Targeted editing of nucleic acid sequences, for example, the introduction of a specific modification into genomic DNA, is a highly promising approach for the study of gene function and also has the potential to provide new therapies for human genetic diseases.1 An ideal nucleic acid editing technology possesses three characteristics: (1) high efficiency of installing the desired modification; (2) minimal off-target activity; and (3) the ability to be programmed to edit precisely any site in a given nucleic acid, e.g., any site within the human genome.2 Current genome engineering tools, including engineered zinc finger nucleases (ZFNs),3 transcription activator like effector nucleases (TALENs),4 and most recently, the RNA-guided DNA endonuclease Cas9,5 effect sequence-specific DNA cleavage in a genome. This programmable cleavage can result in mutation of the DNA at the cleavage site via non-homologous end joining (NHEJ) or replacement of the DNA surrounding the cleavage site via homology-directed repair (HDR).6,7
One drawback to the current technologies is that both NHEJ and HDR are stochastic processes that typically result in modest gene editing efficiencies as well as unwanted gene alterations that can compete with the desired alteration.8 Since many genetic diseases in principle can be treated by effecting a specific nucleotide change at a specific location in the genome (for example, a C to T change in a specific codon of a gene associated with a disease),9 the development of a programmable way to achieve such precision gene editing would represent both a powerful new research tool, as well as a potential new approach to gene editing-based human therapeutics.
The clustered regularly interspaced short palindromic repeat (CRISPR) system is a recently discovered prokaryotic adaptive immune system10 that has been modified to enable robust and general genome engineering in a variety of organisms and cell lines.11 CRISPR-Cas (CRISPR associated) systems are protein-RNA complexes that use an RNA molecule (sgRNA) as a guide to localize the complex to a target DNA sequence via base-pairing.12 In the natural systems, a Cas protein then acts as an endonuclease to cleave the targeted DNA sequence.13 The target DNA sequence must be both complementary to the sgRNA, and also contain a “protospacer-adjacent motif” (PAM) dinucleotide at the 3′-end of the complementary region in order for the system to function (
The potential of the dCas9 complex for genome engineering purposes is immense. Its unique ability to bring proteins to specific sites in a genome programmed by the sgRNA in theory can be developed into a variety of site-specific genome engineering tools beyond nucleases, including transcriptional activators, transcriptional repressors, histone-modifying proteins, integrases, and recombinases.11 Some of these potential applications have recently been implemented through dCas9 fusions with transcriptional activators to afford RNA-guided transcriptional activators,17,18 transcriptional repressors,16,19,20 and chromatin modification enzymes.21 Simple co-expression of these fusions with a variety of sgRNAs results in specific expression of the target genes. These seminal studies have paved the way for the design and construction of readily programmable sequence-specific effectors for the precise manipulation of genomes.
Significantly, 80-90% of protein mutations responsible for human disease arise from the substitution, deletion, or insertion of only a single nucleotide.6 No genome engineering tools, however, have yet been developed that enable the manipulation of a single nucleotide in a general and direct manner. Current strategies for single-base gene correction include engineered nucleases (which rely on the creation of double-strand breaks, DSBs, followed by stochastic, inefficient homology-directed repair, HDR), and DNA-RNA chimeric oligonucleotides.22 The latter strategy involves the design of a RNA/DNA sequence to base pair with a specific sequence in genomic DNA except at the nucleotide to be edited. The resulting mismatch is recognized by the cell's endogenous repair system and fixed, leading to a change in the sequence of either the chimera or the genome. Both of these strategies suffer from low gene editing efficiencies and unwanted gene alterations, as they are subject to both the stochasticity of HDR and the competition between HDR and non-homologous end-joining, NHEJ.23-25 HDR efficiencies vary according to the location of the target gene within the genome,26 the state of the cell cycle,27 and the type of cell/tissue.28 The development of a direct, programmable way to install a specific type of base modification at a precise location in genomic DNA with enzyme-like efficiency and no stochasticity would therefore represent a powerful new approach to gene editing-based research tools and human therapeutics.
Some aspects of this disclosure provide strategies, systems, reagents, methods, and kits that are useful for the targeted editing of nucleic acids, including editing a single site within a subject's genome, e.g., the human genome. In some embodiments, fusion proteins of Cas9 and nucleic acid editing enzymes or enzyme domains, e.g., deaminase domains, are provided. In some embodiments, methods for targeted nucleic acid editing are provided. In some embodiments, reagents and kits for the generation of targeted nucleic acid editing proteins, e.g., fusion proteins of Cas9 and nucleic acid editing enzymes or domains, are provided.
Some aspects of this disclosure provide fusion proteins comprising (i) a nuclease-inactive CAS9 domain; and (ii) a nucleic acid-editing domain. In some embodiments, the nucleic acid-editing domain is a DNA-editing domain. In some embodiments, the nucleic-acid-editing domain is a deaminase domain. In some embodiments, the deaminase is a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC1 family deaminase. In some embodiments, the deaminase is an activation-induced cytidine deaminase (AID). In some embodiments, the deaminase is an ACF1/ASE deaminase. In some embodiments, the deaminase is an adenosine deaminase. In some embodiments, the deaminase is an ADAT family deaminase. In some embodiments, the nucleic-acid-editing domain is fused to the N-terminus of the CAS9 domain. In some embodiments, the nucleic-acid-editing domain is fused to the C-terminus of the CAS9 domain. In some embodiments, the CAS9 domain and the nucleic-acid-editing domain are fused via a linker. In some embodiments, the linker comprises a (GGGGS)n (SEQ ID NO: 91), a (G)n, an (EAAAK)n(SEQ ID NO: 5), a (GGS)n, an SGSETPGTSESATPES (SEQ ID NO: 93) motif (see, e.g., Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82; the entire contents are incorporated herein by reference), or an (XP)n motif, or a combination of any of these, wherein n is independently an integer between 1 and 30.
Some aspects of this disclosure provide methods for DNA editing. In some embodiments, the methods comprise contacting a DNA molecule with (a) a fusion protein comprising a nuclease-inactive Cas9 domain and a deaminase domain; and (b) an sgRNA targeting the fusion protein of (a) to a target nucleotide sequence of the DNA strand; wherein the DNA molecule is contacted with the fusion protein and the sgRNA in an amount effective and under conditions suitable for the deamination of a nucleotide base. In some embodiments, the target DNA sequence comprises a sequence associated with a disease or disorder, and wherein the deamination of the nucleotide base results in a sequence that is not associated with a disease or disorder. In some embodiments, the DNA sequence comprises a T>C or A>G point mutation associated with a disease or disorder, and wherein the deamination of the mutant C or G base results in a sequence that is not associated with a disease or disorder. In some embodiments, the deamination corrects a point mutation in the sequence associated with the disease or disorder. In some embodiments, the sequence associated with the disease or disorder encodes a protein, and wherein the deamination introduces a stop codon into the sequence associated with the disease or disorder, resulting in a truncation of the encoded protein. In some embodiments, the deamination corrects a point mutation in the PI3KCA gene, thus correcting an H1047R and/or a A3140G mutation. In some embodiments, the contacting is performed in vivo in a subject susceptible to having, having, or diagnosed with the disease or disorder. In some embodiments, the disease or disorder is a disease associated with a point mutation, or a single-base mutation, in the genome. In some embodiments, the disease is a genetic disease, a cancer, a metabolic disease, or a lysosomal storage disease.
Some aspects of this disclosure provide a reporter construct for detecting nucleic-acid-editing activity of a Cas9:DNA-editing domain fusion protein. In some embodiments, the construct comprises (a) a reporter gene comprising a target site for the Cas9 DNA-editing protein, wherein targeted DNA editing results in an increase in expression of the reporter gene; and (b) a promoter sequence that controls expression of the reporter gene. In some embodiments, the construct further comprises (c) a sequence encoding an sgRNA targeting the Cas9 DNA-editing protein to the target site of the reporter gene, wherein expression of the sgRNA is independent of the expression of the reporter gene. In some embodiments, the target site of the reporter gene comprises a premature stop codon, and wherein targeted DNA editing of the template strand by the Cas9 DNA-editing protein results in a conversion of the premature stop codon to a codon encoding an amino acid residue. In some embodiments, the reporter gene encodes a luciferase, a fluorescent protein, or an antibiotic resistance marker.
Some aspects of this disclosure provide kits comprising a nucleic acid construct that comprises a sequence encoding a nuclease-inactive Cas9 sequence, a sequence comprising a cloning site positioned to allow cloning of a sequence encoding a nucleic acid-editing enzyme or enzyme domain in-frame with the Cas9-encoding sequence, and, optionally, a sequence encoding a linker positioned between the Cas9 encoding sequence and the cloning site. In addition, in some embodiments, the kit comprises suitable reagents, buffers, and/or instructions for in-frame cloning of a sequence encoding a nucleic acid-editing enzyme or enzyme domain into the nucleic acid construct to generate a Cas9 nucleic acid editing fusion protein. In some embodiments, the sequence comprising the cloning site is N-terminal of the Cas9 sequence. In some embodiments, the sequence comprising the cloning site is C-terminal of the Cas9 sequence. In some embodiments, the encoded linker comprises a (GGGGS)n (SEQ ID NO: 91), a (G)n, an (EAAAK)n(SEQ ID NO: 5), a (GGS)n, an SGSETPGTSESATPES (SEQ ID NO: 93) motif (see, e.g., Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82; the entire contents are incorporated herein by reference), or an (XP)n motif, or a combination of any of these, wherein n is independently an integer between 1 and 30.
Some aspects of this disclosure provide kits comprising a fusion protein comprising a nuclease-inactive Cas9 domain and a nucleic acid-editing enzyme or enzyme domain, and, optionally, a linker positioned between the Cas9 domain and the nucleic acid-editing enzyme or enzyme domain. In addition, in some embodiments, the kit comprises suitable reagents, buffers, and/or instructions for using the fusion protein, e.g., for in vitro or in vivo DNA or RNA editing. In some embodiments, the kit comprises instructions regarding the design and use of suitable sgRNAs for targeted editing of a nucleic acid sequence.
The summary above is meant to illustrate, in a non-limiting manner, some of the embodiments, advantages, features, and uses of the technology disclosed herein. Other embodiments, advantages, features, and uses of the technology disclosed herein will be apparent from the Detailed Description, the Drawings, the Examples, and the Claims.
As used herein and in the claims, the singular forms “a,” “an,” and “the” include the singular and the plural reference unless the context clearly indicates otherwise. Thus, for example, a reference to “an agent” includes a single agent and a plurality of such agents.
The term “Cas9” or “Cas9 nuclease” refers to an RNA-guided nuclease comprising a Cas9 protein, or a fragment thereof (e.g., a protein comprising an active or inactive DNA cleavage domain of Cas9, and/or the gRNA binding domain of Cas9). A Cas9 nuclease is also referred to sometimes as a casn1 nuclease or a CRISPR (clustered regularly interspaced short palindromic repeat)-associated nuclease. CRISPR is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain spacers, sequences complementary to antecedent mobile elements, and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA). In type II CRISPR systems correct processing of pre-crRNA requires a trans-encoded small RNA (tracrRNA), endogenous ribonuclease 3 (mc) and a Cas9 protein. The tracrRNA serves as a guide for ribonuclease 3-aided processing of pre-crRNA. Subsequently, Cas9/crRNA/tracrRNA endonucleolytically cleaves linear or circular dsDNA target complementary to the spacer. The target strand not complementary to crRNA is first cut endonucleolytically, then trimmed 3′-5′ exonucleolytically. In nature, DNA-binding and cleavage typically requires protein and both RNAs. However, single guide RNAs (“sgRNA”, or simply “gNRA”) can be engineered so as to incorporate aspects of both the crRNA and tracrRNA into a single RNA species. See, e.g., Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. Science 337:816-821(2012), the entire contents of which is hereby incorporated by reference. Cas9 recognizes a short motif in the CRISPR repeat sequences (the PAM or protospacer adjacent motif) to help distinguish self versus non-self. Cas9 nuclease sequences and structures are well known to those of skill in the art (see, e.g., “Complete genome sequence of an M1 strain of Streptococcus pyogenes.” Ferretti et al., J. J., McShan W. M., Ajdic D. J., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N., Kenton S., Lai H. S., Lin S. P., Qian Y., Jia H. G., Najar F. Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S. W., Roe B. A., McLaughlin R. E., Proc. Natl. Acad. Sci. U.S.A. 98:4658-4663(2001); “CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III.” Deltcheva E., Chylinski K., Sharma C. M., Gonzales K., Chao Y., Pirzada Z. A., Eckert M. R., Vogel J., Charpentier E., Nature 471:602-607(2011); and “A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.” Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. Science 337:816-821(2012), the entire contents of each of which are incorporated herein by reference). Cas9 orthologs have been described in various species, including, but not limited to, S. pyogenes and S. thermophilus. Additional suitable Cas9 nucleases and sequences will be apparent to those of skill in the art based on this disclosure, and such Cas9 nucleases and sequences include Cas9 sequences from the organisms and loci disclosed in Chylinski, Rhun, and Charpentier, “The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems” (2013) RNA Biology 10:5, 726-737; the entire contents of which are incorporated herein by reference. In some embodiments, a Cas9 nuclease has an inactive (e.g., an inactivated) DNA cleavage domain.
