This invention relates to electronic integrated circuits, and more particularly to electronic integrated circuits having transistors fabricated with semiconductor-on-insulator technology.
Virtually all modern electronic products—including laptop computers, mobile telephones, and electric cars—utilize complementary metal oxide semiconductor (CMOS) transistor integrated circuits (ICs), and in many cases CMOS ICs fabricated using a semiconductor-on-in-sulator process, such as silicon-on-insulator (SOI) or germanium-on-insulator. SOI transistors in which the electrical insulator is aluminum oxide (i.e., sapphire) are called silicon-on-sapphire or “SOS” devices. Another example of a semiconductor-on-insulator technology is “silicon-on-glass”, and other examples are known to those of ordinary skill in the art.
Taking SOI as one example of semiconductor-on-insulator, SOI technology encompasses the use of a layered silicon-insulator-silicon substrate in place of conventional “bulk” silicon substrates in semiconductor manufacturing. More specifically, SOI transistors are generally fabricated on a layer of silicon dioxide, SiO2 (often called a “buried oxide” or “BOX” layer), which in turn is formed on a bulk silicon substrate. The BOX layer reduces certain parasitic effects typical of bulk silicon CMOS processes, thereby improving performance. SOI-based devices thus differ from conventional bulk silicon devices in that the silicon regions of the CMOS transistors are fabricated on an electrical insulator (typically silicon dioxide or aluminum oxide) rather than on a bulk silicon substrate.
As a specific example of a semiconductor on insulator process for fabricating ICs,
If the source S and drain D are highly doped with N type material, the FET is an N-type FET. Conversely, if the source S and drain D are highly doped with P type material, the FET is a P-type FET. Thus, the source S and drain D doping type determines whether a FET is an N-type or a P-type. CMOS devices comprise N-type and P-type FETs co-fabricated on a single IC die, in known fashion.
A superstructure 112 of various elements, regions, and structures may be fabricated in known fashion above the FET 108 in order to implement particularly functionality. The superstructure 112 may include, for example, conductive interconnections from the illustrated FET 108 to other components (including other FETs) and/or external contacts, passivation layers and regions, and protective coatings. The conductive interconnections may be, for example, copper or other suitable metal or electrically conductive material.
For example,
Other elements, regions, and structures may be included for particular circuit designs. For example, referring to
As should be appreciated by one of ordinary skill in the art, a single IC die may embody from one FET 108 to millions of FETs 108. Further, the various elements of the superstructure 112 may extend in three-dimensions and have quite complex shapes. In general, the details of the superstructure 112 will vary from IC design to IC design.
The BOX layer 104, while enabling many beneficial characteristics for SOI IC's, also introduces some problems, such as capacitive coupling to the substrate 102, a thermal barrier to heat flow, and a voltage breakdown path to the substrate 102. Capacitive coupling with the substrate 102 alone can cause numerous side effects compared to an ideal SOI transistor, such as increased leakage current, lower breakdown voltage, signal cross-coupling, and linearity degradation. However, the most serious capacitive coupling effect caused by the BOX layer 104 is often the “back-channel” effect.
Referring to
It is possible to mitigate some of the side effects of the secondary parasitic back-channel FET 120. One known mitigating technique utilizes “single layer transfer”, or SLT, as part of the IC fabrication process. The SLT process essentially flips an entire SOI transistor structure upside down onto a “handle wafer”, with the original substrate (e.g., substrate 102 in
In the structure of
While the IC structure of
While SOI FETs have been used in the examples above, similar problems exist in other semiconductor-on-insulator technologies.
Accordingly, there is a need for a FET IC structure that mitigates or eliminates the problems caused by the secondary parasitic back-channel FET 120 of conventional FET IC structures. The present invention addresses this need and more.
The present invention encompasses semiconductor-on-insulator field effect transistor (FET) integrated circuit (IC) structures and fabrication processes that mitigate or eliminate the problems caused by the secondary parasitic back-channel FET of conventional semiconductor-on-insulator FET IC structures. Embodiments of the current invention enable full control of the secondary parasitic back-channel FET of semiconductor-on-insulator IC primary FETs.
