The present invention relates to a backside coating prevention device, a coating chamber device for coating plate-shaped substrates, and a method of coating. Particularly, the present invention relates to a backside coating prevention device for a coating chamber for coating plate-shaped substrates, a coating chamber device for coating plate-shaped substrates, and a method of coating plate-shaped substrates.
Thin-film coating of material on plate-shaped substrates may be accomplished in many ways, for example by evaporation or sputtering of the coating material. In some instances, for example in the manufacture of solar cells, it is desirable to coat exclusively one surface of the plate-shaped substrates.
In known installations for coating continuously conveyed plate-shaped substrates, typically glass substrates, with thin layers by cathode sputtering, several compartments are located one after another. Each compartment comprises at least one sputtering cathode and process gas inlets, and is connected with a vacuum pump for evacuation. The compartments are connected to one another by means of openings, typically vacuum locks or airlocks, which may include one or more slit valves. A transport system including transport rolls for transporting the plate-shaped substrates along a path below the sputtering cathodes and passing the substrates through the openings between the compartments is provided.
When operating a sputtering cathode, a plasma is established and ions of the plasma are accelerated onto a target of coating material to be deposited onto the substrates. This bombardment of the target results in ejection of atoms of the coating material which accumulate as a deposited film on the substrate below the sputtering cathode.
In known designs of a compartment for sputtering and thereby coating continuously transported rectangular plate-shaped substrates, coating material may deposit not only on the front sides of the plate-shaped substrates as desired, but also on the backsides thereof, which is especially undesirable for glass substrates for solar cells.
One embodiment is directed to a backside coating prevention device adapted for a coating chamber for coating plate-shaped substrates, said coating chamber comprising a plurality of walls, a coating material source adapted for dispensing coating material into the coating chamber, a substrate support, a front side of the substrate support facing the coating material source, the substrate support being adapted for supporting on the front side one or more plate-shaped substrates each having a substrate front side and thereby defining a substrate front plane, wherein said backside coating prevention device comprises two or more screens, the screens being provided at least two of the walls of the coating chamber, each screen having a protruding member protruding from the respective wall.
According to another embodiment, a coating chamber device for coating plate-shaped substrates is a coating chamber comprising a plurality of walls, a coating material source adapted for dispensing coating material into the coating chamber, a substrate support, a front side of the substrate support facing the coating material source, the substrate support being adapted for supporting on the front side one or more plate-shaped substrates each having a substrate front side and thereby defining a substrate front plane, and a backside coating prevention device comprising two or more screens, the screens being provided at least two of the walls of the coating chamber, each screen having a protruding member protruding from the respective wall.
In a further embodiment it is provided a method of coating plate-shaped substrates in a coating chamber, comprising providing a plate-shaped substrate on a substrate support of the coating chamber, dispensing coating material from a coating material source provided in the coating chamber towards the plate-shaped substrate, and simultaneously preventing backside coating by two or more screens, the screens being provided at least two walls of the coating chamber, each screen having a protruding member protruding from the respective wall.
Further advantages, features, and details are evident from the dependent claims, the description and the drawings.
Embodiments are also directed to apparatuses for carrying out the disclosed methods and including apparatus parts for performing described method steps. Furthermore, embodiments are also directed to methods by which the described apparatus operates or by which the described apparatus is manufactured. It may include method steps for carrying out functions of the apparatus or manufacturing parts of the apparatus. The method steps may be performed by way of hardware components, firmware, software, a computer programmed by appropriate software, by any combination thereof or in any other manner.
It is contemplated that elements of one embodiment may be advantageously utilized in other embodiments without further recitation.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of embodiments of the invention, briefly summarized above, may be had by reference to embodiments. The accompanying drawings relate to embodiments of the invention and are described in the following. Some of the above mentioned embodiments will be described in more detail in the following description of typical embodiments with reference to the following drawings in which:
a and 4b, respectively, are cross-sectional views of screens of the backside coating prevention device according to embodiments described herein.
a and 5b, respectively, show cross-sectional views of screens of the backside coating prevention device according to embodiments described herein.
a and 6b, respectively, show cross-sectional views of screens of the backside coating prevention device according to embodiments described herein.
a and 7b, respectively, show cross-sectional views of screens of the backside coating prevention device according to embodiments described herein.
a and 8b, respectively, show cross-sectional views of screens of the backside coating prevention device according to embodiments described herein.
a and 9b, respectively, show cross-sectional views of screens of the backside coating prevention device according to embodiments described herein.
