Information
-
Patent Grant
-
6301160
-
Patent Number
6,301,160
-
Date Filed
Friday, February 4, 200025 years ago
-
Date Issued
Tuesday, October 9, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 365 18901
- 365 18905
- 365 23001
- 365 191
- 365 203
-
International Classifications
-
Abstract
A bus driving circuit comprises: a bus pre-charge part for pre-charging a bus line on the basis of a pre-charge signal produced in synchronism with a clock signal; a tristate buffer for driving the bus line on the basis of a gate control signal; and a gate control circuit for transmitting the gate control signal to the tristate buffer so as not to drive the bus line when an enable signal is in an inactive state, and for transmitting the gate control signal to the tristate buffer so as to drive the but line on the basis of the potential of the bus line and data inputted from a pre-charge type circuit when the enable signal is in an active state. Thus, it is possible to inhibit the influence of the coupling noises between bus lines, and it is possible to rapidly transfer data.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to a bus driving circuit for driving a bus line provided in a large scale integrated circuit. More specifically, the invention relates to a bus driving circuit used for transferring output data from a pre-charge type circuit via a bus line.
2. Description of the Prior Art
In recent years, large scale integrated circuits (LSIs) are large-scaled and accelerated at a request for the advance of the fine patterning technology and the improvement of the system performance.
As microprocessors, LSIs having a plurality of circuit blocks therein have a bus line for connecting these circuit blocks.
For example, as shown in
FIG. 3
, a large memory unit
30
built in a microprocessor is separated into a plurality of memory blocks
30
1
,
30
2
,
30
3
and
30
4
by addresses. The data output terminals of these memory blocks are connected to a bus line
10
via a read circuit
32
and a bus driving circuit
40
. Such a bus line
10
is driven by the bus driving circuit
40
of an activated one of the memory blocks to transfer data to the next stage circuit.
FIG. 4
shows a conventional bus driving circuit. This bus driving circuit
40
A comprises: a tristate buffer
44
comprising a P-channel MOSFET
44
a
and an N-channel MOSFET
44
b
; and a gate control circuit
42
for controlling the gate of each of the MOSFETs of the tristate buffer
44
on the basis of an enable signal and input data.
The gate control circuit
42
comprises an AND gate
42
a
, an inverter
42
b
and an OR gate
42
c
. The AND gate
42
a
performs an AND operation on the basis of the enable signal and the input data to transmit the operated results to the gate of the N-channel MOSFET
44
b
. The OR gate
42
c
performs an OR operation on the basis of the input data and a signal produced by inverting the enable signal by the inverter
42
b
, to transmit the operated results to the gate of the P-channel MOSFET
44
a
. Furthermore, the input data are produced in synchronism with a clock signal. The output of the tristate buffer
44
is connected to the bus line
10
.
The operation of the bus driving circuit
40
A is as follows. When the enable signal is inactive, the output of the tristate buffer
44
has high impedance so as not to drive the bus line
10
. At this time, if the bus driving circuit
40
A is connected to one memory block of the memory unit
30
shown in
FIG. 3
, other memory blocks are activated, and other bus driving circuits connected to the activated memory blocks drive the bus line
10
to perform data transfer.
On the other hand, if the enable signal inputted to the bus driving circuit
40
A is activated, the bus line
10
is driven in accordance with the input data to perform data transfer as shown in FIG.
5
. Furthermore, as shown in
FIG. 4
, an inverter
50
and a latch circuit
60
controlled by a clock signal CK are provided on the next stage circuit side, to which data are transferred. The potential of the bus line
10
holds data until the next memory access is started (until the clock signal CK is raised next time) (see
FIG. 5
)
FIG. 6
shows another example of a conventional bus driving circuit. In a bus driving circuit
40
B shown in
FIG. 6
, the gate control circuit
42
of the bus driving circuit
40
A shown in
FIG. 4
is replaced with a gate control circuit
43
. The gate control circuit
43
comprises an AND gate
43
a
. The AND gate
43
a
performs an AND operation on the basis of input data and an enable signal to transmit the operated results to the gate of an N-channel MOSFET
44
b
of a tristate buffer
44
. Furthermore, to the gate of a P-channel MOSFET
44
a
of the tristate buffer
44
, an inverted signal /PC of a pre-charge signal PC synchronized with a clock signal is inputted.