In essence, embodiments of the invention take advantage of the existence of the secondary parasitic back-channel FET of semiconductor-on-insulator IC primary FETs by fabricating such ICs using a process which allows access to the backside of the FET, such as a “single layer transfer” (SLT) process (collectively, a “backside access process”). Thereafter, a conductive aligned supplemental (CAS) gate structure is fabricated relative to the BOX layer juxtaposed to a primary FET such that a control voltage applied to the CAS gate can regulate the electrical characteristics of the regions of the primary FET adjacent the BOX layer.
A CAS gate is separated from the backside of a corresponding primary FET by the BOX layer and/or a protective layer formed as part of the backside access process. Accordingly, the BOX layer and/or the protective layer function as gate dielectric material for the CAS gate. The CAS gate, the gate dielectric material (i.e., BOX layer and/or the protective layer) between the CAS gate and the body B of the primary FET, and the source S and drain D of the primary FET, forms a controllable MOSFET, with independent control provided by the CAS gate. This is in contrast with—and replaces—the formerly present but uncontrolled secondary parasitic back-channel FET. The IC structures thus present as a four or five terminal device: source S, drain D, primary gate G, CAS gate, and, optionally, a body contact.
By applying control voltages to a CAS gate (typically DC voltages), various effects can be induced in and around the body B of the corresponding primary FET, depending on the type of transistor originally made in the semiconductor-on-insulator structure. For example, FETs that include a CAS gate have a higher voltage capability than conventional FETs due to the ability to bias the CAS gate such that the body B is more depleted than can be accomplished by the primary gate G alone. As another example, FETs that include a CAS gate have a lower ON resistance (RON) than conventional FETs due to the ability to bias the CAS gate such that the body B is more enhanced than can be accomplished by the primary gate G alone, resulting in lower insertion loss as well as a higher current capacity without increasing heat generation. As yet another example, FETs that include a CAS gate may have lower leakage currents in subthreshold operating conditions due to the ability to bias the back-channel region of the body B in a fully OFF condition. Notably, all of these benefits are available from the same FET under different operating conditions, just by varying the bias voltage applied to its CAS gate.
In some embodiments, CAS gates are formed as part of a redistribution layer (RDL). In other embodiments, CAS gates are typically formed using fine-line conductor fabrication techniques before the RDL stage.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference numbers and designations in the various drawings indicate like elements.
The present invention encompasses semiconductor-on-insulator field effect transistor (FET) integrated circuit (IC) structures and fabrication processes that mitigate or eliminate the problems caused by the secondary parasitic back-channel FET of conventional semiconductor-on-insulator FET IC structures. Embodiments of the current invention enable full control of the secondary parasitic back-channel FET of semiconductor-on-insulator IC primary FETs.
Overview of Basic Structure
In essence, embodiments of the invention take advantage of the existence of the secondary parasitic back-channel FET of semiconductor-on-insulator IC primary FETs by fabricating such ICs using a process which allows access to the backside of the FET, such as a “single layer transfer” (SLT) process (collectively, a “backside access process”). Thereafter, a conductive aligned supplemental (CAS) gate structure is fabricated relative to the BOX layer juxtaposed to a primary FET such that a control voltage applied to the CAS gate can regulate the electrical characteristics of the regions of the primary FET adjacent the BOX layer 104.
For simplicity, the following examples of embodiments of the invention utilize silicon-on-insulator (SOI) fabrication technology as one example of semiconductor-on-insulator fabrication techniques. However, it should be understood that the methods, structures, and circuits described below apply generally to other semiconductor-on-insulator fabrication technologies and devices.