Reference will now be made in detail to the various embodiments, one or more examples of which are illustrated in the figures. Each example is provided by way of explanation, and is not meant as a limitation of the invention. Throughout the description and in the claims, the coating chamber device may also be referred to as coating chamber.
A typical application of the backside coating prevention device, the coating chamber and the coating method of the invention is in vacuum sputtering compartments of installations for coating continuously or discontinuously conveyed plate-shaped substrates with thin films. The invention is especially useful for coating plate-shaped glass substrates with thin metal films, for example with Ag films, in the manufacture of solar cells.
Without limiting the scope of the invention, the following is directed to a backside coating prevention device in a vacuum sputtering coating chamber for thin-film Ag coating of continuously transported rectangular plate-shaped glass substrates. Embodiments of the present invention can also be applied to other coating methods, such as thin-film vapour deposition, and other coating materials than Ag, e.g. other metals or alloys. Furthermore, other substrates, such as a web or plastic films, having modified shapes may be employed. Moreover, the substrate(s) may be delivered to the coating chamber continuously or may be provided in the coating chamber in a discontinuous mode. In addition, the coating chamber is not limited to a vacuum chamber.
Within the following description of the drawings, the same reference numbers refer to the same components. Generally, only the differences with respect to the individual embodiments are described.
On the bottom wall 12, as a substrate support, a transport system 18 for continuously conveying of glass substrates 100 is mounted. The transport system 18 has a top side 24, also herein referred to as front side 24, facing the sputtering cathode 26 and is adapted for supporting on the front side 24 one or more plate-shaped substrates 100. The transport system 18 comprises a plurality of rotatable rolls 20 arranged successively in parallel to each other throughout the coating chamber 10, extending from one sidewall 16 to the opposite sidewall 16. The rolls 20 are connected to a driving unit and a control unit (both not shown). Each roll 20 has a plurality of spaced apart rings 22 being each concentrically attached to the roll 20. The rings 22 support the glass substrates 100 and, thereby, define a substrate support plane at the front side 24 of the substrate support. As such, the transport system 18 is made for conveying the plate-shaped glass substrates 100 in a transport direction along a transport path 60. The transport path 60 is defined by the transported glass substrates 100 and is located on the substrate support plane below the sputtering cathode 26 and through the substrate feeding and discharge openings of the coating chamber 10.
In an alternative design (not shown in the Figures) of the transport system, the diameter of the plurality of rolls may be much smaller than the diameter of the plurality of rings. Each ring may then be attached to a wheel which is attached to one of the rolls. Hence, each roll may have a plurality of spaced apart wheels being each concentrically attached to the roll. Each wheel may support one ring at the outermost circumference of the wheel. The rings support the glass substrates 100 and, thereby, define a substrate support plane at the front side 24 of the substrate support.
As shown in e.g.
A typical example of a material of the glass substrate 100, which may also be referred to as baseline substrate, is soda lime float glass and may have a standard or reduced iron content. In addition, in the embodiments described herein, a pre-coated glass substrate may be used. For example, the glass substrate 100 may be coated with a transparent conductive oxide. Further, the glass substrate 100 may have an amorphous and/or microcrystalline silicon p-i-n structure or an amorphous and/or microcrystalline silicon p-i-n-p-i-n tandem cell structure. Moreover, in case of coating a substrate for solar cells, substrates having a solar cell layer stack may be used in embodiments described herein. Furthermore, typical dimensions of glass plates used as glass substrate 100 according to embodiments described herein are in the range of about 1×1 sqm to about 3×6 sqm, typically about 2.2×2.6 sqm or about 1.1×1.3 sqm. Typically, the thickness of the glass substrate 100 according to embodiments described herein is in the range of about 2 mm to about 5 mm.
As can be seen from
In view of the above, a backside coating prevention device according to embodiments described herein comprises two or more screens, the screens being provided at least two of the walls of the coating chamber 10, each screen having a protruding member protruding from the respective wall. As is shown in
Typically, the material(s) of the screens is (are) vacuum-compatible and may be at least one element selected from the group consisting of Aluminum, an Aluminum alloy, or stainless steel in any of the embodiments described herein. However, other materials which are vacuum-compatible may be contemplated. The thickness of the screens or of the protruding member in any embodiment described herein, e.g. the thickness of any of the branches 202 and 204 in the present embodiment, may for example be a few mm, typically in the range from about 1 mm to about 10 mm, more typically from about 2 mm to about 5 mm. Moreover, in the embodiments described herein, typical dimensions of the protruding member, e.g. the dimensions of branch 204 in the present embodiment substantially in parallel to the transport direction, may be in the range from about 20 cm to about 100 cm. Furthermore, typical dimensions of the protruding member of any embodiment described herein, e.g. the dimensions of branch 204 of the present embodiment substantially perpendicular to the transport direction, may be in the range from about 10 cm to about 50 cm. That means that according to embodiments described herein, the dimensions of the protruding member of the screens may be L×W (Length×Width)=(10-50 cm)×(20-100 cm), wherein according to particular embodiments the Width W extends substantially in parallel to the transport direction.