The conventional bus driving circuit
40
B shown in
FIG. 6
is designed to receive, as data input, the output of a pre-charge type circuit, i.e., a circuit wherein its output is previously set at a low potential and wherein the data transition of the output occurs only when a high potential is outputted. Furthermore, a read circuit
32
for reading data from the memory unit
30
shown in
FIG. 3
is a pre-charge type circuit.
Referring to
FIG. 7
, the operation of the bus driving circuit
40
B, which is shown in FIG.
6
and which is applied to the memory unit
30
, will be described below.
The bus driving circuit
40
B turns the P-channel MOSFET
44
a
ON, in response to the pre-charge signal PC during a memory access, to previously set the bus line
10
at the high potential. Thereafter, although the MOSFET
44
a
is turned OFF, the bus line is held to be the high potential by a latch circuit
70
. Furthermore, the latch circuit
70
is provided on the side of a circuit, to which data are transferred. In such a state, if the enable signal is activated and if high potential data are outputted from the read circuit
32
of the memory unit
30
, the N-channel MOSFET
44
b
is turned ON, so that the bus line
10
is driven at a low potential to perform data transfer (see FIG.
7
). The potential of the bus line
10
is held by the latch circuit
70
even after the memory access ends to set the output of the read circuit
32
at a low potential again until the next memory access is started to pre-charge the bus line
10
by the pre-charge signal /PC (see
FIG. 7
)
As described above, the potential of the bus line
10
connected to the conventional bus driving circuit
40
B shown in
FIG. 6
is held by the latch circuit
70
until the bus line
10
is pre-charged by the pre-charge signal /PC even after the memory access ends to set the output of the read circuit
32
at the low potential again. Therefore, since it is not required to provide the latch circuit
60
for operating in response to the clock signal, which is provided at the next stage of the bus line
10
as shown in
FIG. 4
, the number of gate stages can be smaller than that of the bus driving circuit
40
A shown in
FIG. 4
, and the data transfer can be rapidly carried out.
However, the bus driving circuit shown in
FIG. 6
is weak in noises since the bus line
10
remains being held at the high potential by the latch circuit
70
having a weak driving force when the output of the read circuit
32
has a low potential. In particular, the bus lines
10
are arranged in parallel at a long distance, and the data transitions occur simultaneously, so that there is much noise due to the coupling capacity with the next line.
Therefore, if the next bus line is driven at the low potential, there is some possibility that the potential of the bus line to be held at the high potential changes to the low potential under the influence of the coupling capacity to cause malfunction.
SUMMARY OF THE INVENTION
It is therefore an object of the present invention to eliminate the aforementioned problems and to provide a bus driving circuit capable of inhibiting the influence of the coupling noises between bus lines and of rapidly transferring data.
In order to accomplish the aforementioned and other objects, according to one aspect of the present invention, a bus driving circuit comprises: bus pre-charge means for pre-charging a bus line on the basis of a pre-charge signal produced in synchronism with a clock signal; a tristate buffer for driving the bus line on the basis of a gate control signal; and a gate control circuit for transmitting the gate control signal to the tristate buffer so as not to drive the bus line when an enable signal is in an inactive state, and for transmitting the gate control signal to the tristate buffer so as to drive the but line on the basis of the potential of the bus line and data inputted from a pre-charge type circuit when the enable signal is in an active state.
The gate control circuit may output first and second gate control signals, and the tristate buffer may comprise: a first MOSFET of a first conductive type, which has a source connected to a first power supply, a gate for receiving the first gate control signal, and a drain connected to the bus line; and a second MOSFET of a second conductive type different from the first conductive type, the second MOSFET having a source connected to a second power supply for supplying a lower potential than that of the first power supply, a gate for receiving the second gate control signal, and a drain connected to the drain of the first MOSFET, the first MOSFET being turned ON only when the potential of the bus line is a logical value “H”.
The bus pre-charge means may hold the input data on the bus line by pre-charging the bus line only during an access operation for the pre-charge circuit.
The gate control circuit may comprise: an AND gate for performing an AND operation on the basis of the enable signal and the input data to output the second gate control signal; a NAND gate for performing a NAND operation on the basis of the enable signal and the potential of the bus line; and an OR gate for performing an OR operation on the basis of the input data and the output of the NAND gate to output the first gate control signal.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention will be understood more fully from the detailed description given herebelow and from the accompanying drawings of the preferred embodiments of the invention. However, the drawings are not intended to imply limitation of the invention to a specific embodiment, but are for explanation and understanding only.