The IC structures 300, 310 are in part similar to the SLT wafer of
A CAS gate defined in the BCP 302 is spaced from the backside of the body B of the corresponding primary FET 108 by the BOX layer 104 and/or the second passivation layer 206 formed as part of the SLT process, as described in greater detail below. Accordingly, the BOX layer 104 and/or the second passivation layer 206 function as gate dielectric material for the CAS gate. The CAS gate, the gate dielectric material (i.e., BOX layer 104 and/or the second passivation layer 206) between the CAS gate and the body B of the primary FET 108, and the source S and drain D of the primary FET 108, forms a controllable MOSFET, with independent control provided by the CAS gate. This is in contrast with—and replaces—the formerly present but uncontrolled secondary parasitic back-channel FET 120 shown in
The relative thickness of the dielectric for the primary gate G is generally much thinner (typically on the order of 2 to 3 orders of magnitude thinner) than the dielectric for the CAS gate. Thus, the CAS gate generally will have a smaller impact on current and threshold voltage in the body B of the primary FET 108 for a particular applied voltage level. However, by applying control voltages to a CAS gate (typically DC voltages), various effects can be induced in and around the body B of the corresponding primary FET 108, depending on the type of transistor originally made in the SOI structure. For example, for a partially depleted SOI primary FET 108, the primary gate G and the CAS gate are isolated by undepleted silicon in the body B of the device. Hence, voltages applied to the CAS gate will mostly affect back-channel leakage current, meaning leakage current that cannot be controlled by the primary gate G. Such leakage currents can be large compared to the leakage currents of the body B under the primary gate G, often because the primary FET is designed to ensure low leakage currents. For digital systems, such leakage currents may be significant to overall system operation. For example, due to the large number of FETs in modern systems, small leakage currents can multiply into large wasted power consumption, especially for battery-operated portable devices. Even in the case of line-powered systems, wasted power and heat load can be substantially affected by leakage currents. Additionally, for RF and analog circuits, very low leakage is key to proper performance. Charged nodes or storage capacitors can be discharged by leakage currents, thereby forcing a recharge cycle that can induce spurious signals (“spurs”) in analog circuits that can degrade RF and analog system performance.
For a so-called fully depleted SOI primary FET 108, a voltage applied to the CAS gate will couple capacitively to the body B of the primary FET 108, thereby inducing some threshold voltage shift in the primary FET. The impact of leakage current in a fully depleted FET will have the same effects as for a partially depleted FET.
Another benefit of FETs having a CAS gate is that multiple FET devices can be identically fabricated (e.g., same implant doping levels) but controlled by respective CAS control voltages to operate with different threshold voltages, VT. For example, in some applications, it may be useful to have some FETs with a lower VT while other FETs have a higher VT. This can be achieved by biasing the CAS gates of such FETs with different voltage values, which leads to the otherwise identical FETs exhibiting different threshold voltages VT.
Important benefits of the invention include the following:
FETs that include a CAS gate have a higher voltage handling capability than conventional FETs (typically exceeding an added 1-2 VDC of voltage handling capability for an SOI NMOS FET with a CAS gate) due to the ability to bias the CAS gate such that the body B is more depleted than can be accomplished by the primary gate G alone; and
FETs that include a CAS gate have a lower ON resistance, RON, than conventional FETs (typically exceeding about 15% lower for switch FETs and about 30% lower for regular FETs, for SOI NMOS FETs with a CAS gate) due to the ability to bias the CAS gate such that the body B is more enhanced than can be accomplished by the primary gate G alone, resulting in lower insertion loss as well as a higher current capacity without increasing heat generation.
FETs that include a CAS gate may have lower leakage currents in subthreshold operating conditions due to the ability to bias the back-channel region of the body in a fully OFF condition.
Data from sample ICs embodying primary FETs with CAS gates show that the presence of a CAS gate does not change the current (Id) versus voltage (Vg) properties of the corresponding primary FET.
Notably, all of these benefits—particularly high voltage handling capability, low RON, and lower leakage currents—are available from the same FET under different operating conditions, just by varying the bias voltage applied to its CAS gate. These characteristics are particularly useful for signal switching applications, and especially RF signal switching circuits and systems.
Example Fabrication Steps
There are a number of ways in which the IC structures 300, 310 of
As should be apparent to one of ordinary skill in the art, additional layers (not shown) may be formed and patterned on top of the protective or passivation layer 402 in order to connect CAS gates to control voltages and/or to form circuits between the CAS gates and other components.
In addition, the IC structure shown in
Connections to the source S, drain D, and primary gate G are made in a conventional fashion, and interconnections between a plurality of primary FETs 108 may be made to suit a particular application. CAS-gated FETs may be fabricated as NMOS, PMOS, and/or CMOS transistor devices (comprising NMOS and PMOS devices), and such devices may be full or partial enhancement mode or full or partial depletion mode devices. As noted above, the threshold voltages VT of the FETs can be varied as a function of the control voltage applied to their respective CAS gates.
