization for growth of thick GaN layers on sapphire substrates by HVPE, Journal of Crystal Growth 277 (2005) 6-12).
The main objective of the present invention is the introduction of a backflow liner that decouples the active/main and counter/backflow gas streams in the growth reactor enriched with the gas counter-flow functionality. A further objective is to provide a backflow liner design that avoids deleterious eddy current formation as has been observed in the prior art and enables laminar gas flow in the vicinity of the growing group III-nitride films.
These objectives are achieved in the epitaxial growth reactor geometry provided herein comprising a main reactor element with an inserted backflow liner axially aligned to the adjacent growth liner and separated from it by the shaped opening that directed gas flow from the growth and backflow liners toward the reactor exhaust.
The present invention addresses the needs of the prior art by presenting a backflow liner component of a III-nitride epitaxy system that ensures the back flow of protective gases to the dwell zone of the reactor. In particular, the present invention provides an epitaxial growth chamber element identified as a backflow liner that provides superior control of gas ambient environments during group III-nitride deposition processes in both growth and non-growth atmospheres. Key details of the invention can be summarized as follows. First, it is found absolutely necessary that the backflow liner shape gas flow so as to protect a subtle epi-ready surface of the substrate during the warming-up time prior to the growth and during growth interruptions in an environment that differs from that intended for treatment and growth.
Second, the protection is fulfilled inside the backflow liner via the protective gas flow entering the reactor counter to the main gas mixture direction. Such a counter flow provides for protection of the substrate while the growth environment reaches steady state condition between the treatment and growth processes. The substrate can be retracted from the growth region into the backflow liner preventing decomposition of the substrate and/or group III-nitride surfaces in the inhomogeneous transient gas flow when the active gases are just enabled.
Third, the use of the backflow liner provides for the avoidance of decomposition of the group III-nitride film grown on the substrate following the growth process. For example, unless protected by an ammonia ambient environment, a GaN film will decompose at typical crystal growth temperatures on the order of 1000 degrees Celsius. After the completion of the growth process, the substrate is retracted into the backflow liner where the ambient is ammonia or nitrogen, where it is protected from such thermal decomposition.
More particularly, the present invention provides for the implementation of a chemical vapor deposition internal component configuration that allows laminar flow delivery of III-nitride protecting gases to substrates and templates without creation of deleterious eddy currents. For the purposes of this specification, reference will be made to the internal component designs of a HVPE crystal growth machine. However, one skilled in the art will recognize that the geometries and designs illustrated herein may be readily implemented in analogous form in MOCVD tools. Further, while the embodiments described herein utilize a horizontal geometry, the invention can be readily implemented in a vertical configuration. Such a vertical reactor is shown in
An axial cross-sectional illustration of one embodiment is provided in
A variety of components are commonly included inside of the containment tube as shown in
The backflow liner 106 in
In the preferred embodiment, the backflow liner 106 is fabricated of fused silica (silicon dioxide), but other materials including but not limited to sapphire, alumina, silicon carbide, boron nitride or a combination thereof are suitable for its fabrication as well. The backflow liner 106 is designed to transport protective ammonia gas at a flow rate ranging from >1 to <50 slpm flow rate. More preferably, the liner illustrated in
In the preferred embodiment, the backflow liner 106 is inserted in the main reactor tube from the growth chamber's substrate loading end. The rectangular cross-sectional shape of the backflow liner 106 coincides with the cross sectional shape of the majority of the opposing growth liner 104. The two liner elements are axially aligned and preferably separated by a gap leaving the shaped oblique opening for the gas stream from the liners to be directed towards the reactor exhaust (
The opposing flows from the growth and backflow liners meet at the gap between their ends. The shaped oblique end of the backflow liner 106 promotes further direction of the gas flow mixture towards the exhaust from the main reactor tube. Due to the low disturbance of the gas stream at the end of the growth liner 104, vortex-free gas flow inside the growth liner can be obtained.