A nuclease-inactivated Cas9 protein may interchangeably be referred to as a “dCas9” protein (for nuclease-“dead” Cas9). Methods for generating a Cas9 protein (or a fragment thereof) having an inactive DNA cleavage domain are known (See, e.g., Jinek et al., Science. 337:816-821(2012); Qi et al., “Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression” (2013) Cell. 28; 152(5):1173-83, the entire contents of each of which are incorporated herein by reference). For example, the DNA cleavage domain of Cas9 is known to include two subdomains, the HNH nuclease subdomain and the RuvC1 subdomain. The HNH subdomain cleaves the strand complementary to the gRNA, whereas the RuvC1 subdomain cleaves the non-complementary strand. Mutations within these subdomains can silence the nuclease activity of Cas9. For example, the mutations D10A and H841A completely inactivate the nuclease activity of S. pyogenes Cas9 (Jinek et al., Science. 337:816-821(2012); Qi et al., Cell. 28; 152(5):1173-83 (2013). In some embodiments, proteins comprising fragments of Cas9 are provided. For example, in some embodiments, a protein comprises one of two Cas9 domains: (1) the gRNA binding domain of Cas9; or (2) the DNA cleavage domain of Cas9. In some embodiments, proteins comprising Cas9 or fragments thereof are referred to as “Cas9 variants.” A Cas9 variant shares homology to Cas9, or a fragment thereof. For example a Cas9 variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to wild type Cas9. In some embodiments, the Cas9 variant comprises a fragment of Cas9 (e.g., a gRNA binding domain or a DNA-cleavage domain), such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to the corresponding fragment of wild type Cas9. In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus pyogenes (NCBI Reference Sequence: NC_017053.1, SEQ ID NO:1 (nucleotide); SEQ ID NO:2 (amino acid)).
ALLFGSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFF
GILQTVKIVDELVKVMGHKPENIVIEMARENQTTQKGQKNSRERMKRIE
EGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLS
DYDVDHIVPQSFIKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYW
RQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVA
QILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNY
HHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIG
KATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRD
FATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDP
In some embodiments, wild type Cas9 corresponds to, or comprises SEQ ID NO:3 (nucleotide) and/or SEQ ID NO: 4 (amino acid):
ALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFF
GILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRI
EEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRL
SDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNY
WRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHV
AQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINN
YHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI
GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGR
DFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWD
In some embodiments, dCas9 corresponds to, or comprises in part or in whole, a Cas9 amino acid sequence having one or more mutations that inactivate the Cas9 nuclease activity. For example, in some embodiments, a dCas9 domain comprises D10A and/or H820A mutation.
dCas9 (D10A and H840A):
ALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFF
GILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRI
EEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRL
SDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNY
WRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHV
AQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINN
YHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEI
GKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGR
DFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWD
In other embodiments, dCas9 variants having mutations other than D10A and H820A are provided, which e.g., result in nuclease inactivated Cas9 (dCas9). Such mutations, by way of example, include other amino acid substitutions at D10 and H820, or other substitutions within the nuclease domains of Cas9 (e.g., substitutions in the HNH nuclease subdomain and/or the RuvC1 subdomain). In some embodiments, variants or homologues of dCas9 (e.g., variants of SEQ ID NO: 34) are provided which are at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% to SEQ ID NO: 34. In some embodiments, variants of dCas9 (e.g., variants of SEQ ID NO: 34) are provided having amino acid sequences which are shorter, or longer than SEQ ID NO: 34, by about 5 amino acids, by about 10 amino acids, by about 15 amino acids, by about 20 amino acids, by about 25 amino acids, by about 30 amino acids, by about 40 amino acids, by about 50 amino acids, by about 75 amino acids, by about 100 amino acids or more.
In some embodiments, Cas9 fusion proteins as provided herein comprise the full-length amino acid of a Cas9 protein, e.g., one of the sequences provided above. In other embodiments, however, fusion proteins as provided herein do not comprise a full-length Cas9 sequence, but only a fragment thereof. For example, in some embodiments, a Cas9 fusion protein provided herein comprises a Cas9 fragment, wherein the fragment binds crRNA and tracrRNA or sgRNA, but does not comprise a functional nuclease domain, e.g., in that it comprises only a truncated version of a nuclease domain or no nuclease domain at all. Exemplary amino acid sequences of suitable Cas9 domains and Cas9 fragments are provided herein, and additional suitable sequences of Cas9 domains and fragments will be apparent to those of skill in the art.
In some embodiments, Cas9 refers to Cas9 from: Corynebacterium ulcerans (NCBI Refs: NC_015683.1, NC_017317.1); Corynebacterium diphtheria (NCBI Refs: NC_016782.1, NC_016786.1); Spiroplasma syrphidicola (NCBI Ref: NC_021284.1); Prevotella intermedia (NCBI Ref: NC_017861.1); Spiroplasma taiwanense (NCBI Ref: NC_021846.1); Streptococcus iniae (NCBI Ref: NC_021314.1); Belliella baltica (NCBI Ref: NC_018010.1); Psychroflexus torquisI (NCBI Ref: NC_018721.1); Streptococcus thermophilus (NCBI Ref: YP_820832.1); Listeria innocua (NCBI Ref: NP_472073.1); Campylobacter jejuni (NCBI Ref: YP_002344900.1); or Neisseria. meningitidis (NCBI Ref: YP_002342100.1).
The term “deaminase” refers to an enzyme that catalyzes a deamination reaction. In some embodiments, the deaminase is a cytidine deaminase, catalyzing the hydrolytic deamination of cytidine or deoxycytidine to uracil or deoxyuracil, respectively.
The term “effective amount,” as used herein, refers to an amount of a biologically active agent that is sufficient to elicit a desired biological response. For example, in some embodiments, an effective amount of a nuclease may refer to the amount of the nuclease that is sufficient to induce cleavage of a target site specifically bound and cleaved by the nuclease. In some embodiments, an effective amount of a fusion protein provided herein, e.g., of a fusion protein comprising a nuclease-inactive Cas9 domain and a nucleic acid-editing domain (e.g., a deaminase domain) may refer to the amount of the fusion protein that is sufficient to induce editing of a target site specifically bound and edited by the fusion protein. As will be appreciated by the skilled artisan, the effective amount of an agent, e.g., a fusion protein, a nuclease, a deaminase, a recombinase, a hybrid protein, a protein dimer, a complex of a protein (or protein dimer) and a polynucleotide, or a polynucleotide, may vary depending on various factors as, for example, on the desired biological response, e.g., on the specific allele, genome, or target site to be edited, on the cell or tissue being targeted, and on the agent being used.
The term “linker,” as used herein, refers to a chemical group or a molecule linking two molecules or moieties, e.g., two domains of a fusion protein, such as, for example, a nuclease-inactive Cas9 domain and a nucleic acid-editing domain (e.g., a deaminase domain). In some embodiments, a linker joins a gRNA binding domain of an RNA-programmable nuclease, including a Cas9 nuclease domain, and the catalytic domain of a nucleic-acid editing protein. In some embodiments, a linker joins a dCas9 and a nucleic-acid editing protein. Typically, the linker is positioned between, or flanked by, two groups, molecules, or other moieties and connected to each one via a covalent bond, thus connecting the two. In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is an organic molecule, group, polymer, or chemical moiety. In some embodiments, the linker is 5-100 amino acids in length, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30-35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-150, or 150-200 amino acids in length. Longer or shorter linkers are also contemplated.
The term “mutation,” as used herein, refers to a substitution of a residue within a sequence, e.g., a nucleic acid or amino acid sequence, with another residue, or a deletion or insertion of one or more residues within a sequence. Mutations are typically described herein by identifying the original residue followed by the position of the residue within the sequence and by the identity of the newly substituted residue. Various methods for making the amino acid substitutions (mutations) provided herein are well known in the art, and are provided by, for example, Green and Sambrook, Molecular Cloning: A Laboratory Manual (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)).
The terms “nucleic acid” and “nucleic acid molecule,” as used herein, refer to a compound comprising a nucleobase and an acidic moiety, e.g., a nucleoside, a nucleotide, or a polymer of nucleotides. Typically, polymeric nucleic acids, e.g., nucleic acid molecules comprising three or more nucleotides are linear molecules, in which adjacent nucleotides are linked to each other via a phosphodiester linkage. In some embodiments, “nucleic acid” refers to individual nucleic acid residues (e.g. nucleotides and/or nucleosides). In some embodiments, “nucleic acid” refers to an oligonucleotide chain comprising three or more individual nucleotide residues. As used herein, the terms “oligonucleotide” and “polynucleotide” can be used interchangeably to refer to a polymer of nucleotides (e.g., a string of at least three nucleotides). In some embodiments, “nucleic acid” encompasses RNA as well as single and/or double-stranded DNA. Nucleic acids may be naturally occurring, for example, in the context of a genome, a transcript, an mRNA, tRNA, rRNA, siRNA, snRNA, a plasmid, cosmid, chromosome, chromatid, or other naturally occurring nucleic acid molecule. On the other hand, a nucleic acid molecule may be a non-naturally occurring molecule, e.g., a recombinant DNA or RNA, an artificial chromosome, an engineered genome, or fragment thereof, or a synthetic DNA, RNA, DNA/RNA hybrid, or including non-naturally occurring nucleotides or nucleosides. Furthermore, the terms “nucleic acid,” “DNA,” “RNA,” and/or similar terms include nucleic acid analogs, e.g., analogs having other than a phosphodiester backbone. Nucleic acids can be purified from natural sources, produced using recombinant expression systems and optionally purified, chemically synthesized, etc. Where appropriate, e.g., in the case of chemically synthesized molecules, nucleic acids can comprise nucleoside analogs such as analogs having chemically modified bases or sugars, and backbone modifications. A nucleic acid sequence is presented in the 5′ to 3′ direction unless otherwise indicated. In some embodiments, a nucleic acid is or comprises natural nucleosides (e.g. adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine); nucleoside analogs (e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, 2-aminoadenosine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7-deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, 0(6)-methylguanine, and 2-thiocytidine); chemically modified bases; biologically modified bases (e.g., methylated bases); intercalated bases; modified sugars (e.g., 2′-fluororibose, ribose, 2′-deoxyribose, arabinose, and hexose); and/or modified phosphate groups (e.g., phosphorothioates and 5′-N-phosphoramidite linkages).
The term “proliferative disease,” as used herein, refers to any disease in which cell or tissue homeostasis is disturbed in that a cell or cell population exhibits an abnormally elevated proliferation rate. Proliferative diseases include hyperproliferative diseases, such as pre-neoplastic hyperplastic conditions and neoplastic diseases. Neoplastic diseases are characterized by an abnormal proliferation of cells and include both benign and malignant neoplasias. Malignant neoplasia is also referred to as cancer.
The terms “protein,” “peptide,” and “polypeptide” are used interchangeably herein, and refer to a polymer of amino acid residues linked together by peptide (amide) bonds. The terms refer to a protein, peptide, or polypeptide of any size, structure, or function. Typically, a protein, peptide, or polypeptide will be at least three amino acids long. A protein, peptide, or polypeptide may refer to an individual protein or a collection of proteins. One or more of the amino acids in a protein, peptide, or polypeptide may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a hydroxyl group, a phosphate group, a farnesyl group, an isofarnesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc. A protein, peptide, or polypeptide may also be a single molecule or may be a multi-molecular complex. A protein, peptide, or polypeptide may be just a fragment of a naturally occurring protein or peptide. A protein, peptide, or polypeptide may be naturally occurring, recombinant, or synthetic, or any combination thereof. The term “fusion protein” as used herein refers to a hybrid polypeptide which comprises protein domains from at least two different proteins. One protein may be located at the amino-terminal (N-terminal) portion of the fusion protein or at the carboxy-terminal (C-terminal) protein thus forming an “amino-terminal fusion protein” or a “carboxy-terminal fusion protein,” respectively. A protein may comprise different domains, for example, a nucleic acid binding domain (e.g., the gRNA binding domain of Cas9 that directs the binding of the protein to a target site) and a nucleic acid cleavage domain or a catalytic domain of a nucleic-acid editing protein. In some embodiments, a protein comprises a proteinaceous part, e.g., an amino acid sequence constituting a nucleic acid binding domain, and an organic compound, e.g., a compound that can act as a nucleic acid cleavage agent. In some embodiments, a protein is in a complex with, or is in association with, a nucleic acid, e.g., RNA. Any of the proteins provided herein may be produced by any method known in the art. For example, the proteins provided herein may be produced via recombinant protein expression and purification, which is especially suited for fusion proteins comprising a peptide linker. Methods for recombinant protein expression and purification are well known, and include those described by Green and Sambrook, Molecular Cloning: A Laboratory Manual (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)), the entire contents of which are incorporated herein by reference.