In the drawings:
FIG. 1
is a block diagram of a preferred embodiment of a bus driving circuit according to the present invention;
FIG. 2
is a timing chart for explaining the operation of the preferred embodiment shown in
FIG. 1
;
FIG. 3
is a block diagram of a memory unit;
FIG. 4
is a circuit diagram of a conventional bus driving circuit;
FIG. 5
is a timing chart for explaining the operation of the bus driving circuit shown in
FIG. 4
;
FIG. 6
is a circuit diagram of another example of a conventional bus driving circuit;
FIG. 7
is a timing chart for explaining the operation of the bus driving circuit shown in
FIG. 6
;
FIG. 8
is a block diagram of another preferred embodiment of a bus driving circuit according to the present invention;
FIG. 9
is a block diagram of a preferred embodiment of a memory unit according to the present invention; and
FIG. 10
is a timing chart for explaining the operation of the memory unit shown in FIG.
9
.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1
shows a preferred embodiment of a bus driving circuit according to the present invention. In this preferred embodiment, a bus driving circuit
1
is designed to transfer data, which are outputted from a pre-charge type circuit (e.g., a read circuit
32
of a memory unit
30
shown in FIG.
3
), by driving a bus line
10
. The bus driving circuit
1
comprises a gate control circuit
2
, a tristate buffer
4
, and a bus pre-charge means
6
.
The tristate buffer
4
comprises a P-channel MOSFET
4
a
and an N-channel MOSFET
4
b
. The source of the MOSFET
4
a
is connected to a first power supply, and the drain thereof is connected to the drain of the MOSFET
4
b
and the bus line
10
. The source of the MOSFET
4
b
is connected to a second power supply having a lower power supply potential than that of the first power supply.
The gate control circuit
2
is designed to drive the bus line
10
by controlling the gates of the MOSFETs
4
a
and
4
b
constituting the tristate buffer on the basis of input data, which are transmitted from the pre-charge type circuit, an enable signal and the potential of the bus line
10
. The gate control circuit
2
comprises an AND gate
2
a
, a NAND gate
2
b
and an OR gate
2
c
. The AND gate
2
a
performs an AND operation on the basis of the input data and the enable signal to transmit the operated results to the gate of the N-channel MOSFET
4
b
of the tristate buffer
4
. The NAND gate
2
b
performs a NAND operation on the basis of the enable signal and the potential of the bus line
10
. The OR gate
2
c
performs an OR operation on the basis of the input data and the output of the NAND gate to transmit the operated results to the gate of the P-channel MOSFET of the tristate buffer
4
.
The bus pre-charge means
6
comprises a P-channel MOSFET
6
a
. The source of the MOSFET
6
a
is connected to the first power supply, and the drain thereof is connected to the bus line
10
. The gate of the MOSFET
6
a
receives an inverted signal /PC of a pre-charge signal PC. Furthermore, the pre-charge signal PC is activated in synchronism with a clock signal CK, and the pre-charge signal PC is inactive before the input data are transmitted to the bus driving circuit
1
.
A latch circuit
70
is connected to the bus line
10
. The latch circuit
70
is provided on the side of a circuit (not shown), to which data are transferred via the bus line
10
.
Referring to
FIG. 2
, when the bus driving circuit
1
in this preferred embodiment receives, as input data, the output of the memory unit for reading data in synchronism with a clock signal, the operation of the bus driving circuit
1
will be described below.
The memory unit performs a memory access using a leading edge of a clock as a trigger, and the data output (i.e., the input data of the bus driving circuit
1
) is previously set at an “L” level to perform a data transition in accordance with read data. After the data read ends, the data output is set at the “L” level again. Because the read circuit of a typical memory unit is a pre-charge type circuit which is operated using a pulse signal produced from a clock. Therefore, a waveform shown in
FIG. 2
is given to the input of the bus driving circuit
1
from the memory unit.
The bus line
10
is set at an “H” level by the bus pre-charge means
6
during the data output (an access period) from the leading edge of a clock signal CK, at which a memory access is carried out (see FIG.