As noted above, a single IC die may embody from one primary FET to millions of primary FETs. CAS gates may be fabricated for all or some of such primary FETs to form CAS-gated FETs. Thus, a single IC die may include both conventional primary FETs (i.e., without CAS gates) and one or more CAS-gated FETs. Mixing conventional primary FETs and CAS-gated FETs on an IC die may allow for better circuit control in some applications. Individual CAS gates may also be arranged to bias more than one primary FET.
CAS gates of a particular IC structure may be coupled to a common voltage, such as circuit ground or a non-zero potential. However, since CAS gates can be configured into circuits by adding additional layers on top of the protective or passivation layer 402, particular sets of CAS gate may be coupled to one or more different potentials, and the potentials may be actively controlled by suitable active layer switching and logic circuitry to meet the needs of particular applications.
In summary, one aspect of the invention encompasses a transistor device including a primary field effect transistor (FET) fabricated on a first side of an insulator layer, the primary FET including a source S, a drain D, a gate insulator, and a gate G; and a conductive aligned supplemental (CAS) gate, fabricated in relation to a second, opposite side of the insulator layer and aligned with at least a portion of the primary FET, such that the source S, the drain D, the CAS gate, and at least the insulator layer function as a field effect transistor. In another aspect, the source S, the drain D, and the gate G define a body B, and the gate G is configured to control electrical current flow in a first region within the body B while the CAS gate is configured to control electrical current flow in a second region within the body B. One of ordinary skill will understand that the first region and the second region within the same body may be overlapping (as in the example discussed above of a fully depleted FET).
Alignment
Embodiments of the invention include added steps to form a backside contact pattern (BCP) 302 having defined at least one conductive aligned supplemental (CAS) gate at least partially aligned with a corresponding primary FET 108 and adjacent the (former) back-channel of the primary FET 108. Accordingly, some care should be taken to align the BCP 302, particularly the CAS gates, to the buried structures and regions defining the primary FET 108. As noted above, in general, a CAS gate is aligned with the gate G of the primary FET 108. However, as also noted above, in some applications, it may be useful to off-set a CAS gate from substantial alignment with the gate G of the primary FET 108 to change the electrical properties of the device.
One method for facilitating the task of alignment is making the handle wafer 204 in
Performance Characteristics
Methods
Another aspect of the invention includes methods for making a transistor device, including transistor devices having a CAS gate structure. For example,
As another example,
As yet another example,
Other aspects of the above methods may include one or more of the following: fabricating the transistor device as an integrated circuit using a semiconductor-on-insulator process; fabricating the transistor device with one of a silicon-on-insulator process or a silicon-on-sapphire process; fabricating a passivation layer interposed between the CAS gate and the insulator layer; wherein the source S, the drain D, and the gate G define a body B, and wherein the gate G is configured to control electrical current flow in a first region within the body B, and the CAS gate is configured to control electrical current flow in a second region within the body B; biasing the CAS gate with a first voltage to lower an ON resistance, RON, of the transistor device; biasing the CAS gate with a second voltage to increase a voltage handling capability of the transistor device; and/or biasing the CAS gate in a first mode of operation with a first voltage to lower an ON resistance, RON, of the transistor device, and in a second mode of operation with a second voltage to increase a voltage handling capability of the transistor device.
Still other aspects of the above methods may include one or more of the following: wherein the source S, the drain D, and the gate G define a body B, wherein the gate G is configured to control electrical current flow in a first region within the body B, and the CAS gate is configured to control electrical current flow in a second region within the body B; biasing the CAS gate with a first voltage to lower an ON resistance, RON, of the transistor device; biasing the CAS gate with a second voltage to increase a voltage handling capability of the transistor device; biasing the CAS gate in a first mode of operation with a first voltage to lower an ON resistance, RON, of the transistor device, and in a second mode of operation with a second voltage to increase a voltage handling capability of the transistor device; and/or wherein fabricating a CAS gate on the second passivation layer includes forming a conductive layer over the second passivation layer, patterning the conductive layer to define at least the CAS gate, and removing at least a portion of the conductive layer to form the defined CAS gate.