The term “RNA-programmable nuclease,” and “RNA-guided nuclease” are used interchangeably herein and refer to a nuclease that forms a complex with (e.g., binds or associates with) one or more RNA that is not a target for cleavage. In some embodiments, an RNA-programmable nuclease, when in a complex with an RNA, may be referred to as a nuclease:RNA complex. Typically, the bound RNA(s) is referred to as a guide RNA (gRNA). gRNAs can exist as a complex of two or more RNAs, or as a single RNA molecule. gRNAs that exist as a single RNA molecule may be referred to as single-guide RNAs (sgRNAs), though “gRNA” is used interchangeably to refer to guide RNAs that exist as either single molecules or as a complex of two or more molecules. Typically, gRNAs that exist as single RNA species comprise two domains: (1) a domain that shares homology to a target nucleic acid (e.g., and directs binding of a Cas9 complex to the target); and (2) a domain that binds a Cas9 protein. In some embodiments, domain (2) corresponds to a sequence known as a tracrRNA, and comprises a stem-loop structure. For example, in some embodiments, domain (2) is homologous to a tracrRNA as depicted in
Because RNA-programmable nucleases (e.g., Cas9) use RNA:DNA hybridization to target DNA cleavage sites, these proteins are able to be targeted, in principle, to any sequence specified by the guide RNA. Methods of using RNA-programmable nucleases, such as Cas9, for site-specific cleavage (e.g., to modify a genome) are known in the art (see e.g., Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013); Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013); Hwang, W. Y. et al. Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature biotechnology 31, 227-229 (2013); Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013); Dicarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic acids research (2013); Jiang, W. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature biotechnology 31, 233-239 (2013); the entire contents of each of which are incorporated herein by reference).
The term “subject,” as used herein, refers to an individual organism, for example, an individual mammal. In some embodiments, the subject is a human. In some embodiments, the subject is a non-human mammal. In some embodiments, the subject is a non-human primate. In some embodiments, the subject is a rodent. In some embodiments, the subject is a sheep, a goat, a cattle, a cat, or a dog. In some embodiments, the subject is a vertebrate, an amphibian, a reptile, a fish, an insect, a fly, or a nematode. In some embodiments, the subject is a research animal. In some embodiments, the subject is genetically engineered, e.g., a genetically engineered non-human subject. The subject may be of either sex and at any stage of development.
The term “target site” refers to a sequence within a nucleic acid molecule that is deaminated by a deaminase or a fusion protein comprising a deaminase, (e.g., a dCas9-deaminase fusion protein provided herein).
The terms “treatment,” “treat,” and “treating,” refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein. As used herein, the terms “treatment,” “treat,” and “treating” refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein. In some embodiments, treatment may be administered after one or more symptoms have developed and/or after a disease has been diagnosed. In other embodiments, treatment may be administered in the absence of symptoms, e.g., to prevent or delay onset of a symptom or inhibit onset or progression of a disease. For example, treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors). Treatment may also be continued after symptoms have resolved, for example, to prevent or delay their recurrence.
Some aspects of this disclosure provide fusion proteins that comprise a Cas9 domain that binds to a guide RNA (also referred to as gRNA or sgRNA), which, in turn, binds a target nucleic acid sequence via strand hybridization; and a DNA-editing domain, for example, a deaminase domain that can deaminate a nucleobase, such as, for example, cytidine. The deamination of a nucleobase by a deaminase can lead to a point mutation at the respective residue, which is referred to herein as nucleic acid editing. Fusion proteins comprising a Cas9 variant or domain and a DNA editing domain can thus be used for the targeted editing of nucleic acid sequences. Such fusion proteins are useful for targeted editing of DNA in vitro, e.g., for the generation of mutant cells or animals; for the introduction of targeted mutations, e.g., for the correction of genetic defects in cells ex vivo, e.g., in cells obtained from a subject that are subsequently re-introduced into the same or another subject; and for the introduction of targeted mutations, e.g., the correction of genetic defects or the introduction of deactivating mutations in disease-associated genes in a subject. Typically, the Cas9 domain of the fusion proteins described herein does not have any nuclease activity but instead is a Cas9 fragment or a dCas9 protein or domain. Methods for the use of Cas9 fusion proteins as described herein are also provided.
Non-limiting, exemplary nuclease-inactive Cas9 domains are provided herein. One exemplary suitable nuclease-inactive Cas9 domain is the D10A/H840A Cas9 domain mutant:
MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRR KNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKAD LRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENL IAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAI LLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKF IKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELT KVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKI IKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQS GKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKV MGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVD QELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNL TKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKV REINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKD WDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPK YSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISE FSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQ SITGLYETRIDLSQLGGD (SEQ ID NO: 37; see, e.g., Qi et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013; 152(5):1173-83, the entire contents of which are incorporated herein by reference).
Additional suitable nuclease-inactive Cas9 domains will be apparent to those of skill in the art based on this disclosure. Such additional exemplary suitable nuclease-inactive Cas9 domains include, but are not limited to, D10A, D10A/D839A/H840A, and D10A/D839A/H840A/N863A mutant domains (See, e.g., Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology. 2013; 31(9): 833-838, the entire contents of which are incorporated herein by reference).
Fusion Proteins Between Cas9 and Nucleic Acid Editing Enzymes or Domains
Some aspects of this disclosure provide fusion proteins comprising (i) a nuclease-inactive Cas9 enzyme or domain; and (ii) a nucleic acid-editing enzyme or domain. In some embodiments, the nucleic acid-editing enzyme or domain is a DNA-editing enzyme or domain. In some embodiments, the nucleic acid-editing enzyme possesses deaminase activity. In some embodiments, the nucleic acid-editing enzyme or domain comprises or is a deaminase domain. In some embodiments, the deaminase is a cytidine deaminase. In some embodiments, the deaminase is an apolipoprotein B mRNA-editing complex (APOBEC) family deaminase. In some embodiments, the deaminase is an APOBEC1 family deaminase. In some embodiments, the deaminase is an activation-induced cytidine deaminase (AID). In some embodiments, the deaminase is an ACF1/ASE deaminase. In some embodiments, the deaminase is an adenosine deaminase. In some embodiments, the deaminase is an ADAT family deaminase. Some nucleic-acid editing enzymes and domains as well as Cas9 fusion proteins including such enzymes or domains are described in detail herein. Additional suitable nucleic acid-editing enzymes or domains will be apparent to the skilled artisan based on this disclosure.
The instant disclosure provides Cas9:nucleic acid-editing enzyme/domain fusion proteins of various configurations. In some embodiments, the nucleic acid-editing enzyme or domain is fused to the N-terminus of the Cas9 domain. In some embodiments, the nucleic acid-editing enzyme or domain is fused to the C-terminus of the Cas9 domain. In some embodiments, the Cas9 domain and the nucleic acid-editing-editing enzyme or domain are fused via a linker. In some embodiments, the linker comprises a (GGGGS)n(SEQ ID NO: 91), a (G)n, an (EAAAK)n(SEQ ID NO: 5), a (GGS)n, an SGSETPGTSESATPES (SEQ ID NO: 93) motif (see, e.g., Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82; the entire contents are incorporated herein by reference), or an (XP)n motif, or a combination of any of these, wherein n is independently an integer between 1 and 30. In some embodiments, n is independently 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30, or, if more than one linker or more than one linker motif is present, any combination thereof. Additional suitable linker motifs and linker configurations will be apparent to those of skill in the art. In some embodiments, suitable linker motifs and configurations include those described in Chen et al., Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013; 65(10):1357-69, the entire contents of which are incorporated herein by reference. Additional suitable linker sequences will be apparent to those of skill in the art based on the instant disclosure.
In some embodiments, the general architecture of exemplary Cas9 fusion proteins provided herein comprises the structure:
Additional features may be present, for example, one or more linker sequences between the NLS and the rest of the fusion protein and/or between the nucleic acid-editing enzyme or domain and the Cas9. Other exemplary features that may be present are localization sequences, such as nuclear localization sequences, cytoplasmic localization sequences, export sequences, such as nuclear export sequences, or other localization sequences, as well as sequence tags that are useful for solubilization, purification, or detection of the fusion proteins. Suitable localization signal sequences and sequences of protein tags are provided herein, and include, but are not limited to, biotin carboxylase carrier protein (BCCP) tags, myc-tags, calmodulin-tags, FLAG-tags, hemagglutinin (HA)-tags, polyhistidine tags, also referred to as histidine tags or His-tags, maltose binding protein (MBP)-tags, nus-tags, glutathione-S-transferase (GST)-tags, green fluorescent protein (GFP)-tags, thioredoxin-tags, S-tags, Softags (e.g., Softag 1, Softag 3), strep-tags, biotin ligase tags, FlAsH tags, V5 tags, and SBP-tags. Additional suitable sequences will be apparent to those of skill in the art.
In some embodiments, the nucleic acid-editing enzyme or domain is a deaminase. For example, in some embodiments, the general architecture of exemplary Cas9 fusion proteins with a deaminase enzyme or domain comprises the structure:
One exemplary suitable type of nucleic acid-editing enzymes and domains are cytosine deaminases, for example, of the APOBEC family. The apolipoprotein B mRNA-editing complex (APOBEC) family of cytosine deaminase enzymes encompasses eleven proteins that serve to initiate mutagenesis in a controlled and beneficial manner.29 One family member, activation-induced cytidine deaminase (AID), is responsible for the maturation of antibodies by converting cytosines in ssDNA to uracils in a transcription-dependent, strand-biased fashion.30 The apolipoprotein B editing complex 3 (APOBEC3) enzyme provides protection to human cells against a certain HIV-1 strain via the deamination of cytosines in reverse-transcribed viral ssDNA.31 These proteins all require a Zn2+-coordinating motif (His-X-Glu-X23-26-Pro-Cys-X2-4-Cys) and bound water molecule for catalytic activity. The Glu residue acts to activate the water molecule to a zinc hydroxide for nucleophilic attack in the deamination reaction. Each family member preferentially deaminates at its own particular “hotspot”, ranging from WRC (W is A or T, R is A or G) for hAID, to TTC for hAPOBEC3F.32 A recent crystal structure of the catalytic domain of APOBEC3G (
Another exemplary suitable type of nucleic acid-editing enzymes and domains are adenosine deaminases. For example, an ADAT family adenosine deaminase can be fused to a Cas9 domain, e.g., a nuclease-inactive Cas9 domain, thus yielding a Cas9-ADAT fusion protein.
Some aspects of this disclosure provide a systematic series of fusions between Cas9 and deaminase enzymes, e.g., cytosine deaminase enzymes such as APOBEC enzymes, or adenosine deaminase enzymes such as ADAT enzymes, that has been generated in order to direct the enzymatic activities of these deaminases to a specific site in genomic DNA. The advantages of using Cas9 as the recognition agent are twofold: (1) the sequence specificity of Cas9 can be easily altered by simply changing the sgRNA sequence; and (2) Cas9 binds to its target sequence by denaturing the dsDNA, resulting in a stretch of DNA that is single-stranded and therefore a viable substrate for the deaminase. Successful fusion proteins have been generated with human and mouse deaminase domains, e.g., AID domains. A variety of other fusion proteins between the catalytic domains of human and mouse AID and Cas9 are also contemplated. It will be understood that other catalytic domains, or catalytic domains from other deaminases, can also be used to generate fusion proteins with Cas9, and that the disclosure is not limited in this regard.
In some embodiments, fusion proteins of Cas9 and AID are provided. In an effort to engineer Cas9 fusion proteins to increase mutation rates in ssDNA, both mouse and human AID were tethered to gene V of filamentous phage (a nonspecific ssDNA binding protein). The resulting fusion proteins exhibited enhanced mutagenic activities compared to the wild type enzymes in a cell-based assay. This work demonstrates that the enzymatic activity of these proteins is maintained in and can be successfully targeted to genetic sequences with fusion proteins.36
While several crystal structures of Cas9 (and even Cas9 in complex with its sgRNA and target DNA) have been reported, (see, e.g., Jinek M, Jiang F, Taylor D W, Sternberg S H, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone A T, Charpentier E, Nogales E, Doudna J A. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 2014; 343(6176):1247997. PMID: 24505130; and Nishimasu H, Ran F A, Hsu P D, Konermann S, Shehata S I, Dohmae N, Ishitani R, Zhang F, Nureki O. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. 2014; 156(5):935-49. PMID: 24529477, the entire contents of each of which are incorporated herein by reference), the portion of DNA that is single stranded in the Cas9-DNA complex is unknown (the size of the Cas9-DNA bubble). However, it has been shown in a dCas9 system with a sgRNA specifically designed for the complex to interfere with transcription that transcriptional interference only occurs when the sgRNA binds to the non-template strand. This result suggests that certain portions of the DNA in the DNA-Cas9 complex are unguarded by Cas9, and could potentially be targeted by a deaminase in the fusion protein (see Qi L S, Larson M H, Gilbert L A, Doudna J A, Weissman J S, Arkin A P, Lim W A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. 2013; 152(5):1173-83. PMID: 23452860, the entire contents of which are incorporated herein by reference). Further supporting this notion, footprinting experiments with exonuclease III and nuclease P1 (which only acts on ssDNA as a substrate) have revealed that at least 26 bases on the non-template strand are susceptible to digestion by these enzymes (see Jinek M, Jiang F, Taylor D W, Sternberg S H, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone A T, Charpentier E, Nogales E, Doudna J A. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. 2014; 343(6176):1247997. PMID: 24505130). It has also been reported that in certain cases, Cas9 induces single base-substitution mutations in this susceptible stretch of DNA at frequencies as high as 15% (see Tsai S Q, Wyvekens N, Khayter C, Foden J A, Thapar V, Reyon D, Goodwin M J, Aryee M J, Joung J K. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 2014; 32(6):569-76. PMID: 24770325, the entire contents of which are incorporated herein by reference). While the mechanism of introduction of these mutations is unknown, in all cases, the base that is mutated is a cytosine, which could possibly indicate the involvement of a cytosine deaminase enzyme. Taken together, these data are clearly consistent with a portion of the target DNA being single stranded and susceptible to other enzymes. It has been shown in a dCas9 system with a sgRNA specifically designed for the complex to interfere with transcription that transcriptional interference only occurs when the sgRNA binds to the non-template strand. This result suggests that certain portions of the DNA in the DNA-Cas9 complex are unguarded by Cas9, and could potentially be targeted by AID in the fusion protein.16 Accordingly, both N-terminal and C-terminal fusions of Cas9 with a deaminase domain are useful according to aspects of this disclosure.