2
). When the enable signal has the “L” level, the potentials of the “H” and “L” levels are applied to the MOSFETs
4
a
and
4
b
of the tristate buffer
4
, respectively, so that the tristate buffer
4
does not drive the bus line
10
. When the enable signal has the “H” level and when the bus driving circuit
1
is activated, an “L” level signal is inputted to the gate terminal of the N-channel MOSFET
4
b
since the input data has the “L” level, and an “L” level signal is inputted to the gate terminal of the P-channel MOSFET
4
a
since the potential of the bus line
10
has the “H” level and since the input data have the “L” level. Thus, the bus driving circuit
1
drives the bus line
10
at the “H” level (see
FIG. 2
)
Then, when the bus pre-charge means
6
is deactivated and when a memory access is carried out to apply the “H” level to the input signal (input data) of the bus driving circuit
1
, both of the gate terminals of the P-channel MOSFET
4
a
and N-channel MOSFET
4
b
of the tristate buffer
4
have the “H” level, so that the bus line
10
is driven at the “L” level. At this time, since the data bus line
10
has the “L” level, the “H” level is applied to the gate terminal of the P-channel MOSFET
4
a
of the tristate buffer
4
regardless of the state of other signals. Therefore, after the memory access ends, when the data input level changes to the “L” level again, the “L” level of the bus line
10
is held by the latch circuit
70
while both of the N-channel MOSFET
4
b
and P-channel MOSFET
4
a
of the tristate buffer
4
are turned OFF. Data are held until the pre-charge of the bus line
10
is carried out after the next memory access is started, so that it is not required to provide the latch circuit
60
based on the clock as shown in FIG.
4
. Thus, it is possible to reduce the number of gate stages, and it is possible to rapidly transfer data.
In addition, when the output of the memory circuit has the “L” level, the P-channel MOSFET
4
a
of the bus driving circuit
1
is in ON state to continuously drive the data bus at the “H” level, so that it is possible to prevent malfunction due to the coupling noises of the adjacent data bus lines.
Furthermore, while the bus line
10
has been pre-charged in the above described preferred embodiment, the bus line
10
may be discharged.
FIG. 8
shows a bus driving circuit
1
A in this case. The P-channel MOSFETs
4
a
and
6
a
shown in
FIG. 1
are replaced with N-channel MOSFETs
4
c
and
6
c
, respectively. The N-channel MOSFET
4
b
, the AND gate
2
a
, the NAND gate
2
b
and the OR gate are replaced with a P-channel MOSFET
4
d
, a NOR gate
2
d
, a NOR gate
2
e
, and an AND gate
2
f
, respectively (see FIG.
8
). In addition, the input data of the bus driving circuit are previously set at the “H” level.
Referring to
FIGS. 9 and 10
, a memory unit having the bus driving circuit in the preferred embodiment shown in
FIG. 1
will be described below.
FIG. 9
is a block diagram of the memory unit, and
FIG. 10
is a timing chart showing the operation of the memory unit.
As shown in
FIG. 9
, the memory unit
30
comprises a plurality of memory cells
30
a
l
,
30
a
2
arranged in the form of a matrix, word lines WL
1
, WL
2
for selecting memory cells on the same line, a pair of bit lines BL, /BL for transmitting the potential levels of the memory cells selected by the word lines, a pre-charge circuit
31
for pre-charging the potentials of the pair of bit lines at the “H” level, and a sense amplifier circuit (which will be hereinafter referred to as an S/A circuit)
32
for amplifying the potentials of the memory cells which are read to the pair of bit lines. The output of the S/A circuit
32
, i.e., the output of the memory unit
30
, is supplied to the bus driving circuit
1
as input data.
Referring to
FIG. 10
, the operation of the memory unit
30
will be described below.
The potentials of the pair of bit lines BL, /BL are set at the “H” level by the pre-charge circuit
31
. At this time, for example, if the word line WL
1
, is activated, the pre-charge circuit
31
is turned OFF, and the memory cell holding data of the “L” level (e.g., the memory cell
30
A
1
) drives the bit line BL or /BL so that the potential of the bit line BL is the “L” level. At this time, the data transition of the bit line BL or /BL is very slow since a small memory cell drives the bit line BL or /BL, to which a plurality of memory cells are connected and to which a heavy load is applied. Therefore, the S/A circuit
32
is used for amplifying the potential of the bit line.
The S/A circuit
32
amplifies the potential of the bit line BL or /BL in timing with the input of an S/A enable signal. After the word line is activated, the S/A enable signal is activated in a certain timing, so that the S/A circuit
32
amplifies the very small potentials of the pair of bit lines BL, /BL to a CMOS level potential to output data of the selected memory cell to the outside, i.e., to the bus driving circuit
1
.