Achievement of vortex-free gas flow within the growth liner depends both on the design of the backflow liner as provided herein and optimization of the ratio of gas injected from the source end of the chamber to that injected through the backflow liner. This source-to-backflow gas ratio is generally preferred to range from 1 to 10, and more preferably from 3 to 6. For the particular geometry utilized in this embodiment, vortex-free conditions in the growth region of the reactor are achieved when 10 slpm of NH3 and 23 slpm of Ar are directed through the growth liner, while 5 SLPM of NH3 and 5 SLPM Ar was directed through the backflow liner. Such vortex-free conditions have been demonstrated both experimentally in HVPE group III-nitride growth and confirmed using numerical simulation of the growth reactor as illustrated in
Implementation of the preferred embodiment in a group III-nitride HVPE growth system yielded superior uniformity of deposition across multiple substrates placed on the substrate holder 105. In practice, the invention provided for achievement of less than 5% thickness variation across individual 2-inch diameter substrates and less than 10% thickness variation within a batch of 12 co-loaded substrates in the growth zone on the substrate holder. The invention provides a further advantage over the prior art in that at optimal source-to-back flow gas flow ratio a parasitic deposition in the backflow liner and in the main reactor tube is reduced, in many cases to zero parasitic deposition.
As an another advantage of using optimal source-to-backflow ratio in conjunction with the backflow liner, simultaneous etch cleaning of the reactor with hydrogen chloride during cooling of the templates in the backflow liner can be achieved without fear of damaging their smooth epitaxial surface. Performing such etching/cleaning processes without the need to cool the chamber to unload the group III-nitride materials that have been previously grown reduces process cycle time and increases throughput compared to the prior art.
An added advantage of the invention is the reduction of the time required for purging of the growth chamber after insertion of the epitaxial substrates into it, either before or after group III-nitride deposition. Such time reductions are firstly due to uninterruptible purging of the backflow liner with protective gases and secondly due to reduced volume of the backflow liner compared to the full reactor. Gas flowing through the backflow liner constantly purges it. While the substrate is still cooling down within the liner, the protective environment inside the liner makes simultaneous post-growth etching of the reactor possible.
The backflow liner described in the preferred embodiment can be used not only during the growth of a single epitaxial layer but repeatedly for the multiple epitaxial layers. A structure that includes multiple epitaxial layers may have different constituents, like GaN and AlGaN, different compositions of the constituents, like AlxGa1-xN and AlyGa1-yN, or different sequences of those compositions. The main purpose for using the backflow liner remains unchanged: to protect the substrates or grown epilayers from the harsh, unsteady environment outside the backflow liner. It is necessary while the growth environment reaches the steady state condition between the treatment and the growth process; while the wafers are at a high temperature close to decomposition temperature after the growth or between the following growth interruptions. Unless being protected by ammonia ambient in the backflow environment, GaN or its III-N alloys are prone to decompose with time. Every time when decomposition is probable wafers are retracted into the backflow liner filled with the ammonia-rich protective atmosphere.
One skilled in the art will recognize that many variations of the invention may be implemented that are wholly or partially equivalent to those described in the present application, and it is here intended to cover all said equivalent measures and approaches falling in the scope of the present invention and defined by the following claims. For example, but without limitation, it may be desirable for the backflow liner to possess an oblong cross-section either wholly or in part as opposed to the rectangular cross-section described in the preferred embodiment. Similarly, the optional features illustrated in
Thus the present invention has a number of aspects, which aspects may be practiced alone or in various combinations or sub-combinations, as desired. While a preferred embodiment of the present invention has been disclosed and described herein for purposes of illustration and not for purposes of limitation, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the full breadth of the following claims.
This application claims the benefit of U.S. Provisional Patent Application No. 61/660,586 filed Jun. 15, 2012.