In some embodiments, the deaminase domain and the Cas9 domain are fused to each other via a linker. Various linker lengths and flexibilities between the deaminase domain (e.g., AID) and the Cas9 domain can be employed (e.g., ranging from very flexible linkers of the form (GGGGS)n (SEQ ID NO: 91), (GGS)n, and (G)n to more rigid linkers of the form (EAAAK)n (SEQ ID NO: 5), SGSETPGTSESATPES (SEQ ID NO: 93) (see, e.g., Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82; the entire contents are incorporated herein by reference) and (XP)n)37 in order to achieve the optimal length for deaminase activity for the specific application.
Some exemplary suitable nucleic-acid editing enzymes and domains, e.g., deaminases and deaminase domains, that can be fused to Cas9 domains according to aspects of this disclosure are provided below. It will be understood that, in some embodiments, the active domain of the respective sequence can be used, e.g., the domain without a localizing signal (nuclear localizing signal, without nuclear export signal, cytoplasmic localizing signal).
MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYLRNKNGCHVELLFLRYISDWDLDPGRCYRVTWFT
MDSLLMKQKKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSCSLDFGHLRNKSGCHVELLFLRYISDWDLDPGRCYRVTWFT
MDSLLMKQRKFLYHFKNVRWAKGRHETYLCYVVKRRDSATSFSLDFGHLRNKSGCHVELLFLRYISDWDLDPGRCYRVTWFT
MDSLLKKQRQFLYQFKNVRWAKGRHETYLCYVVKRRDSPTSFSLDFGHLRNKAGCHVELLFLRYISDWDLDPGRCYRVTWFT
KVLKVLSPREEFKITWYMSWSPCFECAEQIVRFLATHHNLSLDIFSSRLYNVQDPETQQNLCRLVQEGAQVAAMDLYEFKKC
KVLKVLSPREEFKITWYMSWSPCFECAEQVLRFLATHHNLSLDIFSSRLYNIRDPENQQNLCRLVQEGAQVAAMDLYEFKKC
Rhesus macaque APOBEC-3G:
MVEPMDPRTFVSNFNNRPILSGLNTVWLCCEVKTKDPSGPPLDAKIFQGKVYSKAKYHPEM
RFLRWFHKWRQLHHDQEYKVT
WYVSWSPCTRCANSVATFLAKDPKVTLTIFVARLYYFWKPDYQQALRILCQKRGGPHATMKIMNYNEFQDCWNKFVDGRGKP
MKPHFRNPVERMYQDTFSDNFYNRPILSHRNTVWLCYEVKTKGPSRPPLDAKIFRGQVYSKLKYHPEMRFFHWFSKWRKLHR
DQEYEVIWYISWSPCTKCTRDVATFLAEDPKVTLTIFVARLYYFWDPDYQEALRSLCQKRDGPRATMKININYDEFQHCWSK
MNPQIRNMVEQMEPDIFVYYFNNRPILSGRNTVWLCYEVKTKDPSGPPLDANIFQGKLYPEAKDHPEMKFLHWFRKWRQLHR
DQEYEVTWYVSWSPCTRCANSVATFLAEDPKVTLTIFVARLYYFWKPDYQQALRILCQERGGPHATMKIMNYNEFQHCWNEF
MKPHFRNTVERMYRDTFSYNFYNRPILSRRNTVWLCYEVKTKGPSRPPLDAKIFRGQVYSELKYHPEMRFFHWFSKWRKLHR
DQEYEVTWYISWSPCTKCTRDMATFLAEDPKVTLTIFVARLYYFWDPDYQEALRSLCQKRDGPRATMKEVINYDEFQHCWSK
KCFQIIWFVSWTPCPDCVAKLAEFLAEHPNVTLTISAARLYYYWERDYRRALCRLSQAGARVKIMDDEEFAYCWENFVYSEG
KCFQITWFVSWIPCPDCVAKLAEFLSEHPNVTLTISAARLYYYWERDYRRALCRLSQAGARVTIMDYEEFAYCWENFVYNEG
TKYQVIWYTSWSPCPDCAGEVAEFLARHSNVNLTIFTARLYYFQYPCYQEGLRSLSQEGVAVEIMDYEDFKYCWENFVYNDN
QLDPAQIYRVTWFISWSPCFSWGCAGEVRAFLQENTHVRLRIFAARIYDYDPLYKEALQMLRDAGAQVSIMTYDEFKHCWDT
SPCSSCAWELVDFIKAHDHLNLGIFASRLYYHWCKPQQKGLRLLCGSQVPVEVMGFPKFADCWENFVDHEKPLSFNPYKMLE
LSWFCGNRLPANRRFQITWFVSWNPCLPCVVKVTKFLAEHPNVTLTISAARLYYYRDRDWRWVLLRLHKAGARVKIMDYEDF
LNDSHAEIIARRSFQRYLLHQLHLAAVLKEDSIFVPGTQRGLWRLRPDLSFVFFSSHTPCGDASIIPMLEFEEQPCCPVIRS
WANNSPVQETENLEDSKDKRNCEDPASPVAKKMRLGTPARSLSNCVAHHGTQESGPVKPDVSSSDLTKEEPDAANGIASGSF
RVVDVYRTGAKCVPGETGDLREPGAAYHQVGLLRVKPGRGDRTCSMSCSDKMARWNVLGCQGALLMHFLEKPIYLSAVVIGK
CPYSQEAMRRALTGRCEETLVLPRGFGVQELEIQQSGLLFEQSRCAVHRKRGDSPGRLVPCGAAISWSAVPQQPLDVTANGF
PQGTTKKEIGSPRARSRISKVELFRSFQKLLSSIADDEQPDSIRVTKKLDTYQEYKDAASAYQEAWGALRRIQPFASWIRNP
PDYHQFK
LNDSHAEVIARRSFQRYLLHQLQLAATLKEDSIFVPGTQKGVWKLRRDLIFVFFSSHTPCGDASIIPMLEFEDQPCCPVFRN
WAHNSSVEASSNLEAPGNERKCEDPDSPVTKKMRLEPGTAAREVTNGAAHHQSFGKQKSGPISPGIHSCDLTVEGLATVTRI
APGSAKVIDVYRTGAKCVPGEAGDSGKPGAAFHQVGLLRVKPGRGDRTRSMSCSDKMARWNVLGCQGALLMHLLEEPIYLSA
VVIGKCPYSQEAMQRALIGRCQNVSALPKGFGVQELKILQSDLLFEQSRSAVQAKRADSPGRLVPCGAAISWSAVPEQPLDV
TANGFPQGTTKKTIGSLQARSQISKVELFRSFQKLLSRIARDKWPHSLRVQKLDTYQEYKEAASSYQEAWSTLRKQVFGSWI
RNPPDYHQFK
In some embodiments, fusion proteins as provided herein comprise the full-length amino acid of a nucleic acid-editing enzyme, e.g., one of the sequences provided above. In other embodiments, however, fusion proteins as provided herein do not comprise a full-length sequence of a nucleic acid-editing enzyme, but only a fragment thereof. For example, in some embodiments, a fusion protein provided herein comprises a Cas9 domain and a fragment of a nucleic acid-editing enzyme, e.g., wherein the fragment comprises a nucleic acid-editing domain. Exemplary amino acid sequences of nucleic acid-editing domains are shown in the sequences above as italicized letters, and additional suitable sequences of such domains will be apparent to those of skill in the art.
Additional suitable nucleic-acid editing enzyme sequences, e.g., deaminase enzyme and domain sequences, that can be used according to aspects of this invention, e.g., that can be fused to a nuclease-inactive Cas9 domain, will be apparent to those of skill in the art based on this disclosure. In some embodiments, such additional enzyme sequences include deaminase enzyme or deaminase domain sequences that are at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% similar to the sequences provided herein. Additional suitable Cas9 domains, variants, and sequences will also be apparent to those of skill in the art. Examples of such additional suitable Cas9 domains include, but are not limited to, D10A, D10A/D839A/H840A, and D10A/D839A/H840A/N863A mutant domains (See, e.g., Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology. 2013; 31(9): 833-838 the entire contents of which are incorporated herein by reference).
Additional suitable strategies for generating fusion proteins comprising a Cas9 domain and a deaminase domain will be apparent to those of skill in the art based on this disclosure in combination with the general knowledge in the art. Suitable strategies for generating fusion proteins according to aspects of this disclosure using linkers or without the use of linkers will also be apparent to those of skill in the art in view of the instant disclosure and the knowledge in the art. For example, Gilbert et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013; 154(2):442-51, showed that C-terminal fusions of Cas9 with VP64 using 2 NLS's as a linker (SPKKKRKVEAS, SEQ ID NO: 29), can be employed for transcriptional activation. Mali et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. 2013; 31(9):833-8, reported that C-terminal fusions with VP64 without linker can be employed for transcriptional activation. And Maeder et al., CRISPR RNA-guided activation of endogenous human genes. Nat Methods. 2013; 10: 977-979, reported that C-terminal fusions with VP64 using a Gly4Ser (SEQ ID NO: 91) linker can be used as transcriptional activators. Recently, dCas9-FokI nuclease fusions have successfully been generated and exhibit improved enzymatic specificity as compared to the parental Cas9 enzyme (In Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82, and in Tsai S Q, Wyvekens N, Khayter C, Foden J A, Thapar V, Reyon D, Goodwin M J, Aryee M J, Joung J K. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. 2014; 32(6):569-76. PMID: 24770325 a SGSETPGTSESATPES (SEQ ID NO: 93) or a GGGGS (SEQ ID NO: 91) linker was used in FokI-dCas9 fusion proteins, respectively).
Use of Cas9 DNA Editing Fusion Proteins for Correcting Disease-Associated Mutations
Some embodiments provide methods for using the Cas9 DNA editing fusion proteins provided herein. In some embodiments, the fusion protein is used to introduce a point mutation into a nucleic acid by deaminating a target nucleobase, e.g., a C residue. In some embodiments, the deamination of the target nucleobase results in the correction of a genetic defect, e.g., in the correction of a point mutation that leads to a loss of function in a gene product. In some embodiments, the genetic defect is associated with a disease or disorder, e.g., a lysosomal storage disorder or a metabolic disease, such as, for example, type I diabetes. In some embodiments, the methods provided herein are used to introduce a deactivating point mutation into a gene or allele that encodes a gene product that is associated with a disease or disorder. For example, in some embodiments, methods are provided herein that employ a Cas9 DNA editing fusion protein to introduce a deactivating point mutation into an oncogene (e.g., in the treatment of a proliferative disease). A deactivating mutation may, in some embodiments, generate a premature stop codon in a coding sequence, which results in the expression of a truncated gene product, e.g., a truncated protein lacking the function of the full-length protein.
In some embodiments, the purpose of the methods provide herein is to restore the function of a dysfunctional gene via genome editing. The Cas9 deaminase fusion proteins provided herein can be validated for gene editing-based human therapeutics in vitro, e.g., by correcting a disease-associated mutation in human cell culture. It will be understood by the skilled artisan that the fusion proteins provided herein, e.g., the fusion proteins comprising a Cas9 domain and a nucleic acid deaminase domain can be used to correct any single point T→C or A→G mutation. In the first case, deamination of the mutant C back to U corrects the mutation, and in the latter case, deamination of the C that is base-paired with the mutant G, followed by a round of replication, corrects the mutation.
An exemplary disease-relevant mutation that can be corrected by the provided fusion proteins in vitro or in vivo is the H1047R (A3140G) polymorphism in the PI3KCA protein. The phosphoinositide-3-kinase, catalytic alpha subunit (PI3KCA) protein acts to phosphorylate the 3-OH group of the inositol ring of phosphatidylinositol. The PI3KCA gene has been found to be mutated in many different carcinomas, and thus it is considered to be a potent oncogene.50 In fact, the A3140G mutation is present in several NCI-60 cancer cell lines, such as, for example, the HCT116, SKOV3, and T47D cell lines, which are readily available from the American Type Culture Collection (ATCC).51
In some embodiments, a cell carrying a mutation to be corrected, e.g., a cell carrying a point mutation, e.g., an A3140G point mutation in exon 20 of the PI3KCA gene, resulting in a H1047R substitution in the PI3KCA protein, is contacted with an expression construct encoding a Cas9 deaminase fusion protein and an appropriately designed sgRNA targeting the fusion protein to the respective mutation site in the encoding PI3KCA gene. Control experiments can be performed where the sgRNAs are designed to target the fusion enzymes to non-C residues that are within the PI3KCA gene. Genomic DNA of the treated cells can be extracted, and the relevant sequence of the PI3KCA genes PCR amplified and sequenced to assess the activities of the fusion proteins in human cell culture.
It will be understood that the example of correcting point mutations in PI3KCA is provided for illustration purposes and is not meant to limit the instant disclosure. The skilled artisan will understand that the instantly disclosed DNA-editing fusion proteins can be used to correct other point mutations and mutations associated with other cancers and with diseases other than cancer including other proliferative diseases.
