Many kinds of capacitors such as metal-oxide-semiconductor (MOS) capacitors, PN junction capacitors, polysilicon-insulator-polysilicon (PIP) capacitors, and metal-insulator-metal (MIM) capacitors are used in semiconductor devices. In particular, the MIM capacitor offers reduced electrode resistance with a wide range of applications.
MIM capacitors have been widely used in functional circuits such as mixed signal circuits, analog circuits, radio frequency (RF) circuits, dynamic random access memory (DRAM), embedded DRAM, and logic operation circuits. In system-on-chip applications, different capacitors for different functional circuits have to be integrated on a same chip to serve different purposes. For example, in mixed signal circuits, capacitors are used as decoupling capacitors and high-frequency noise filters. For DRAM and embedded DRAM circuits, capacitors are used for memory storage; while for RF circuits, capacitors are used in oscillators and phase-shift networks for coupling and/or bypassing purposes. For microprocessors, capacitors are used for decoupling. The traditional way to combine these capacitors on a same chip is to fabricate them in different metal layers.
With the capacitors having different functions formed in different metal layers, the capacitors may work under different operation voltages. For example, when used as decoupling capacitors, the capacitors need to be able to sustain high voltages. Therefore, the capacitor insulators need to be thick. In DRAMs, on the other hand, the operation voltage is low, and the capacitors need to be small in order to increase the DRAM cell density. Therefore, the capacitor insulators need to be thin.
For a more complete understanding of the present embodiments, and the advantages thereof, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
The making and using of the present embodiments are discussed in detail below. It should be appreciated, however, that the present disclosure provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the disclosed subject matter, and do not limit the scope of the different embodiments.
Embodiments will be described with respect to a specific context, namely a metal-insulator-metal (MIM) capacitor. Other embodiments may also be applied, however, to other capacitors, such as a polysilicon-insulator-polysilicon (PIP) capacitor and others. Applications of concepts disclosed herein include, among others, high voltage applications, voltage decoupling applications, radio frequency (RF) applications, and dynamic random access memory (DRAM) applications.
In
In an embodiment, the capacitor bottom metal 12 is treated with a plasma nitrous oxide (N2O) treatment after the capacitor bottom metal 12 is formed. The N2O treatment can form a thin dielectric layer 14 on the capacitor bottom metal 12. In an embodiment, such as when the capacitor bottom metal 12 includes a TiN barrier layer, the N2O treatment forms a titanium oxide (TiO2) as the thin dielectric layer 14. In other embodiments, the thin dielectric layer 14 can comprise tantalum oxide (Ta2O5), or the like. The thin dielectric layer 14 can have a thickness between approximately 10 angstroms (Å) and approximately 40 Å. The nitrous oxide treatment can increase the smoothness of the capacitor bottom metal 12 and can increase the adhesion of subsequently formed layers.
In
In
In
In
In
In
It should be noted that other configurations of a MIM capacitor are contemplated within the scope of embodiments, and
Embodiments may achieve higher breakdown voltages than known MIM capacitors. The inventors of the present disclosure have discovered that by treating the various surfaces of a MIM capacitor as discussed above, pin holes between the capacitor top and bottom metals can be minimized, thereby reducing leakage paths. This can increase the reliability of a MIM capacitor and can achieve higher break down voltages.
An embodiment is a structure comprising a first conductor on a substrate, a first nitride layer over the first conductor, a first oxide layer over the first nitride layer, a second nitride layer over the first oxide layer, and a second conductor over the second nitride layer.
Another embodiment is a structure comprising a conductor-insulator-conductor capacitor on a substrate. The conductor-insulator-conductor capacitor comprises a first conductor on the substrate, a dielectric stack over the first conductor, and a second conductor over the dielectric stack. The dielectric stack comprises a first nitride layer, a first oxide layer over the first nitride layer, and a second nitride layer over the first oxide layer.
Another embodiment is a comprising a first conductor on a substrate, a dielectric stack on the first conductor, and a second conductor on the dielectric stack. The dielectric stack comprises alternating nitride and oxide layers. The dielectric stack comprise at least one nitride layer and at least one oxide layer, and the alternating nitride and oxide layers alternate in a direction from the first conductor towards the second conductor.
A further embodiment is a method comprising forming a first conductor on a substrate; forming a first nitride layer over the first conductor; treating the first nitride layer with a first nitrous oxide (N2O) treatment to form a first oxide layer on the first nitride layer; forming a second nitride layer over the first oxide layer; and forming a second conductor over the second nitride layer.
Although the present embodiments and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.
Number | Name | Date | Kind |
---|---|---|---|
5981404 | Sheng | Nov 1999 | A |
6350707 | Liu et al. | Feb 2002 | B1 |
8076250 | Rajagopalan | Dec 2011 | B1 |
20030096473 | Shih et al. | May 2003 | A1 |
20040126964 | Park et al. | Jul 2004 | A1 |
20040129204 | Sandhu et al. | Jul 2004 | A1 |
20070052012 | Forbes | Mar 2007 | A1 |
20070202656 | Park et al. | Aug 2007 | A1 |
20090324851 | Shih et al. | Dec 2009 | A1 |
20110018056 | Takeuchi | Jan 2011 | A1 |
20120049252 | Masuoka et al. | Mar 2012 | A1 |
20120264265 | Masuoka et al. | Oct 2012 | A1 |
Number | Date | Country |
---|---|---|
1512562 | Jul 2004 | CN |
101123189 | Feb 2008 | CN |
101847636 | Sep 2010 | CN |
101866857 | Oct 2010 | CN |
101933149 | Dec 2010 | CN |
Entry |
---|
C.H. Ng et al., “Effect of Nitrous Oxide Plasma Treatment on the MIM Capacitor,” IEEE Electron Device Letters, vol. 23, No. 9, Sep. 2002, pp. 529-531. |
Ng. et al., “Effect of Nitrous Oxide Plasma Treatment on MIM Capacitor,” IEEE Electron Device Letters, vol. 23, No. 9, Sep. 2002, pp. 529-531. |
Number | Date | Country | |
---|---|---|---|
20130200490 A1 | Aug 2013 | US |