In a typical embodiment, the protruding branch 204 is positioned to be about 1.5 mm to about 10 mm spaced apart from the one or more plate-shaped substrates 100 during coating. Furthermore, branch 204 protrudes from the sidewall 16 such that the branch 204 is positioned between the sputtering cathode 26 and the substrate front plane 120. More specifically, as mentioned above, each glass substrate 100 supported on the substrate support plane has a front side 110 and lateral ends 112 each comprising a lateral side 114. As shown in
In one variation according to embodiments described herein, the protruding member, e.g. formed as branch 204, has a lateral end protruding into the coating chamber, wherein the lateral end is positioned to be spaced apart from but substantially aligned with one of the lateral sides 114 of at least one of the one or more plate-shaped substrates 100 on the substrate support. In the screen 200 shown in
During coating operation, glass substrates 100, typically of substantially identical dimensions, are successively fed into the coating chamber 10 through the substrate feeding opening, continuously conveyed by the transport system 18 along the transport path 60 on the substrate support plane below the operating sputtering cathode 26, and discharged through the substrate discharge opening. Consequently, since the plate-shaped glass substrates have typically the same thicknesses, the front sides of the glass substrates define a common substrate front plane. Alternatively, in embodiments described herein, glass substrates of such varying dimensions or thicknesses may be successively fed into the coating chamber 10 that the protruding member of the backside coating prevention device is positioned to be spaced at least 1.5 mm from the one or more plate-shaped substrates during coating. That means in the present embodiment, that branch 204 is about 1.5 to about 10 mm, typically about 1.5 to about 5 mm, most typically about 2 mm spaced apart from the front sides 110 of the glass substrates 100 having varying dimensions and, hence, from the substrate front planes 120 defined thereby. Particles of Ag coating material are ejected from the sputtering cathode 26 towards the glass substrates 100 and also laterally towards the gaps 50 which are formed between the rectangular plate-shaped glass substrates 100 and the sidewalls 16 of the coating chamber 10. Coating particles ejected laterally towards these gaps 50 are mainly deposited on the upper surfaces of the protruding branches 204 of the screens 200. Thereby, passage of Ag particles through the gaps 50 between the glass substrates 100 and the sidewalls 16 towards the backsides 105 of the glass substrates 100 is reduced or substantially inhibited. Moreover, the coating on the front sides of the glass substrates 100 is uniform even at the lateral ends 112 thereof, as is especially desired when glass substrates for solar cells are processed.
A further variation of embodiments is now described with reference to
In the examples shown in
a and 4b, respectively, show further examples of backside coating prevention devices according to embodiments described herein. In these examples, L-shaped screens 400 and 450, respectively, of the backside coating prevention device are attached to the sidewalls 16 in an inverted way as compared to the screens 200 and 300 shown in
Correspondingly, branch 452 of screen 450 shown in
According to a further variation of embodiments described herein, said lateral end of the protruding member of the screen is formed to taper away from the front side of a plate-shaped substrate 100 on the substrate support. In
In further examples according to embodiments described herein and shown in
In
a and 8b, respectively, show other examples of backside coating prevention devices according to embodiments described herein. In the example of
In other embodiments of the backside coating prevention device, the screens may have protruding members formed by a variation of the thickness of the screens. For instance, examples of the backside coating prevention device shown in
According to embodiments disclosed herein, the backside coating prevention device may have screens each comprising a protruding member being substantially aligned with the substrate. Furthermore, according to embodiments described herein, the backside coating prevention device may have screens each comprising a protruding member being substantially aligned with the substrate front plane 120. An example of these embodiments is shown in
According to
Therefore, when using in a coating process a backside coating prevention device including two screens 1000 according to the example shown in
Hence, according to embodiments disclosed herein, the protruding member may be substantially aligned with the substrate front plane. As shown in the example of
Moreover, in embodiments disclosed herein, the protruding member may be positioned such that it is aligned with the substrate. Hence, the protruding member may have any position in which it is positioned opposite to, e.g. facing, a lateral side of a substrate supported on the substrate support. For instance, in a variation of the example shown in
In variations of the example shown in
In an alternative embodiment of the example shown in
Furthermore, it will be understood by those skilled in the art that in the above embodiments described with reference to
Furthermore, according to embodiments described herein, the backside coating prevention device may have screens each comprising a protruding member comprising a panel and a holder, the holder being provided at a respective wall. The panel may be provided at the holder. The panel may be an elongated panel. The holder may be an elongated holder or may include a plurality of holder elements. The holder may be a protruding integral part of the respective wall. Alternatively, the holder may be a member provided at the respective wall.