The successful correction of point mutations in disease-associated genes and alleles opens up new strategies for gene correction with applications in therapeutics and basic research. Site-specific single-base modification systems like the disclosed fusions of Cas9 and deaminase enzymes or domains also have applications in “reverse” gene therapy, where certain gene functions are purposely suppressed or abolished. In these cases, site-specifically mutating Trp (TGG), Gln (CAA and CAG), or Arg (CGA) residues to premature stop codons (TAA, TAG, TGA) can be used to abolish protein function in vitro, ex vivo, or in vivo.
The instant disclosure provides methods for the treatment of a subject diagnosed with a disease associated with or caused by a point mutation that can be corrected by a Cas9 DNA editing fusion protein provided herein. For example, in some embodiments, a method is provided that comprises administering to a subject having such a disease, e.g., a cancer associated with a PI3KCA point mutation as described above, an effective amount of a Cas9 deaminase fusion protein that corrects the point mutation or introduces a deactivating mutation into the disease-associated gene. In some embodiments, the disease is a proliferative disease. In some embodiments, the disease is a genetic disease. In some embodiments, the disease is a neoplastic disease. In some embodiments, the disease is a metabolic disease. In some embodiments, the disease is a lysosomal storage disease. Other diseases that can be treated by correcting a point mutation or introducing a deactivating mutation into a disease-associated gene will be known to those of skill in the art, and the disclosure is not limited in this respect.
The instant disclosure provides methods for the treatment of additional diseases or disorders, e.g., diseases or disorders that are associated or caused by a point mutation that can be corrected by deaminase-mediated gene editing. Some such diseases are described herein, and additional suitable diseases that can be treated with the strategies and fusion proteins provided herein will be apparent to those of skill in the art based on the instant disclosure. Exemplary suitable diseases and disorders are listed below. It will be understood that the numbering of the specific positions or residues in the respective sequences depends on the particular protein and numbering scheme used. Numbering might be different, e.g., in precursors of a mature protein and the mature protein itself, and differences in sequences from species to species may affect numbering. One of skill in the art will be able to identify the respective residue in any homologous protein and in the respective encoding nucleic acid by methods well known in the art, e.g., by sequence alignment and determination of homologous residues. Exemplary suitable diseases and disorders include, without limitation, cystic fibrosis (see, e.g., Schwank et al., Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell stem cell. 2013; 13: 653-658; and Wu et. al., Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell stem cell. 2013; 13: 659-662, neither of which uses a deaminase fusion protein to correct the genetic defect); phenylketonuria—e.g., phenylalanine to serine mutation at position 835 (mouse) or 240 (human) or a homologous residue in phenylalanine hydroxylase gene (T>C mutation)—see, e.g., McDonald et al., Genomics. 1997; 39:402-405; Bernard-Soulier syndrome (BSS)—e.g., phenylalanine to serine mutation at position 55 or a homologous residue, or cysteine to arginine at residue 24 or a homologous residue in the platelet membrane glycoprotein IX (T>C mutation)—see, e.g., Noris et al., British Journal of Haematology. 1997; 97: 312-320, and Ali et al., Hematol. 2014; 93: 381-384; epidermolytic hyperkeratosis (EHK)—e.g., leucine to proline mutation at position 160 or 161 (if counting the initiator methionine) or a homologous residue in keratin 1 (T>C mutation)—see, e.g., Chipev et al., Cell. 1992; 70: 821-828, see also accession number P04264 in the UNIPROT database at www[dot]uniprot[dot]org; chronic obstructive pulmonary disease (COPD)—e.g., leucine to proline mutation at position 54 or 55 (if counting the initiator methionine) or a homologous residue in the processed form of α1-antitrypsin or residue 78 in the unprocessed form or a homologous residue (T>C mutation)—see, e.g., Poller et al., Genomics. 1993; 17: 740-743, see also accession number P01011 in the UNIPROT database; Charcot-Marie-Toot disease type 4J—e.g., isoleucine to threonine mutation at position 41 or a homologous residue in
It will be apparent to those of skill in the art that in order to target a Cas9:nucleic acid-editing enzyme/domain fusion protein as disclosed herein to a target site, e.g., a site comprising a point mutation to be edited, it is typically necessary to co-express the Cas9:nucleic acid-editing enzyme/domain fusion protein together with a guide RNA, e.g., an sgRNA. As explained in more detail elsewhere herein, a guide RNA typically comprises a tracrRNA framework allowing for Cas9 binding, and a guide sequence, which confers sequence specificity to the Cas9:nucleic acid-editing enzyme/domain fusion protein. In some embodiments, the guide RNA comprises a structure 5′-[guide sequence]-guuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuu uuu-3′ (SEQ ID NO: 38), wherein the guide sequence comprises a sequence that is complementary to the target sequence. The guide sequence is typically 20 nucleotides long. The sequences of suitable guide RNAs for targeting Cas9:nucleic acid-editing enzyme/domain fusion proteins to specific genomic target sites will be apparent to those of skill in the art based on the instant disclosure. Such suitable guide RNA sequences typically comprise guide sequences that are complementary to a nucleic sequence within 50 nucleotides upstream or downstream of the target nucleotide to be edited. Some exemplary guide RNA sequences suitable for targeting Cas9:nucleic acid-editing enzyme/domain fusion proteins to specific target sequences are provided below.
H1047R (A3140G) polymorphism in the phosphoinositide-3-kinase catalytic alpha subunit (PI3KCA or PIK3CA) (the position of the mutated nucleotide and the respective codon are underlined):
Exemplary suitable guide sequences for targeting a Cas9:nucleic acid-editing enzyme/domain fusion proteins to the mutant A3140G residue include, without limitation: 5′-aucggaauctauuuugacuc-3′ (SEQ ID NO: 41); 5′-ucggaaucuauuuugacucg-3′ (SEQ ID NO: 42); 5′-cuuagauaaaacugagcaag-3′ (SEQ ID NO: 43); 5′-aucuauuuugacucguucuc-3′ (SEQ ID NO: 44); 5′-uaaaacugagcaagaggcuu-3′ (SEQ ID NO: 45); 5′-ugguggcuggacaacaaaaa-3′ (SEQ ID NO: 46); 5′-gcuggacaacaaaaauggau-3′ (SEQ ID NO: 47); 5′-guguuaauuugucguacgua-3′ (SEQ ID NO: 48). Additional suitable guide sequences for targeting a Cas9:nucleic acid-editing enzyme/domain fusion protein to a mutant PI3KCA sequence, to any of the additional sequences provided below, or to additional mutant sequences associated with a disease will be apparent to those of skill in the art based on the instant disclosure.
Phenylketonuria phenylalanine to serine mutation at residue 240 in phenylalanine hydroxylase gene (T>C mutation) (the position of the mutated nucleotide and the respective codon are underlined):
Bernard-Soulier syndrome (BSS)—cysteine to arginine at residue 24 in the platelet membrane glycoprotein IX (T>C mutation):
Epidermolytic hyperkeratosis (EHK)—leucine to proline mutation at residue 161 in keratin 1 (T>C mutation):
Chronic obstructive pulmonary disease (COPD)—leucine to proline mutation at residue 54 in α1-antitrypsin (T>C mutation):
Chronic obstructive pulmonary disease (COPD)—leucine to proline mutation at residue 78 in α1-antichymotrypsin (T>C mutation):
Neuroblastoma (NB)—leucine to proline mutation at residue 197 in Caspase-9 (T>C mutation):
Charcot-Marie-Tooth disease type 4J—isoleucine to threonine mutation at residue 41 in
von Willebrand disease (vWD)—cysteine to arginine mutation at residue 1272 in von Willebrand factor (T>C mutation):
Myotonia congenital—cysteine to arginine mutation at position 277 in the muscle chloride channel gene CLCN1 (T>C mutation):
Hereditary renal amyloidosis—stop codon to arginine mutation at residue 111 in apolipoprotein AII (T>C mutation):
Dilated cardiomyopathy (DCM)—tryptophan to Arginine mutation at position 148 in the FOXD4 gene (T>C mutation):
Hereditary lymphedema—histidine to arginine mutation at residue 1035 in VEGFR3 tyrosine kinase (A>G mutation):
Familial Alzheimer's disease—isoleucine to valine mutation at residue 143 in presenilin1 (A>G mutation):
Prion disease—methionine to valine mutation at residue 129 in prion protein (A>G mutation):
Chronic infantile neurologic cutaneous articular syndrome (CINCA)—Tyrosine to Cysteine mutation at residue 570 in cryopyrin (A>G mutation):
Desmin-related myopathy (DRM)—arginine to glycine mutation at residue 120 in αB crystallin (A>G mutation):
Beta-thalassemia—one example is leucine to proline mutation at residue 115 in Hemoglobin B.
It is to be understood that the sequences provided above are exemplary and not meant to be limiting the scope of the instant disclosure. Additional suitable sequences of point mutations that are associated with disease and amenable to correction by Cas9:nucleic acid-editing enzyme/domain fusion proteins as well as suitable guide RNA sequences will be apparent to those of skill in the art based on this disclosure.
Reporter Systems
Some aspects of this disclosure provide a reporter system that can be used for detecting deaminase activity of the fusion proteins described herein. In some embodiments, the reporter system is a luciferase-based assay in which deaminase activity leads to expression of luciferase. To minimize the impact of potential substrate promiscuity of the deaminase domain (e.g., the AID domain), the number of residues that could unintentionally be targeted for deamination (e.g., off-target C residues that could potentially reside on ssDNA within the reporter system) is minimized. In some embodiments, an intended target residue is be located in an ACG mutated start codon of the luciferase gene that is unable to initiate translation. Desired deaminase activity results in a ACG>AUG modification, thus enabling translation of luciferase and detection and quantification of the deaminase activity.
In some embodiments, in order to minimize single-stranded C residues, a leader sequence is inserted between the mutated start codon and the beginning of the luciferase gene which consists of a stretch of Lys (AAA), Asn (AAT), Leu (TTA), Ile (ATT, ATA), Tyr (TAT), or Phe (TTT) residues. The resulting mutants can be tested to ensure that the leader sequence does not adversely affect luciferase expression or activity. Background luciferase activity with the mutated start codon can be determined as well.
The reporter system can be used to test many different sgRNAs, e.g., in order to determine which residue(s) with respect to the target DNA sequence the respective deaminase (e.g., AID enzyme) will target (
Once fusion proteins that are capable of programmable site-specific C to U modifications have been identified, their activities can be further characterized. The data from the luciferase assays can, for example, be integrated into heat maps that describe which nucleotides, with respect to the sgRNA target DNA, are being targeted for deamination by a specific fusion protein. In some embodiments, the position that results in the highest activity in the luciferase assay for each fusion is considered the “target” position, while all others are considered off-target positions.
In some embodiments, Cas9 fusions with various APOBEC3 enzymes, or deaminase domains thereof, are provided. In some embodiments, Cas9 fusion proteins with other nucleic acid editing enzymes or catalytic domains are provided, including, for example, ssRNA editing enzymes, such as the cytidine deaminases APOBEC1 and ACF1/ASF, as well as the ADAT family of adenosine deaminases,38 that can be used for ssDNA editing activity when fused to Cas9. The activity of such fusion proteins can be tested using the same reporter systems and assays described above.
In some embodiments, a reporter system is provided herein that includes a reporter gene comprising a deactivated start codon, e.g., a mutation on the template strand from 3′-TAC-5′ to 3′-CAC-5′. Upon successful deamination of the target C, the corresponding mRNA will be transcribed as 5′-AUG-3′ instead of 5′-GUG-3′, enabling the translation of the reporter gene. Suitable reporter genes will be apparent to those of skill in the art.
The description of exemplary embodiments of the reporter systems above is provided for illustration purposes only and not meant to be limiting. Additional reporter systems, e.g., variations of the exemplary systems described in detail above, are also embraced by this disclosure.