After the data are read, the S/A circuit
32
is deactivated, and the potentials of the pair of bit lines BL, /BL are pre-charged to the “H” level again by the pre-charge circuit
32
for the next read operation.
Thus, in order for the memory unit
30
to carry out a memory access (a data read operation) and a pre-charge operation in one clock cycle, a potential (an initial value) during the pre-charge operation is first outputted as the output data of the memory unit
30
. Therefore, after the memory access, required data are outputted to the bus driving circuit
1
, and the pre-charge operation is carried out by the pre-charge circuit
31
again, so that the initial value is outputted.
As described above, according to the present invention, it is possible to inhibit the influence of the coupling noises between bus lines, and it is possible to rapidly transfer data.
While the present invention has been disclosed in terms of the preferred embodiment in order to facilitate better understanding thereof, it should be appreciated that the invention can be embodied in various ways without departing from the principle of the invention. Therefore, the invention should be understood to include all possible embodiments and modification to the shown embodiments which can be embodied without departing from the principle of the invention as set forth in the appended claims.
Claims
- 1. A bus driving circuit comprising:bus pre-charge means for pre-charging a bus line on the basis of a pre-charge signal produced in synchronism with a clock signal; a tristate buffer for driving said bus line on the basis of a gate control signal; and a gate control circuit for transmitting said gate control signal to said tristate buffer so as not to drive said bus line when an enable signal is in an inactive state, and for transmitting said gate control signal to said tristate buffer so as to drive said bus line on the basis of the potential of said bus line and data inputted from a pre-charge type circuit when said enable signal is in an active state.
- 2. A bus driving circuit as set forth in claim 1, wherein said gate control circuit outputs first and second gate control signals, and said tristate buffer comprises:a first MOSFET of a first conductive type, which has a source connected to a first power supply, a gate for receiving said first gate control signal, and a drain connected to said bus line; and a second MOSFET of a second conductive type different from said first conductive type, said second MOSFET having a source connected to a second power supply for supplying a lower potential than that of said first power supply, a gate for receiving said second gate control signal, and a drain connected to said drain of said first MOSFET, said first MOSFET being turned ON only when the potential of said bus line is a logical value “H”.
- 3. A bus driving circuit as set forth in claim 1, wherein said bus pre-charge means holds said input data on said bus line by pre-charging said bus line only during an access operation for said pre-charge circuit.
- 4. A bus driving circuit as set forth in claim 2, wherein said first MOSFET is a P-channel MOSFET, and said second MOSFET is an N-channel MOSFET.
- 5. A bus driving circuit as set forth in claim 4, wherein said gate control circuit comprises: an AND gate for performing an AND operation on the basis of said enable signal and said input data to output said second gate control signal; a NAND gate for performing a NAND operation on the basis of said enable signal and the potential of said bus line; and an OR gate for performing an OR operation on the basis of said input data and the output of said NAND gate to output said first gate control signal.
- 6. A bus driving circuit as set forth in claim 5, wherein said bus pre-charge means is a P-channel MOSFET.
- 7. A bus driving circuit as set forth in claim 6, wherein a latch circuit is connected to said bus line.
- 8. A bus driving circuit as set forth in claim 2, wherein said first MOSFET is an N-channel MOSFET, and said second MOSFET is a P-channel MOSFET.
- 9. A bus driving circuit as set forth in claim 8, wherein said gate control circuit comprises: an OR gate for performing an OR operation on the basis of said enable signal and said input data to output said second gate control signal; a NOR gate for performing a NOR operation on the basis of said enable signal and the potential of said bus line; and an AND gate for performing an AND operation on the basis of said input data and the output of said NOR gate to output said first gate control signal.
- 10. A bus driving circuit as set forth in claim 9, wherein said bus pre-charge means is an N-channel MOSFET.
- 11. A bus driving circuit as set forth in claim 7, wherein the operation of said latch circuit is independent of clock signal.
Priority Claims (1)
Number |
Date |
Country |
Kind |
11-031811 |
Feb 1999 |
JP |
|
US Referenced Citations (11)
Foreign Referenced Citations (3)
Number |
Date |
Country |
404007618A |
Jan 1992 |
JP |
410289593A |
Oct 1998 |
JP |
02000231426 |
Aug 2000 |
JP |