Hence, as illustrated in
In a modification of the backside coating prevention device, in the above embodiments and examples, respectively, the edges of the protruding members 204, 304, 404, 454, 504, 554, 604, 654, 704, 754, 804, 854, and 1004 as well as of the panels 900, 950, and 2004 and of the holder 2008 may have a rounded from, in order to avoid sharp edges which might damage the glass substrates 100 in case of vibrations or sagging during transport.
Moreover, in another modification of the above embodiments and examples, respectively, the coating chamber 10 may be a tube-shaped vessel having a tube-shaped wall closed by circular front and rear lids, the glass substrates 100 being transported in a direction parallel to the longitudinal axis of the tube-shaped vessel, the circular front and rear lids being the front and rear walls as defined above, the sidewalls as defined above being the areas of the tube-shaped wall facing the lateral ends of the glass substrates during transport.
Furthermore, in each of the above embodiments and examples also one or more additional screens having a shape as described above in any of the embodiments and examples, respectively, may be provided at each sidewall 16 above and/or below the substrate front plane 120, i.e. above and/or below the screens 200, 300, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000 and 2000, typically substantially in parallel thereto. Thereby, prevention of backside coating of the glass substrates 100 is promoted.
In addition, in further variations of the above embodiments and examples, respectively, the substrates 100 may be conveyed vertically instead of horizontally through the coating chamber. In such a case, as will be understood by the skilled person, the screens may be installed at other positions in the coating chamber, e.g. at the top and the bottom wall of the coating chamber, or may have correspondingly adapted modified profiles, in order to allow an installation at the sidewalls.
According to one embodiment, a backside coating prevention device adapted for a coating chamber for coating plate-shaped substrates is provided, said coating chamber comprising a plurality of walls, a coating material source adapted for dispensing coating material into the coating chamber, a substrate support, a front side of the substrate support facing the coating material source, the substrate support being adapted for supporting on the front side one or more plate-shaped substrates each having a substrate front side and thereby defining a substrate front plane, wherein said backside coating prevention device comprises two or more screens, the screens being provided at least two of the walls of the coating chamber, each screen having a protruding member protruding from the respective wall.
In a modification of the above embodiment, said protruding member is positioned to be spaced in the range from 1.5 mm to 5 mm from the one or more plate-shaped substrates during coating.
In a modification of any of the above embodiment and the above modification thereof, said protruding member protrudes from the respective wall such that the protruding member is positioned between the coating material source and the substrate front plane.
In a modification of any of the above embodiment and the above modifications thereof, said protruding member is substantially aligned with the substrate front plane.
According to a further embodiment, a coating chamber for coating plate-shaped substrates comprises a plurality of walls, a coating material source adapted for dispensing coating material into the coating chamber, a substrate support, a front side of the substrate support facing the coating material source, the substrate support being adapted for supporting on the front side one or more plate-shaped substrates each having a substrate front side and thereby defining a substrate front plane, and a backside coating prevention device comprising two or more screens, the screens being provided at least two of the walls of the coating chamber, each screen having a protruding member protruding from the respective wall.
In a modification of the above further embodiment, said protruding member is positioned to be spaced in the range from 1.5 mm to 5 mm from the one or more plate-shaped substrates during coating.
In a modification of any of the above further embodiment and the above modification thereof, said protruding member protrudes from the respective wall such that the protruding member is positioned between the coating material source and the substrate front plane.
In a modification of any of the above embodiments and the above modifications thereof, the substrate front side of each of said one or more plate-shaped substrates is to be coated and faces the coating material source during coating, said one or more plate-shaped substrates each having a backside, which is opposite to the substrate front side and faces the substrate support during being supported thereon, and two lateral sides, said protruding member has a lateral end protruding into the coating chamber, said lateral end being positioned to be spaced apart from but substantially aligned with one of the lateral sides of at least one of the one or more plate-shaped substrates on the substrate support, or said lateral end being positioned to extend over a lateral part of the substrate front side of at least one of the one or more plate-shaped substrates on the substrate support.