Fine Conductive Line CAS Gates
As noted above, CAS gates may be fabricated from a redistribution layer (RDL), typically comprising aluminum or copper. However, an RDL is fabricated on wafers after the wafers have left a front-end fabrication process, and in many IC fabrication foundries or factories, RDL's are typically thick layers with relatively coarse features and relatively poor alignment to the underlying FET structures. For example,
Some IC front-end fabricators provide the ability to fabricate a backside conductive layer (BCL) on the “new top” of FET IC structure after performing a backside access process, such as an SLT or DLT process, and before or in lieu of an RDL process. A BCL or BCL region may be patterned to form fine conductive lines (FCLs). A BCL (and thus FCLs) may comprise a metal, such as copper or aluminum, or may a generally conductive material, such as polysilicon or conductive polymers. Within the same fabrication process, FCLs may have a line width that is only about 25% or less of the line width available at the RDL level. For example, in one process, FCLs can have lines and spaces as fine as about 0.5 μm, while RDL lines in the same process can only have lines as fine as about 2-3 μm, and spaces may be even greater.
FCLs may be advantageously used to form more precisely sized and aligned CAS gates, especially in comparison to many RDL processes, such that little or none of an FCL CAS gate overlaps (i.e., is vertically aligned with and in spaced relation) a corresponding FET source S or drain D. In some embodiments, bias voltages may be applied to FCL CAS gates by making contact with the FCLs from the “new top” of a post-SLT processed IC structure. However, a version of conductive substrate contact (S-contacts)—perhaps better styled as “through BOX contacts” or TBC's in this context—may be fabricated before performing a backside access process to create electrical connections between FCLs and the metal layers of the superstructure 112 of an IC, thereby enabling significantly increased functionality. For example, TBC's facilitate the ability to individually bias individual FCL CAS-gated FETs or groups of FCL CAS-gated FETs, and to couple integrated components to the FCLs, such as resistors, capacitors, and/or inductors fabricated within the superstructure 112.
As one example,
The two FET stacks A, B may be used, for example, in an RF switch or amplifier. Each FET stack A, B is independent, but since each primary gate 1010 in one FET stack is aligned with a corresponding primary gate 1010 in the other FET stack, those aligned primary gates 1010 can share a common FCL CAS gate. The illustrated FET stacks A, B may also be connected in parallel by metal interconnects (but not in series, since the primary gates with a common FCL gate would then see different RF potentials).
Cross-section
During a backside access process, such as an SLT or DLT process, when the backside of an IC structure is exposed on which a BCL and/or FCLs may be formed, alignment of masks for forming the BCL and/or FCLs may be accomplished by imaging fiducial marks previously formed on the front side of the IC structure (e.g., in the active layer 106 or a conductive interconnect levels—generally the M1 level, as closest), since the second passivation layer 206, the BOX layer 104, and the active layer 106 are generally very thin and often essentially transparent to at least one wavelength of light (including from infrared to x-rays).
In the example shown in
As described above and in U.S. Pat. No. 9,837,412 referenced above, S-contacts are formed from the superstructure 112 so as to penetrate through the active layer 106 to the BOX layer 104 or to conductive regions or wells formed in and/or above the BOX layer 104. S-contacts may also be formed so as to penetrate completely through the BOX layer 104 to the initial substrate 102, which would be useful for contacting BCL regions and FCLs. However, while formed in the same manner as S-contacts of the type described in U.S. Pat. No. 9,837,412, since the initial substrate 102 is removed during a backside access process, it is more appropriate to refer instead to “through BOX contacts” or TBC's.
Since FCL CAS-gated FETs are formed as part of the same backside access process used for fabricating the IC structure 1000 (e.g., within a CMOS fabrication facility), the FCLs can have finer lines, better alignment, and potentially more complex structures than an RDL-based process for making CAS gates. Referring again to
Misalignment Mitigation
While alignment of backside masks for purposes of forming BCL regions and FCLs can be done reasonably precisely in most fabrication processes capable of fabricating BCL regions and FCLs, in some fabrication processes, misalignment of BCL regions and FCLs with respect to TBC's may pose an issue. However, there are several techniques that may be used to mitigate such misalignment issues.