Number | Name | Date | Kind |
---|---|---|---|
4144116 | Jacob et al. | Mar 1979 | A |
4592307 | Jolly | Jun 1986 | A |
4761269 | Conger | Aug 1988 | A |
6218269 | Nikolaev et al. | Apr 2001 | B1 |
6528394 | Lee | Mar 2003 | B1 |
6559038 | Nikolaev et al. | May 2003 | B2 |
6613143 | Melnik et al. | Sep 2003 | B1 |
6632725 | Trassoudaine et al. | Oct 2003 | B2 |
6656272 | Tsvetkov et al. | Dec 2003 | B2 |
6656285 | Melnik et al. | Dec 2003 | B1 |
6660083 | Tsvetkov et al. | Dec 2003 | B2 |
6890809 | Karpov et al. | May 2005 | B2 |
6955719 | Dmitriev et al. | Oct 2005 | B2 |
6969426 | Bliss et al. | Nov 2005 | B1 |
7220324 | Baker et al. | May 2007 | B2 |
7276121 | Bliss et al. | Oct 2007 | B1 |
7279047 | Melnik et al. | Oct 2007 | B2 |
7621999 | Koukitu et al. | Nov 2009 | B2 |
7670435 | Tsvetkov et al. | Mar 2010 | B2 |
7727333 | Syrkin et al. | Jun 2010 | B1 |
7976631 | Burrows et al. | Jul 2011 | B2 |
8138069 | Melnik et al. | Mar 2012 | B2 |
8840726 | Li et al. | Sep 2014 | B2 |
8841118 | Robinson et al. | Sep 2014 | B2 |
20020022286 | Nikolaev et al. | Feb 2002 | A1 |
20020155713 | Tsvetkov et al. | Oct 2002 | A1 |
20020177312 | Tsvetkov et al. | Nov 2002 | A1 |
20030013222 | Trassoudaine et al. | Jan 2003 | A1 |
20030049898 | Karpov et al. | Mar 2003 | A1 |
20040112290 | Li | Jun 2004 | A1 |
20040137657 | Dmitriev et al. | Jul 2004 | A1 |
20050056222 | Melnik et al. | Mar 2005 | A1 |
20060205199 | Baker et al. | Sep 2006 | A1 |
20070090369 | Kobayakawa | Apr 2007 | A1 |
20080063584 | Koukitu et al. | Mar 2008 | A1 |
20100012948 | Usikov et al. | Jan 2010 | A1 |
20100215854 | Burrows et al. | Aug 2010 | A1 |
20100273318 | Melnik et al. | Oct 2010 | A1 |
20120156863 | Melnik et al. | Jun 2012 | A1 |
Entry |
---|
Amano, H. , et al., “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AIN buffer layer”, Applied Physics Letters, vol. 48, No. 5, (Feb. 3, 1986), pp. 353-355. |
Ambacher, O. , “Growth and applications of Group III-nitrides”, J. Phys. D: Appl. Phys., vol. 31, (1998), pp. 2653-2710. |
Baker, Troy J., et al., “Characterization of Planar Semipolar Gallium Nitride Films on Sapphire Substrates”, Japanese Journal of Applied Physics, vol. 45, No. 6, (2006), pp. L154-L157. |
Bohnen, Tim , et al., “Enhanced growth rates and reduced parasitic deposition by the substitution of Cl2 for HCI in GaN HVPE”, Journal of Crystal Growth, vol. 312, (2010), pp. 2542-2550. |
Chengyan, Gu , et al., “Design of a three-layer hot-wall horizontal flow MOCVD reactor”, Journal of Semiconductors, vol. 33, No. 9, (Sep. 2012), pp. 093005-1 to 093005-5. |
Craven, Michael D., et al., “Characterization of α-Plane GaN/(Al,Ga)N Multiple Quantum Wells Grown via Metalorganic Chemical Vapor Deposition”, Japanese Journal of Applied Physics, vol. 42, Part 2, No. 3A, (Mar. 1, 2003), pp. L235-L238. |
Detchprohm, T. , et al., “The growth of thick GaN film on sapphire substrate by using ZnO buffer layer”, Journal of Crystal Growth, vol. 128, (1993), pp. 384-390. |
Dwikusuma, F. , et al., “X-ray photoelectron spectroscopic study on sapphire nitridation for GaN growth by hydride vapor phase epitaxy: Nitridation mechanism”, Journal of Applied Physics, vol. 94, No. 9, (Nov. 2003), pp. 5656-5664. |
Eastman, Lester F., et al., “The Toughest Transistor Yet”, IEEE Spectrum, vol. 39, No. 5, (May 2002), pp. 28-33. |
Fahle, D. , et al., “Deposition control during GaN MOVPE”, Materials of CS MANTECH Conference, May 13-16, 2013, New Orleans, Louisiana, USA, vol. 12, (2013), pp. 399-402. |
Fahle, D. , et al., “HCI-assisted growth of GaN and AIN”, Journal of Crystal Growth, vol. 370, (2013), pp. 30-35. |
Gu, Shulin , et al., “The impact of initial growth and substrate nitridation on thick GaN growth on sapphire by hydride vapor phase epitaxy”, Journal of Crystal Growth, vol. 231, (2001), pp. 342-351. |