In a modification of any of the above embodiments and the above modifications thereof, said lateral end is formed to taper away from the substrate front side of a plate-shaped substrate on the substrate support.
In a modification of any of the above embodiments and the above modifications thereof, said protruding member is substantially aligned with the substrate front plane.
In a modification of any of the above embodiments and the above modifications thereof, each screen comprises a first branch and a second branch, said first branch being attached to one of the walls and said second branch forming the protruding member.
In a modification of any of the above embodiments and the above modifications thereof, said first and second branches are arranged substantially perpendicularly to each other.
In a modification of any of the above embodiments and the above modifications thereof, said coating material source is adapted to dispense coating material at least into a coating region of the coating chamber and each screen is provided at least in the coating region.
In a modification of any of the above embodiments and the above modifications thereof, said coating chamber is adapted for coating continuously or discontinuously transported plate-shaped substrates, the substrate support being a transport system adapted for continuously or discontinuously transporting the plate-shaped substrates along a transport path, said backside coating prevention device being provided at two opposite sidewalls of the coating chamber and comprising at least two of the screens, each of the two sidewalls being provided with at least one screen thereof, each screen having the protruding member protruding from the respective sidewall.
In a modification of any of the above embodiments and the above modifications thereof, said protruding member extends along the respective sidewall substantially in parallel to the transport path.
In a modification of any of the above embodiments and the above modifications thereof, said coating chamber is adapted for coating by sputtering, the coating material source being a sputtering cathode.
According to another embodiment, a method of coating plate-shaped substrates in a coating chamber is provided, comprising providing a plate-shaped substrate on a substrate support of the coating chamber, dispensing coating material from a coating material source provided in the coating chamber towards the plate-shaped substrate, and simultaneously preventing backside coating by two or more screens, the screens being provided at least two walls of the coating chamber, each screen having a protruding member protruding from the respective wall.
In a modification of the above another embodiment, said preventing of backside coating is effected by said screens, each screen having the protruding member being positioned so that each protruding member is spaced in the range from 1.5 mm to 5 mm from the plate-shaped substrate during coating.
In a modification of any of the above another embodiment and the above modification thereof, said preventing of backside coating is effected by said screens, each screen having the protruding member protruding from the respective wall such that the protruding member is positioned between the coating material source and the plate-shaped substrate.
In a modification of any of the above another embodiment and the above modifications thereof, said plate-shaped substrate has a substrate front side to be coated and facing the coating material source during coating, a backside opposite to the front side and facing the substrate support during being supported thereon, and two lateral sides, said protruding member has a lateral end protruding into the coating chamber, said lateral end being spaced apart from but substantially aligned with one of the lateral sides of the plate-shaped substrate on the substrate support, or said lateral end extending over a lateral part of the substrate front side of the plate-shaped substrate on the substrate support.
In a modification of any of the above another embodiment and the above modifications thereof, said lateral end is tapering away from the front side of the plate-shaped substrate.
In a modification of any of the above another embodiment and the above modifications thereof, said plate-shaped substrate has a substrate front side to be coated and thereby defines a substrate front plane, and wherein said protruding member is substantially aligned with the substrate front plane.
In a modification of any of the above another embodiment and the above modifications thereof, each screen comprises a first branch and a second branch, said first branch being attached to one of the walls and said second branch forming the protruding member.
In a modification of any of the above another embodiment and the above modifications thereof, said first and second branches are arranged substantially perpendicularly to each other.
A modification of any of the above another embodiment and the above modifications thereof comprises providing the plate-shaped substrate by feeding the plate-shaped substrate into the coating chamber and arranging the plate-shaped substrate on the substrate support, the substrate support being a transport system for continuously or discontinuously transporting the plate-shaped substrate along a transport path, continuously or discontinuously transporting the plate-shaped substrate by the transport system along the transport path, while dispensing coating material from the coating material source and preventing backside coating of the plate-shaped substrate by at least two of the screens provided at two opposite sidewalls of the coating chamber, each of the two sidewalls being provided with at least one screen thereof, said protruding member of each screen extending along the respective sidewall substantially in parallel to the transport path, and discharging the plate-shaped substrate from the coating chamber.
The written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to make and use the invention. While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modifications within the spirit and scope of the claims. Especially, mutually non-exclusive features of the embodiments described above may be combined with each other. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims.
Number | Date | Country | Kind |
---|---|---|---|
08152074 | Feb 2008 | EP | regional |
08009828 | May 2008 | EP | regional |
Number | Date | Country | |
---|---|---|---|
61032133 | Feb 2008 | US |