For example,
It should also be noted that TBC's themselves may have an appreciable resistance. For example, in some fabrication processes, TBC's may each have a resistance of about 2 ohms. Accordingly, such resistive TBC's may be connected in series through front side conductive connections (e.g., through the conductive interconnect levels M1-Mx) and backside BCL regions and FCLs to create resistors of larger value. For example, 25 TBC's connected in series would create about a 50 ohm load, using only the area of the TBC's combined areal cross-section. Alternatively, TBC's could be connected in parallel, creating very low resistance contacts, potentially as distributed ground contacts throughout an RF substrate.
As should be appreciated, the misalignment mitigation structures of
The interdigitated “finger” structure of the FCL CAS-gates 1012a-1012g in
A particular IC need not have the same CAS-gate bias applied to all portions of the IC circuitry, and the FCL CAS-gates need not all have the same orientation. For example,
In the illustrated example, sub-circuit regions 1402a-1402d comprise RF circuitry, while sub-circuit region 1402e comprises non-RF circuitry. Each of the sub-circuit regions 1402a-1402e has a corresponding set of FCL CAS-gates 1404a-1404e connected to a busbar TBC 1014z, with the FCL CAS-gates 1404b and 1404c for sub-circuit regions 1402b and 1402c being commonly biased by the same busbar TBC 1014z (of course, some of the circuitry need not utilize CAS-gated FETs). As an example, the FCL CAS-gates 1404a for sub-circuit region 1402a may be biased at a first level to achieve a desired RON or BVDss characteristic, while the FCL CAS-gates 1404e for sub-circuit region 1402e may be biased at a second level to achieve a different desired RON or BVDss characteristic. As illustrated, one or more of the busbar-connected FCL CAS-gates 1404a-1404e may be oriented differently with respect to the other busbar-connected FCL CAS-gates 1404a-1404e. Note also that while
An additional advantage of the circuitry layout shown in
As should be appreciated, while the examples of BCL and FCL usage set forth above have generally been in the context of ICs fabricated using an SLT process, BCL and FCL structures (including FCL CAS-gated FETs) and TBC's may also be used in ICs fabricated using a DLT process.
Benefits of Fine Conductive Line CAS-gates
The fine-line fingers of FCL CAS-gates more fully control leakage and threshold voltage of a FET, without the increased COFF or drain capacitance of the larger RDL CAS-gate structure shown in
An FCL CAS-gate structure may also be used to dynamically vary the ON resistance RON and drain-source breakdown voltage BVdss (with VGS=0) characteristics of a FET or stack of FETs. Further, applying a relatively high negative bias to CAS gate of FCL CAS-gated FETs results in a higher BVdss characteristic for the FET.
Another advantage of BCL regions and FCLs in general is that their conductivity mitigates the known backside oxide charging effect that occurs from an SLT or DLT process, thus providing charge stabilization.
Other BCL and FCL Uses
While the FCLs shown in
For example, the fine pitch of FCLs is quite suitable for fabricating backside lateral capacitors. Thus, as one instance, the interdigitated fingers of the FCLs shown in
FCL lateral capacitors and BCL parallel-plate capacitors give a designer the ability to add capacitance in an IC designer without adding surface area to the IC. For example, BCL and/or FCL based capacitors can be formed and coupled to nearby FCL CAS-gate FETs to provide capacitive compensation for a FET stack without consuming additional die area.
Backside inductors may also be fabricated from FCLs, such as by forming an FCL planar spiral and connecting one or more nodes along the spiral to other components, or forming an FCL transmission line from FCL segments configured as an FCL coplanar waveguide. Mutually-coupled inductors may be fabricated from FCLs formed in parallel BCLs, such as by forming a first FCL planar spiral in a first BCL in overlapping, spaced-apart relationship to a second FCL planar spiral in a second BCL.
As noted above, the combination of BCL regions/FCLs, TBC's, and front side conductive connections (e.g., through the conductive interconnect levels M1-Mx) allows fabrication of resistors.