Kang, Sang W., et al., “Prevention of In droplets formation by HCI addition during metal organic vapor phase epitaxy of InN”, Applied Physics Letters, vol. 90, (2007), pp. 161126-1 to 161126-3. |
Kim, S. T., et al., “Growth and Properties of Freestanding GaN Substrates by HVPE Using an AIN Buffer Layer Deposited on Si”, Journal of the Korean Physical Society, vol. 33, No. 6, (Dec. 1998), pp. 736-740. |
Manasevit, H. M., et al., “The Use of Metalorganics in the Preparation of Semiconductor Materials, IV. The Nitrides of Aluminum and Gallium”, J. Electrochem. Soc., vol. 118, No. 11, (1971), pp. 1864-1868. |
Maruska, H. P., et al., “The Preparation and Properties of Vapor-Deposited Single-Crystal-Line GaN”, Applied Physics Letters, vol. 15, No. 10, (Nov. 15, 1969), pp. 327-329. |
Mastro, M. A., et al., “Influence of polarity on GaN thermal stability”, Journal of Crystal Growth, vol. 274, (2005), pp. 38-46. |
Mastro, M. A., et al., “Thermal Stability of MOCVD and HVPE GaN Layers in H2, HCI, NH3 and N2”, phys. stat. sol. (a), vol. 188, No. 1, (2001), pp. 467-471. |
Nakamura, Shuji , “GaN Growth Using GaN Buffer Layer”, Japanese Journal of Applied Physics, vol. 30, No. 10A, (Oct. 1991), pp. L1705-L1707. |
Nakamura, Shuji , et al., “The Blue Laser Diode, The Complete Story”, Springer-Verlag Berlin Heidelberg New York, (2000), pp. 170-175 & 206-214. |
Ng, H. M., “Molecular-beam epitaxy of GaN/AlxGa1-xN multiple quantum wells of R-plane 1012sapphire substrates”, Applied Physics Letters, vol. 80, No. 23, (Jun. 10, 2002), pp. 4369-4371. |
Nishida, T. , et al., “Ten-Milliwatt Operation of an AlGaN-Based Light Emitting Diode Grown on GaN Substrate”, phys. stat. sol. (a), vol. 188, No. 1, (2001), pp. 113-116. |
Richter, E. , et al., “Reactor and growth process opitmization for growth of thick GaN layers on sapphire substrates by HVPE”, Journal of Crystal Growth, vol. 277, (2005), pp. 6-12. |
Romanov, A. E., et al., “Strain-induced polarization in wurtzite III-nitride semipolar layers”, Journal of Applied Physics, vol. 100, (2006), pp. 023522-1 to 023522-10. |
Safvi, S. A., et al., “Optimization of Reactor Geometry and Growth Conditions for GaN Halide Vapor Phase Epitaxy”, Mat. Res. Soc. Symp. Proc., vol. 423, (1996), pp. 227-232. |
Segal, A. S., et al., “Surface chemistry and transport effects in GaN hydride vapor phase epitaxy”, J. Crystal Growth, vol. 270, (2004), pp. 384-395. |
Waltereit, P. , et al., “Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes”, Nature, vol. 406, (Aug. 24, 2000), pp. 865-868. |
Wang, F. , et al., “Influences of mask width, fill factor, HCI addition and C doping on wing tilts in the epitaxial laterally overgrown GaN films by hydride vapor phase epitaxy”, Applied Physics Letters, vol. 80, No. 25, (Jun. 24, 2002), pp. 4765-4767. |
Weyers, Markus , et al., “GaN substrates by HVPE”, Proc. of SPIE, vol. 6910, (2008), pp. 69100I-1 to 69100I-10. |
Xiangqian, Xiu , et al., “Effect of Additional HCI and Substrate Nitridation on GaN Films Grown by HVPE”, Chinese Journal of Semiconductors, vol. 24, No. 11, (Nov. 2003), pp. 1171-1175. |
Xiu, X. Q., et al., “Effect of Additional HCI on the Surface Morphology of High Quality GaN on Sapphire by HVPE”, Mat. Res. Soc. Symp. Proc., vol. 693, (2002), pp. 135-139. |
Yoshida, S. , et al., “Epitaxial growth of GaN/AIN heterostructures”, J. Vac. Sci. Technol. B, vol. 1, No. 2, (Apr.-Jun. 1983), pp. 250-253. |
Yoshida, S. , et al., “Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AIN-coated sapphire substrates”, Appl. Phys. Lett., vol. 42, No. 5, (Mar. 1, 1983), pp. 427-429. |
Yoshida, Takehiro , et al., “Ultrahigh-speed growth of GaN by hydride vapor phase epitaxy”, Phys. Status Solidi C, vol. 8, Issue 7-8, (2011), pp. 2110-2112. |
Number | Date | Country | |
---|---|---|---|
61660586 | Jun 2012 | US |