Exemplary Cas9:deaminase fusion proteins are provided below:
MDSLLMNRRKFLYQFKNVRWAKGRRETYLCDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFK
MDSLLMNRRKFLYQFKNVRWAKGRRETYLCYVVKRRDSATSFSLDFGYLRNKNGCHVELLFL
SGGGGSGGGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALL
MDSLLMNRRKFLYQFKNVRWAKGRRETYLCDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFK
SPKKKRKVEASMELKYHPEMRFFHWFSKWRKLHRDQEYEVTWYISWSPCTKCTRDMATFLAE
SPKKKRKVEASMTSEKGPSTGDPTLRRRIEPWEFDVFYDPRELRKEACLLYEIKWGMSRKIW
PKKKRKVEASSPKKKRKVEASDKKYSIGLAIGINSVGWAVITDEYKVPSKKFKVLGNTDRHS
MDSLLMNRRKFLYQFKNVRWAKGRRETYLC
SMGTGTKCIGQSKMRKNGDILNDSHAEVIARR
SFORYLLHOLQLAATLKEDSIFVPGTQKGVWKLRRDLIFVFFSSHTPCGDASIIPMLEFEDQ
PCCPVFRNWAHNSSVEASSNLEAPGNERKCEDPDSPVTKKMRLEPGTAAREVTNGAAHHQSF
GKQKSGPISPGIHSCDLTVEGLATVTRIAPGSAKVIDVYRTGAKCVPGEAGDSGKPGAAFHQ
VGLLRVKPGRGDRTRSMSCSDKMARWNVLGCQGALLMHLLEEPIYLSAVVIGKCPYSQEAMQ
RALIGRCQNVSALPKGFGVQELKILQSDLLFEQSRSAVQAKRADSPGRLVPCGAAISWSAVP
EQPLDVTANGFPQGTTKKTIGSLQARSQISKVELFRSFQKLLSRIARDKWPHSLRVQKLDTY
QEYKEAASSYQEAWSTLRKQVFGSWIRNPPDYHQF
GGGGSGGGGSGGGGSDKKYSIGLAIGT
MDSLLMNRRKFLYQFKNVRWAKGRRETYLCDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFK
ILNDSHAEVIARRSFORYLLHOLQLAATLKEDSIFVPGTQKGVWKLRRDLIFVFFSSHTPCG
DASIIPMLEFEDQPCCPVFRNWAHNSSVEASSNLEAPGNERKCEDPDSPVTKKMRLEPGTAA
REVTNGAAHHQSFGKQKSGPISPGIHSCDLTVEGLATVTRIAPGSAKVIDVYRTGAKCVPGE
AGDSGKPGAAFHQVGLLRVKPGRGDRTRSMSCSDKMARWNVLGCQGALLMHLLEEPIYLSAV
VIGKCPYSQEAMQRALIGRCQNVSALPKGFGVQELKILQSDLLFEQSRSAVQAKRADSPGRL
VPCGAAISWSAVPEQPLDVTANGFPQGTTKKTIGSLQARSQISKVELFRSFQKLLSRIARDK
WPHSLRVQKLDTYQEYKEAASSYQEAWSTLRKQVFGSWIRNPPDYHQF
An A3140G point mutation in exon 20 of the PI3KCA gene, resulting in an H1047R amino acid substitution in the PI3K protein is corrected by contacting a nucleic acid encoding the mutant protein with a Cas9:AID (SEQ ID NO: 30) or a Cas9:APOBEC1 (SEQ ID NO: 92) fusion protein and an appropriately designed sgRNA targeting the fusion protein to the mutation site in the encoding PI3KCA gene. The A3140G point mutation is confirmed via genomic PCR of the respective exon 20 sequence, e.g., generation of a PCR amplicon of nucleotides 3000-3250, and subsequent sequencing of the PCT amplicon.
Cells expressing a mutant PI3K protein comprising an A3140G point mutation in exon 20 are contacted with an expression construct encoding the Cas9:AID (SEQ ID NO: 30) or a Cas9:APOBEC1 (SEQ ID NO: 92) fusion protein and an appropriately designed sgRNA targeting the fusion protein to the mutation site in the antisense strand of the encoding PI3KCA gene. The sgRNA is of the sequence 5′-aucggaauctauuuugacucguuuuagagcuagaaaua gcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu 3′ (SEQ ID NO: 81); 5′-ucggaaucuauuuugacucgguuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaa guggcaccgagucggugcuuuuu-3′ (SEQ ID NO: 82); 5′-cuuagauaaaacugagcaagguuuuagagcuagaa auagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu-3′ (SEQ ID NO: 83); 5′-aucuauuuugacucguucucguuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuug aaaaaguggcaccgagucggugcuuuuu-3′ (SEQ ID NO: 84); 5′-uaaaacugagcaagaggcuuguuuuagagcua gaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu-3′ (SEQ ID NO: 85); 5′-ugguggcuggacaacaaaaaguuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaa cuugaaaaaguggcaccgagucggugcuuuuu-3′ (SEQ ID NO: 86); 5′-gcuggacaacaaaaauggauguuuua gagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu-3′ (SEQ ID NO: 87); or 5′-guguuaauuugucguacguaguuuuagagcuagaaauagcaaguuaaaauaaaggcua guccguuaucaacuugaaaaaguggcaccgagucggugcuuuuu (SEQ ID NO: 88).
The cytosine deaminase activity of the Cas9:AID or the Cas9:APOBEC1 fusion protein results in deamination of the cytosine that is base-paired with the mutant G3140 to uridine. After one round of replication, the wild type A3140 is restored. Genomic DNA of the treated cells is extracted and a PCR amplicon of nucleotides 3000-3250 is amplified with suitable PCR primers. The correction of the A3140G point mutation after treatment of the cells with the fusion protein is confirmed by sequencing the PCR amplicon.
An A→G point mutation in codon 143 of the presenilin1 (PSEN1) gene, resulting in an I143V amino acid substitution in the PSEN1 protein is corrected by contacting a nucleic acid encoding the mutant PSEN1 protein with a Cas9:AID (SEQ ID NO: 30) or a Cas9:APOBEC1 (SEQ ID NO: 92) fusion protein and an appropriately designed sgRNA targeting the fusion protein to the mutation site in the encoding PSEN1 gene. See, e.g., Gallo et. al., J. Alzheimer's disease. 2011; 25: 425-431 for a description of an exemplary PSEN1 I143V mutation associated with familial Alzheimer's Disease. The A→G point mutation is confirmed via genomic PCR of the respective PSEN1 sequence, e.g., generation of a PCR amplicon of about 100-250 nucleotides around exon 143, and subsequent sequencing of the PCT amplicon.
Cells expressing the mutant PSEN1 protein are contacted with an expression construct encoding the Cas9:AID (SEQ ID NO: 30) or a Cas9:APOBEC1 (SEQ ID NO: 92) fusion protein and an appropriately designed sgRNA targeting the fusion protein to the mutation site in the antisense strand of the encoding PSEN1 gene. The cytosine deaminase activity of the Cas9:AID or the Cas9:APOBEC1 fusion protein results in deamination of the cytosine that is base-paired with the mutant G in codon 143 to uridine. After one round of replication, the wild type A is restored. Genomic DNA of the treated cells is extracted and a PCR amplicon of 100-250 nucleotides is amplified with suitable PCR primers. The correction of the A→G point mutation after treatment of the cells with the fusion protein is confirmed by sequencing the PCR amplicon.
A T→C point mutation in codon 55 of the α1-antitrypsin gene, resulting in an L55P amino acid substitution in the α1-antitrypsin protein is corrected by contacting a nucleic acid encoding the mutant α1-antitrypsin protein with a Cas9:ADAT1 fusion protein (SEQ ID NO: 35 or 36) and an appropriately designed sgRNA targeting the fusion protein to the mutation site in the encoding α1-antitrypsin gene. See, e.g., Poller et al., Genomics. 1993; 17: 740-743 for a more detailed description of an exemplary codon 55 T→C mutation associated with chronic obstructive pulmonary disease (COPD). The T→C point mutation is confirmed via genomic PCR of the respective α1-antitrypsin sequence encoding codon 55, e.g., generation of a PCR amplicon of about 100-250 nucleotides, and subsequent sequencing of the PCT amplicon.
Cells expressing the mutant α1-antitrypsin protein are contacted with an expression construct encoding the Cas9:AID (SEQ ID NO: 30) or a Cas9:APOBEC1 (SEQ ID NO: 92) fusion protein and an appropriately designed sgRNA targeting the fusion protein to the mutated nucleotide in codon 55 on the sense strand in the encoding α1-antitrypsin gene. The cytosine deaminase activity of the Cas9:ADAT1 fusion protein results in deamination of the mutant cytosine to uridine thus correcting the mutation. Genomic DNA of the treated cells is extracted and a PCR amplicon of 100-250 nucleotides is amplified with suitable PCR primers. The correction of the T→C point mutation in codon 55 of the α1-antitrypsin gene after treatment of the cells with the fusion protein is confirmed by sequencing the PCR amplicon
A T→C point mutation in codon 509 of the von Willebrand factor gene, resulting in a C509A amino acid substitution in the von Willebrand factor protein is corrected by contacting a nucleic acid encoding the mutant von Willebrand factor protein with a Cas9:ADAT1 fusion protein (SEQ ID NO: 35 or 36) and an appropriately designed sgRNA targeting the fusion protein to the mutation site in the sense strand of the encoding von Willebrand factor gene. See, e.g., Lavergne et al., Br. J. Haematol. 1992; 82: 66-7, for a description of an exemplary von Willebrand factor C509A mutation associated with von Willebrand disease (vWD). The T→C point mutation is confirmed via genomic PCR of the respective von Willebrand factor genomic sequence, e.g., generation of a PCR amplicon of about 100-250 nucleotides around exon 509, and subsequent sequencing of the PCT amplicon.
Cells expressing the mutant von Willebrand factor protein are contacted with an expression construct encoding the Cas9:ADAT1 fusion protein (SEQ ID NO: 35 or 36) and an appropriately designed sgRNA targeting the fusion protein to the mutation site in the sense strand of the encoding von Willebrand factor gene. The cytosine deaminase activity of the Cas9:ADAT1 fusion protein results in deamination of the mutant cytosine in codon 509 to uridine, thus correcting the mutation. Genomic DNA of the treated cells is extracted and a PCR amplicon of 100-250 nucleotides is amplified with suitable PCR primers. The correction of the T→C point mutation in codon 509 of the von Willebrand factor gene after treatment of the cells with the fusion protein is confirmed by sequencing the PCR amplicon.
A T→C point mutation in codon 197 of the Caspase-9 gene, resulting in an L197P amino acid substitution in the Caspase-9 protein is corrected by contacting a nucleic acid encoding the mutant Caspase-9 protein with a Cas9:ADAT1 fusion protein (SEQ ID NO: 35 or 36) and an appropriately designed sgRNA targeting the fusion protein to the mutation site in the sense strand of the encoding Caspase-9 gene. See, e.g., Lenk et al., PLoS Genetics. 2011; 7: e1002104, for a description of an exemplary Caspase-9 L197P mutation associated with neuroblastoma (NB). The T→C point mutation is confirmed via genomic PCR of the respective Caspase-9 genomic sequence, e.g., generation of a PCR amplicon of about 100-250 nucleotides around exon 197, and subsequent sequencing of the PCT amplicon.
Cells expressing the mutant Caspase-9 protein are contacted with an expression construct encoding the Cas9:ADAT1 fusion protein (SEQ ID NO: 35 or 36) and an appropriately designed sgRNA targeting the fusion protein to the mutation site in the sense strand of the encoding Caspase-9 gene. The cytosine deaminase activity of the Cas9:ADAT1 fusion protein results in deamination of the mutant cytosine in codon 197 to uridine, thus correcting the mutation. Genomic DNA of the treated cells is extracted and a PCR amplicon of 100-250 nucleotides is amplified with suitable PCR primers. The correction of the T→C point mutation in codon 197 of the Caspase-9 gene after treatment of the cells with the fusion protein is confirmed by sequencing the PCR amplicon.
Two dCas9-APOBEC1 fusion proteins with different linkers were generated:
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHV
EVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHAD
PRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCII
LGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKGGSMDKKYSIGLAIGTNSV
GWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNR
ICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRK
KLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPIN
ASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKL
QLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYD
EHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEE
LLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPY
YVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHS
LLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIEC
FDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERL
KTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH
DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIV
IEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDM
YVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWR
QLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDEN
DKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEF
VYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETG
EIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYG
GFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDL
IIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQ
LFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNL
GAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD;
MSSETGPVAVDPTLRRRIEPHEFEVFFDPRELRKETCLLYEINWGGRHSIWRHTSQNTNKHV
EVNFIEKFTTERYFCPNTRCSITWFLSWSPCGECSRAITEFLSRYPHVTLFIYIARLYHHAD
PRNRQGLRDLISSGVTIQIMTEQESGYCWRNFVNYSPSNEAHWPRYPHLWVRLYVLELYCII
LGLPPCLNILRRKQPQLTFFTIALQSCHYQRLPPHILWATGLKGGSGGSGGSMDKKYSIGLA
IGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRY
TRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPT
IYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLF
EENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL
AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSAS
MIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEK
MDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKIL
TFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEK
VLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDY
FKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDRE
MIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN
FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRH
KPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYL
QNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKK
MKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMN
TKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYP
KLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIE
TNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDW
DPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYK
EVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPE
DNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHL
FTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD;
Deaminase activity of both fusion proteins were examined. A deaminase assay was adapted from Nuc. Acids Res. 2014, 42, p. 1095; J. Biol. Chem. 2004, 279, p 53379; J. Virology 2014, 88, p. 3850; and J. Virology 2006, 80, p. 5992, the entire contents of each of which are incorporated by reference.
Expression constructs encoding the fusion proteins were inserted into a CMV backbone plasmid (Addgene plasmid 52970; see Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82). The fusion proteins were expressed using a TNT Quick Coupled Transcription/Translation System (Promega). After 90 min, 5 μL of lysate was incubated with 5′-labeled ssDNA substrate (Cy3-ATTATTATTATTCCGCGGATTTATT TATTTATTTATTTATTT, SEQ ID NO: 96) and UDG (Uracil DNA Glycosylase) at 37° C. for 3 hr. A 1M solution of NaOH (10 μL) was then added to cleave the DNA at the abasic site. See
All publications, patents, patent applications, publication, and database entries (e.g., sequence database entries) mentioned herein, e.g., in the Background, Summary, Detailed Description, Examples, and/or References sections, are hereby incorporated by reference in their entirety as if each individual publication, patent, patent application, publication, and database entry was specifically and individually incorporated herein by reference. In case of conflict, the present application, including any definitions herein, will control.
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents of the embodiments described herein. The scope of the present disclosure is not intended to be limited to the above description, but rather is as set forth in the appended claims.
Articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between two or more members of a group are considered satisfied if one, more than one, or all of the group members are present, unless indicated to the contrary or otherwise evident from the context. The disclosure of a group that includes “or” between two or more group members provides embodiments in which exactly one member of the group is present, embodiments in which more than one members of the group are present, and embodiments in which all of the group members are present. For purposes of brevity those embodiments have not been individually spelled out herein, but it will be understood that each of these embodiments is provided herein and may be specifically claimed or disclaimed.
It is to be understood that the invention encompasses all variations, combinations, and permutations in which one or more limitation, element, clause, or descriptive term, from one or more of the claims or from one or more relevant portion of the description, is introduced into another claim. For example, a claim that is dependent on another claim can be modified to include one or more of the limitations found in any other claim that is dependent on the same base claim. Furthermore, where the claims recite a composition, it is to be understood that methods of making or using the composition according to any of the methods of making or using disclosed herein or according to methods known in the art, if any, are included, unless otherwise indicated or unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency would arise.
Where elements are presented as lists, e.g., in Markush group format, it is to be understood that every possible subgroup of the elements is also disclosed, and that any element or subgroup of elements can be removed from the group. It is also noted that the term “comprising” is intended to be open and permits the inclusion of additional elements or steps. It should be understood that, in general, where an embodiment, product, or method is referred to as comprising particular elements, features, or steps, embodiments, products, or methods that consist, or consist essentially of, such elements, features, or steps, are provided as well. For purposes of brevity those embodiments have not been individually spelled out herein, but it will be understood that each of these embodiments is provided herein and may be specifically claimed or disclaimed.
Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and/or the understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value within the stated ranges in some embodiments, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise. For purposes of brevity, the values in each range have not been individually spelled out herein, but it will be understood that each of these values is provided herein and may be specifically claimed or disclaimed. It is also to be understood that unless otherwise indicated or otherwise evident from the context and/or the understanding of one of ordinary skill in the art, values expressed as ranges can assume any subrange within the given range, wherein the endpoints of the subrange are expressed to the same degree of accuracy as the tenth of the unit of the lower limit of the range.
In addition, it is to be understood that any particular embodiment of the present invention may be explicitly excluded from any one or more of the claims. Where ranges are given, any value within the range may explicitly be excluded from any one or more of the claims. Any embodiment, element, feature, application, or aspect of the compositions and/or methods of the invention, can be excluded from any one or more claims. For purposes of brevity, all of the embodiments in which one or more elements, features, purposes, or aspects is excluded are not set forth explicitly herein.
This application is a continuation of and claims priority under 35 U.S.C. § 120 to U.S. patent application U.S. Ser. No. 16/374,634, filed Apr. 3, 2019, which is a continuation of and claims priority under 35 U.S.C. § 120 to U.S. Ser. No. 15/103,608, filed Jun. 10, 2016, which is a national stage filing under 35 U.S.C. § 371 of international PCT application, PCT/US2014/070038, filed Dec. 12, 2014, which claims priority under 35 U.S.C. § 119 (e) to U.S. provisional patent application, U.S. Ser. No. 61/915,386, filed Dec. 12, 2013, and U.S. provisional patent application, U.S. Ser. No. 61/980,333 filed Apr. 16, 2014; and also is a continuation of and claims priority under 35 U.S.C. § 120 to U.S. patent applications, U.S. Ser. Nos. 14/325,815, 14/326,109, 14/326,140, 14/326,269, 14/326,290, 14/326,318, and 14/326,303, all filed on Jul. 8, 2014, all of which claim priority under 35 U.S.C. § 119 (e) to U.S. provisional patent application, U.S. Ser. No. 61/915,386, filed Dec. 12, 2013, and U.S. provisional patent application, U.S. Ser. No. 61/980,333 filed Apr. 16, 2014; each of which is incorporated herein by reference. U.S. Ser. No. 15/103,608 is also a continuation of and claims priority under 35 U.S.C. § 120 to U.S. patent applications, U.S. Ser. Nos. 14/325,815, 14/326,109, 14/326,140, 14/326,269, 14/326,290, 14/326,318, and 14/326,303, all filed on Jul. 8, 2014, each of which is incorporated herein by reference.
This invention was made with government support under GM095501 awarded by National Institutes of Health (NIH) and under HR0011-11-2-0003and N66001-12-C-4207 awarded by U.S. Department of Defense/Defense Advanced Research Projects Agency (DOD/DARPA). The government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
4182449 | Kozlow | Jan 1980 | A |
4235871 | Papahadjopoulos et al. | Nov 1980 | A |
4501728 | Geho et al. | Feb 1985 | A |
4737323 | Martin et al. | Apr 1988 | A |
4837028 | Allen | Jun 1989 | A |
4880635 | Janoff et al. | Nov 1989 | A |
4906477 | Kurono et al. | Mar 1990 | A |
4911928 | Wallach | Mar 1990 | A |
4917951 | Wallach | Apr 1990 | A |
4920016 | Allen et al. | Apr 1990 | A |
4921757 | Wheatley et al. | May 1990 | A |
5017492 | Kotewicz et al. | May 1991 | A |
5139941 | Muzyczka et al. | Aug 1992 | A |
5244797 | Kotewicz et al. | Sep 1993 | A |
5405776 | Kotewicz et al. | Apr 1995 | A |
5449639 | Wei et al. | Sep 1995 | A |
5580737 | Polisky et al. | Dec 1996 | A |
5652094 | Usman et al. | Jul 1997 | A |
5668005 | Kotewicz et al. | Sep 1997 | A |
5767099 | Harris et al. | Jun 1998 | A |
5780053 | Ashley et al. | Jul 1998 | A |
5830430 | Unger et al. | Nov 1998 | A |
5835699 | Kimura | Nov 1998 | A |
5849548 | Haseloff et al. | Dec 1998 | A |
5851548 | Dattagupta et al. | Dec 1998 | A |
5855910 | Ashley et al. | Jan 1999 | A |
5856463 | Blankenborg et al. | Jan 1999 | A |
5962313 | Podsakoff et al. | Oct 1999 | A |
5981182 | Jacobs, Jr. et al. | Nov 1999 | A |
6015794 | Haseloff et al. | Jan 2000 | A |
6057153 | George et al. | May 2000 | A |
6063608 | Kotewicz et al. | May 2000 | A |
6077705 | Duan et al. | Jun 2000 | A |
6355415 | Wagner et al. | Mar 2002 | B1 |
6453242 | Eisenberg et al. | Sep 2002 | B1 |
6503717 | Case et al. | Jan 2003 | B2 |
6534261 | Cox, III et al. | Mar 2003 | B1 |
6589768 | Kotewicz et al. | Jul 2003 | B1 |
6599692 | Case et al. | Jul 2003 | B1 |
6607882 | Cox, III et al. | Aug 2003 | B1 |
6610522 | Kotewicz et al. | Aug 2003 | B1 |
6689558 | Case | Feb 2004 | B2 |
6716973 | Baskerville et al. | Apr 2004 | B2 |
6824978 | Cox, III et al. | Nov 2004 | B1 |
6933113 | Case et al. | Aug 2005 | B2 |
6979539 | Cox, III et al. | Dec 2005 | B2 |
7013219 | Case et al. | Mar 2006 | B2 |
7067650 | Tanaka | Jun 2006 | B1 |
7078208 | Smith et al. | Jul 2006 | B2 |
7163824 | Cox, III et al. | Jan 2007 | B2 |
7479573 | Chu et al. | Jan 2009 | B2 |
7595179 | Chen et al. | Sep 2009 | B2 |
7670807 | Lampson et al. | Mar 2010 | B2 |
7794931 | Breaker et al. | Sep 2010 | B2 |
7919277 | Russell et al. | Apr 2011 | B2 |
7993672 | Huang et al. | Aug 2011 | B2 |
8067556 | Hogrefe et al. | Nov 2011 | B2 |
8097648 | Littlefield et al. | Jan 2012 | B2 |
8361725 | Russell et al. | Jan 2013 | B2 |
8394604 | Liu et al. | Mar 2013 | B2 |
8492082 | De Franciscis et al. | Jul 2013 | B2 |
8546553 | Terns et al. | Oct 2013 | B2 |
8569256 | Heyes et al. | Oct 2013 | B2 |
8680069 | de Fougerolles et al. | Mar 2014 | B2 |
8691750 | Constien et al. | Apr 2014 | B2 |
8697359 | Zhang | Apr 2014 | B1 |
8709466 | Coady et al. | Apr 2014 | B2 |
8728526 | Heller | May 2014 | B2 |
8748667 | Budzik et al. | Jun 2014 | B2 |
8758810 | Okada et al. | Jun 2014 | B2 |
8759103 | Kim et al. | Jun 2014 | B2 |
8759104 | Unciti-Broceta et al. | Jun 2014 | B2 |
8771728 | Huang et al. | Jul 2014 | B2 |
8790664 | Pitard et al. | Jul 2014 | B2 |
8795965 | Zhang | Aug 2014 | B2 |
8835148 | Janulaitis et al. | Sep 2014 | B2 |
8846578 | McCray et al. | Sep 2014 | B2 |
8871445 | Cong et al. | Oct 2014 | B2 |
8900814 | Yasukawa et al. | Dec 2014 | B2 |
8945839 | Zhang | Feb 2015 | B2 |
8993233 | Zhang et al. | Mar 2015 | B2 |
8999641 | Zhang et al. | Apr 2015 | B2 |
9023649 | Mali et al. | May 2015 | B2 |
9068179 | Liu et al. | Jun 2015 | B1 |
9163284 | Liu et al. | Oct 2015 | B2 |
9228207 | Liu et al. | Jan 2016 | B2 |
9234213 | Wu | Jan 2016 | B2 |
9322006 | Liu et al. | Apr 2016 | B2 |
9322037 | Liu et al. | Apr 2016 | B2 |
9340799 | Liu et al. | May 2016 | B2 |
9340800 | Liu et al. | May 2016 | B2 |
9359599 | Liu et al. | Jun 2016 | B2 |
9388430 | Liu et al. | Jul 2016 | B2 |
9512446 | Joung et al. | Dec 2016 | B1 |
9526724 | Oshlack et al. | Dec 2016 | B2 |
9526784 | Liu et al. | Dec 2016 | B2 |
9534210 | Park et al. | Jan 2017 | B2 |
9580698 | Xu et al. | Feb 2017 | B1 |
9637739 | Siksnys et al. | May 2017 | B2 |
9737604 | Liu et al. | Aug 2017 | B2 |
9738693 | Telford et al. | Aug 2017 | B2 |
9783791 | Hogrefe et al. | Oct 2017 | B2 |
9816093 | Donohoue et al. | Nov 2017 | B1 |
9822372 | Zhang et al. | Nov 2017 | B2 |
9840538 | Telford et al. | Dec 2017 | B2 |
9840690 | Karli et al. | Dec 2017 | B2 |
9840699 | Liu et al. | Dec 2017 | B2 |
9840702 | Collingwood et al. | Dec 2017 | B2 |
9840713 | Zhang | Dec 2017 | B2 |
9850521 | Braman et al. | Dec 2017 | B2 |
9873907 | Zeiner et al. | Jan 2018 | B2 |
9879270 | Hittinger et al. | Jan 2018 | B2 |
9938288 | Kishi et al. | Apr 2018 | B1 |
9944933 | Storici et al. | Apr 2018 | B2 |
9982279 | Gill et al. | May 2018 | B1 |
9999671 | Liu et al. | Jun 2018 | B2 |
10059940 | Zhong | Aug 2018 | B2 |
10077453 | Liu et al. | Sep 2018 | B2 |
10113163 | Liu et al. | Oct 2018 | B2 |
10167457 | Liu et al. | Jan 2019 | B2 |