As may be appreciated from the above description, TBC's enable ohmic or non-ohmic contact between circuitry on both sides of the BOX layer 104 (i.e., on both sides of an IC die), creating options for additional circuit elements. Thus, FCL lateral capacitors, BCL parallel-plate capacitors, FCL inductors, and/or FCL/TBC based resistors may be connected to other components (e.g., FETs, resistors, inductors, and/or capacitors) on the backside and/or on the front side (through TBC's) of an IC. For example, an FCL/TBC based resistor may be directly coupled to a capacitor (e.g., an FCL lateral capacitor or a front side capacitor) to create an RC filter element. Similarly, RL, LC, and RCL circuits may be created, in simple or complex arrangements, using a combination of BCL regions/FCL and TBC connections and components.
The combination of BCL regions/FCLs, TBC's, and front side conductive connections also enables increased design flexibility in routing voltage and power distribution pathways, since both sides of an IC die may be used for conductive pathways.
Another use of BCL regions and/or FCLs is to create a grounded plane or pattern on the backside of an IC that is aligned with respect to an inductor (e.g., a spiral structure) in one of the conductive interconnect levels M1-Mx so as to function as a ground shield for the inductor.
As another option, the dielectric (e.g., ILD) between adjacent FCLs can be removed (or never formed), creating essentially a conductive pillar or line that may be used for bonding or attachment of bumps for packaging. Similarly, BCL regions can be formed to use for bonding or attachment of bumps for packaging. Accordingly, since TBC's can be used to connect BCL regions and FCLs to elements in the active layer 106 and/or circuit elements in the conductive interconnect levels M1-Mx, some or all electrical contacts between the IC and off-chip circuitry can be made from the “new top” of the post-SLT IC structure.
Applications and Methods
For the sake of illustration, the example embodiments utilizing FCL CAS-gates have been a stack of transistors such as may be used for RF switches or amplifiers. However, FCL CAS-gates may be used with individual FETS, and, as
As noted above, CAS-gates may be used to individually adjust the threshold voltage VT of a group of FETs, which is particularly useful in analog-to-digital (A/D) or digital-to-analog (D/A) converter circuits. For example, historically, high-speed flash A/D converter circuits have been fabricated as an array of FETs which are processed through complex and expensive equipment (such as focused ion beams) to slightly adjust the threshold voltage of each FET relative to other (usually adjacent) FETs in the array, so that each FET conducts at a different level of applied voltage. In contrast, the current invention can be used to implement a high-speed flash A/D converter by fabricating an array or stack of essentially identical CAS-gated FETs, and then use a voltage ladder to bias the CAS-gates with different voltage values. This approach leads to otherwise essentially identical CAS-gated FETs exhibiting different threshold voltages VT as a function of the control voltage applied to their respective CAS gates such that each CAS-gated FET conducts at a different level of applied voltage. Accordingly, such embodiments avoid having to apply the complex and expensive equipment of conventional designs to adjust the threshold voltage of each FET individually.
IC wafers fabricated using an SLT process may have thermal issues, specifically, extracting heat from FETs through the SLT handle wafer 204 (especially if the handle wafer is of a dielectric material with poor thermal properties). Using BCL regions and/or FCLs and TBC's (alone or in conjunction with the conductive interconnect levels M1-Mx), a primary path for thermal extraction may be established through these thermally conductive elements. For example, one or more TBC's may be situated near a FET and thermally coupled to the FET (but electrically isolated from the FET). Alternatively, or in addition, portions of a conductive interconnect level (e.g., M1) may be situated near a FET and thermally coupled to the FET (but again, electrically isolated from the FET). Heat generated by the FET will be thermally coupled to any nearby TBC's and conveyed to BCL regions or FCLs in contact with those TBC's on the opposite side of the BOX layer 104. Similarly, heat generated by the FET will be thermally coupled to any nearby conductive interconnect level and conveyed through connected TBC's to BCL regions or FCLs in contact with the TBC's on the opposite side of the BOX layer 104. The heat may then be conveyed to packaging bumps and packaging heat sinks thermally coupled to such BCL regions/FCLs. Other examples of such primary thermal extraction paths are described in U.S. Pat. No. 9,960,098, issued May 1, 2018, entitled “Systems and Methods for Thermal Conduction Using S-Contacts”. Such thermal extraction structures would be particularly beneficial for high power dissipation circuits such as power amplifiers, high-speed digital circuitry, and high-power analog circuits.
Notably, combining BCL regions/FCLs and TBC's with FET-based IC circuitry (particularly CMOS FET IC circuitry) enables FCL CAS-gated FETS, various combinations of complex circuitry formed on both sides of a BOX layer 104, complex voltage and power distribution pathways, and thermal extraction, all while reusing essentially the same area as the original FET-based IC circuitry.
Another aspect of the invention includes methods for fabricating an integrated circuit structure having FCL CAS-gated FETs. For example,
Other aspects of the method of
As another example,
Other aspects of the method of
Fabrication Technologies & Options
The term “MOSFET”, as used in this disclosure, means any field effect transistor (FET) with an insulated gate and comprising a metal or metal-like, insulator, and semiconductor structure. The terms “metal” or “metal-like” include at least one electrically conductive material (such as aluminum, copper, or other metal, or highly doped polysilicon, graphene, or other electrical conductor), “insulator” includes at least one insulating material (such as silicon oxide or other dielectric material), and “semiconductor” includes at least one semiconductor material.
With respect to the figures referenced in this disclosure, note that the dimensions for the various elements are not to scale; some dimensions have been greatly exaggerated vertically and/or horizontally for clarity or emphasis. In addition, references to orientations and directions (e.g., “top”, “bottom”, “above”, “below”, “lateral”, “vertical”, “horizontal”, etc.) are relative to the example drawings, and not necessarily absolute orientations or directions.
As should be readily apparent to one of ordinary skill in the art, various embodiments of the invention can be implemented to meet a wide variety of specifications. Unless otherwise noted above, selection of suitable component values is a matter of design choice and various embodiments of the invention may be implemented in any suitable integrated circuit (IC) technology (including but not limited to MOSFET structures) having characteristics similar to those described above. Integrated circuit embodiments may be fabricated using any suitable substrates and processes, including but not limited to silicon-on-insulator (SOI) and silicon-on-sapphire (SOS). The inventive concepts described above are particularly useful with a semiconductor-on-insulator-based fabrication process (including SOI, germanium-on-insulator, silicon-on-glass, and SOS), and with fabrication processes having similar characteristics. Fabrication in CMOS with compatible semiconductor-on-insulator processes enables circuits with low power consumption, the ability to withstand high power signals during operation due to FET stacking, good linearity, and high frequency operation (i.e., radio frequencies up to and exceeding 50 GHz). Monolithic IC implementation is particularly useful since parasitic capacitances generally can be kept low (or at a minimum, kept uniform across all units, permitting them to be compensated) by careful design.
Voltage levels may be adjusted, or voltage and/or logic signal polarities reversed, depending on a particular specification and/or implementing technology (e.g., NMOS, PMOS, or CMOS, and enhancement mode or depletion mode transistor devices). Component voltage, current, and power handling capabilities may be adapted as needed, for example, by adjusting device sizes, serially “stacking” components (particularly FETs) to withstand greater voltages, and/or using multiple components in parallel to handle greater currents. Additional circuit components may be added to enhance the capabilities of the disclosed circuits and/or to provide additional functionality without significantly altering the functionality of the disclosed circuits.
Conclusion
A number of embodiments of the invention have been described. It is to be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, some of the steps described above may be order independent, and thus can be performed in an order different from that described. Further, some of the steps described above may be optional. Various activities described with respect to the methods identified above can be executed in repetitive, serial, or parallel fashion.
It is to be understood that the foregoing description is intended to illustrate and not to limit the scope of the invention, which is defined by the scope of the following claims, and that other embodiments are within the scope of the claims. In particular, the scope of the invention includes any and all feasible combinations of one or more of the processes, machines, manufactures, or compositions of matter set forth in the claims below. (Note that the parenthetical labels for claim elements are for ease of referring to such elements, and do not in themselves indicate a particular required ordering or enumeration of elements; further, such labels may be reused in dependent claims as references to additional elements without being regarded as starting a conflicting labeling sequence).
The present continuation-in-part application claims priority to the following patent application, assigned to the assignee of the present invention, the contents of which are incorporated by reference: U.S. patent application Ser. No. 15/920,321, filed Mar. 13, 2018, entitled “Semiconductor-On-Insulator Transistor with Improved Breakdown Characteristics”.
Number | Date | Country | |
---|---|---|---|
Parent | 15920321 | Mar 2018 | US |
Child | 16297402 | US |