10227581 | Liu et al. | Mar 2019 | B2 |
10323236 | Liu et al. | Jun 2019 | B2 |
10358670 | Janulaitis et al. | Jul 2019 | B2 |
10407697 | Doudna et al. | Sep 2019 | B2 |
10465176 | Liu et al. | Nov 2019 | B2 |
10508298 | Liu et al. | Dec 2019 | B2 |
10597679 | Liu et al. | Mar 2020 | B2 |
10682410 | Liu et al. | Jun 2020 | B2 |
10704062 | Liu et al. | Jul 2020 | B2 |
10745677 | Maianti et al. | Aug 2020 | B2 |
10858639 | Liu et al. | Dec 2020 | B2 |
10912833 | Liu et al. | Feb 2021 | B2 |
10930367 | Zhang et al. | Feb 2021 | B2 |
10947530 | Liu et al. | Mar 2021 | B2 |
10954548 | Liu et al. | Mar 2021 | B2 |
11046948 | Liu et al. | Jun 2021 | B2 |
11124782 | Liu | Sep 2021 | B2 |
11268082 | Liu | Mar 2022 | B2 |
11319532 | Liu | May 2022 | B2 |
11542496 | Liu | Jan 2023 | B2 |
11643652 | Liu et al. | May 2023 | B2 |
11661590 | Liu et al. | May 2023 | B2 |
20030082575 | Schultz et al. | May 2003 | A1 |
20030096337 | Hillman et al. | May 2003 | A1 |
20030108885 | Schultz et al. | Jun 2003 | A1 |
20040003420 | Kuhn et al. | Jan 2004 | A1 |
20040115184 | Smith et al. | Jun 2004 | A1 |
20040203109 | Lal et al. | Oct 2004 | A1 |
20050136429 | Guarente et al. | Jun 2005 | A1 |
20050222030 | Allison | Oct 2005 | A1 |
20060088864 | Smolke et al. | Apr 2006 | A1 |
20060104984 | Littlefield et al. | May 2006 | A1 |
20060246568 | Honjo et al. | Nov 2006 | A1 |
20070015238 | Snyder et al. | Jan 2007 | A1 |
20070264692 | Liu et al. | Nov 2007 | A1 |
20070269817 | Shapero | Nov 2007 | A1 |
20080008697 | Mintier et al. | Jan 2008 | A1 |
20080051317 | Church et al. | Feb 2008 | A1 |
20080124725 | Barrangou et al. | May 2008 | A1 |
20080182254 | Hall et al. | Jul 2008 | A1 |
20080241917 | Akita et al. | Oct 2008 | A1 |
20080268516 | Perreault et al. | Oct 2008 | A1 |
20090111119 | Doyon et al. | Apr 2009 | A1 |
20090130718 | Short | May 2009 | A1 |
20090215878 | Tan et al. | Aug 2009 | A1 |
20090234109 | Han et al. | Sep 2009 | A1 |
20100076057 | Sontheimer et al. | Mar 2010 | A1 |
20100093617 | Barrangou et al. | Apr 2010 | A1 |
20100104690 | Barrangou et al. | Apr 2010 | A1 |
20100273857 | Thakker et al. | Oct 2010 | A1 |
20100305197 | Che | Dec 2010 | A1 |
20100316643 | Eckert et al. | Dec 2010 | A1 |
20110059160 | Essner et al. | Mar 2011 | A1 |
20110104787 | Church et al. | May 2011 | A1 |
20110189776 | Terns et al. | Aug 2011 | A1 |
20110217739 | Terns et al. | Sep 2011 | A1 |
20110301073 | Gregory et al. | Dec 2011 | A1 |
20120129759 | Liu et al. | May 2012 | A1 |
20120141523 | Castado et al. | Jun 2012 | A1 |
20120244601 | Bertozzi et al. | Sep 2012 | A1 |
20120270273 | Zhang et al. | Oct 2012 | A1 |
20120322861 | Byrne et al. | Dec 2012 | A1 |
20130022980 | Nelson et al. | Jan 2013 | A1 |
20130117869 | Duchateau et al. | May 2013 | A1 |
20130130248 | Haurwitz et al. | May 2013 | A1 |
20130158245 | Russell et al. | Jun 2013 | A1 |
20130165389 | Schellenberger et al. | Jun 2013 | A1 |
20130212725 | Kuhn et al. | Aug 2013 | A1 |
20130309720 | Schultz et al. | Nov 2013 | A1 |
20130344117 | Mirosevich et al. | Dec 2013 | A1 |
20140004280 | Loomis | Jan 2014 | A1 |
20140005269 | Ngwuluka et al. | Jan 2014 | A1 |
20140017214 | Cost | Jan 2014 | A1 |
20140018404 | Chen et al. | Jan 2014 | A1 |
20140044793 | Goll et al. | Feb 2014 | A1 |
20140065711 | Liu et al. | Mar 2014 | A1 |
20140068797 | Doudna et al. | Mar 2014 | A1 |
20140127752 | Zhou et al. | May 2014 | A1 |
20140141094 | Smyth et al. | May 2014 | A1 |
20140141487 | Feldman et al. | May 2014 | A1 |
20140179770 | Zhang et al. | Jun 2014 | A1 |
20140186843 | Zhang et al. | Jul 2014 | A1 |
20140186958 | Zhang et al. | Jul 2014 | A1 |
20140234289 | Liu et al. | Aug 2014 | A1 |
20140248702 | Zhang et al. | Sep 2014 | A1 |
20140273037 | Wu | Sep 2014 | A1 |
20140273226 | Wu | Sep 2014 | A1 |
20140273230 | Chen et al. | Sep 2014 | A1 |
20140283156 | Zador et al. | Sep 2014 | A1 |
20140295556 | Joung et al. | Oct 2014 | A1 |
20140295557 | Joung et al. | Oct 2014 | A1 |
20140342456 | Mali et al. | Nov 2014 | A1 |
20140342457 | Mali et al. | Nov 2014 | A1 |
20140342458 | Mali et al. | Nov 2014 | A1 |
20140349400 | Jakimo et al. | Nov 2014 | A1 |
20140356867 | Peter et al. | Dec 2014 | A1 |
20140356956 | Church et al. | Dec 2014 | A1 |
20140356958 | Mali et al. | Dec 2014 | A1 |
20140356959 | Church et al. | Dec 2014 | A1 |
20140357523 | Zeiner et al. | Dec 2014 | A1 |
20140377868 | Joung et al. | Dec 2014 | A1 |
20150010526 | Liu et al. | Jan 2015 | A1 |
20150031089 | Lindstrom | Jan 2015 | A1 |
20150031132 | Church et al. | Jan 2015 | A1 |
20150031133 | Church et al. | Jan 2015 | A1 |
20150044191 | Liu et al. | Feb 2015 | A1 |
20150044192 | Liu et al. | Feb 2015 | A1 |
20150044772 | Zhao | Feb 2015 | A1 |
20150050699 | Siksnys et al. | Feb 2015 | A1 |
20150056177 | Liu et al. | Feb 2015 | A1 |
20150056629 | Guthrie-Honea | Feb 2015 | A1 |
20150064138 | Lu et al. | Mar 2015 | A1 |
20150064789 | Paschon et al. | Mar 2015 | A1 |
20150071898 | Liu et al. | Mar 2015 | A1 |
20150071899 | Liu et al. | Mar 2015 | A1 |
20150071900 | Liu et al. | Mar 2015 | A1 |
20150071901 | Liu et al. | Mar 2015 | A1 |
20150071902 | Liu et al. | Mar 2015 | A1 |
20150071903 | Liu et al. | Mar 2015 | A1 |
20150071906 | Liu et al. | Mar 2015 | A1 |
20150079680 | Bradley et al. | Mar 2015 | A1 |
20150079681 | Zhang | Mar 2015 | A1 |
20150098954 | Hyde et al. | Apr 2015 | A1 |
20150118216 | Liu et al. | Apr 2015 | A1 |
20150128300 | Warming et al. | May 2015 | A1 |
20150132269 | Orkin et al. | May 2015 | A1 |
20150140664 | Byrne et al. | May 2015 | A1 |
20150159172 | Miller et al. | Jun 2015 | A1 |
20150165054 | Liu et al. | Jun 2015 | A1 |
20150166980 | Liu et al. | Jun 2015 | A1 |
20150166981 | Liu et al. | Jun 2015 | A1 |
20150166982 | Liu et al. | Jun 2015 | A1 |
20150166983 | Liu et al. | Jun 2015 | A1 |
20150166984 | Liu et al. | Jun 2015 | A1 |
20150166985 | Liu et al. | Jun 2015 | A1 |
20150191744 | Wolfe et al. | Jul 2015 | A1 |
20150197759 | Xu et al. | Jul 2015 | A1 |
20150211058 | Carstens | Jul 2015 | A1 |
20150218573 | Loque et al. | Aug 2015 | A1 |
20150225773 | Farmer et al. | Aug 2015 | A1 |
20150252358 | Maeder et al. | Sep 2015 | A1 |
20150291965 | Zhang et al. | Oct 2015 | A1 |
20150307889 | Petolino et al. | Oct 2015 | A1 |
20150315252 | Haugwitz et al. | Nov 2015 | A1 |
20160015682 | Cawthorne et al. | Jan 2016 | A2 |
20160017393 | Jacobson et al. | Jan 2016 | A1 |
20160017396 | Cann et al. | Jan 2016 | A1 |
20160032292 | Storici et al. | Feb 2016 | A1 |
20160032353 | Braman et al. | Feb 2016 | A1 |
20160040155 | Maizels et al. | Feb 2016 | A1 |
20160046952 | Hittinger et al. | Feb 2016 | A1 |
20160046961 | Jinek et al. | Feb 2016 | A1 |
20160046962 | May et al. | Feb 2016 | A1 |
20160053272 | Wurtzel et al. | Feb 2016 | A1 |
20160053304 | Wurtzel et al. | Feb 2016 | A1 |
20160074535 | Ranganathan et al. | Mar 2016 | A1 |
20160076093 | Shendure et al. | Mar 2016 | A1 |
20160090603 | Carnes et al. | Mar 2016 | A1 |
20160090622 | Liu et al. | Mar 2016 | A1 |
20160115488 | Zhang et al. | Apr 2016 | A1 |
20160138046 | Wu | May 2016 | A1 |
20160153003 | Joung et al. | Jun 2016 | A1 |
20160186214 | Brouns et al. | Jun 2016 | A1 |
20160200779 | Liu et al. | Jul 2016 | A1 |
20160201040 | Liu et al. | Jul 2016 | A1 |
20160201089 | Gersbach et al. | Jul 2016 | A1 |
20160206566 | Lu et al. | Jul 2016 | A1 |
20160208243 | Zhang et al. | Jul 2016 | A1 |
20160208288 | Liu et al. | Jul 2016 | A1 |
20160215275 | Zhong | Jul 2016 | A1 |
20160215276 | Liu et al. | Jul 2016 | A1 |
20160215300 | May et al. | Jul 2016 | A1 |
20160244784 | Jacobson et al. | Aug 2016 | A1 |
20160244829 | Bang et al. | Aug 2016 | A1 |
20160264934 | Giallourakis et al. | Sep 2016 | A1 |
20160272593 | Ritter et al. | Sep 2016 | A1 |
20160272965 | Zhang et al. | Sep 2016 | A1 |
20160281072 | Zhang | Sep 2016 | A1 |
20160298136 | Chen et al. | Oct 2016 | A1 |
20160304846 | Liu et al. | Oct 2016 | A1 |
20160304855 | Stark et al. | Oct 2016 | A1 |
20160312304 | Sorrentino et al. | Oct 2016 | A1 |
20160319262 | Doudna et al. | Nov 2016 | A1 |
20160333389 | Liu et al. | Nov 2016 | A1 |
20160340662 | Zhang et al. | Nov 2016 | A1 |
20160345578 | Barrangou et al. | Dec 2016 | A1 |
20160346360 | Quake et al. | Dec 2016 | A1 |
20160346361 | Quake et al. | Dec 2016 | A1 |
20160346362 | Quake et al. | Dec 2016 | A1 |
20160348074 | Quake et al. | Dec 2016 | A1 |
20160350476 | Quake et al. | Dec 2016 | A1 |
20160369262 | Reik et al. | Dec 2016 | A1 |
20170009242 | McKinley et al. | Jan 2017 | A1 |
20170014449 | Bangera et al. | Jan 2017 | A1 |
20170020922 | Wagner et al. | Jan 2017 | A1 |
20170037432 | Donohoue et al. | Feb 2017 | A1 |
20170044520 | Liu et al. | Feb 2017 | A1 |
20170044592 | Peter et al. | Feb 2017 | A1 |
20170053729 | Kotani et al. | Feb 2017 | A1 |
20170058271 | Joung et al. | Mar 2017 | A1 |
20170058272 | Carter et al. | Mar 2017 | A1 |
20170058298 | Kennedy et al. | Mar 2017 | A1 |
20170073663 | Wang et al. | Mar 2017 | A1 |
20170073670 | Nishida et al. | Mar 2017 | A1 |
20170087224 | Quake | Mar 2017 | A1 |
20170087225 | Quake | Mar 2017 | A1 |
20170088587 | Quake | Mar 2017 | A1 |
20170088828 | Quake | Mar 2017 | A1 |
20170107536 | Zhang et al. | Apr 2017 | A1 |
20170107560 | Peter et al. | Apr 2017 | A1 |
20170114367 | Hu et al. | Apr 2017 | A1 |
20170121693 | Liu et al. | May 2017 | A1 |
20170145394 | Yeo et al. | May 2017 | A1 |
20170145405 | Tang et al. | May 2017 | A1 |
20170145438 | Kantor | May 2017 | A1 |
20170152528 | Zhang | Jun 2017 | A1 |
20170152787 | Kubo et al. | Jun 2017 | A1 |
20170159033 | Kamtekar et al. | Jun 2017 | A1 |
20170166928 | Vyas et al. | Jun 2017 | A1 |
20170175104 | Doudna et al. | Jun 2017 | A1 |
20170175142 | Zhang et al. | Jun 2017 | A1 |
20170191047 | Terns et al. | Jul 2017 | A1 |
20170191078 | Zhang et al. | Jul 2017 | A1 |
20170198269 | Zhang et al. | Jul 2017 | A1 |
20170198277 | Kmiec et al. | Jul 2017 | A1 |
20170198302 | Feng et al. | Jul 2017 | A1 |
20170226522 | Hu et al. | Aug 2017 | A1 |
20170233703 | Xie et al. | Aug 2017 | A1 |
20170233756 | Begemann et al. | Aug 2017 | A1 |
20170247671 | Yung et al. | Aug 2017 | A1 |
20170247703 | Sloan et al. | Aug 2017 | A1 |
20170268022 | Liu et al. | Sep 2017 | A1 |
20170275665 | Silas et al. | Sep 2017 | A1 |
20170283797 | Robb et al. | Oct 2017 | A1 |
20170283831 | Zhang et al. | Oct 2017 | A1 |
20170314016 | Kim et al. | Nov 2017 | A1 |
20170362635 | Chamberlain et al. | Dec 2017 | A1 |
20180064077 | Dunham et al. | Mar 2018 | A1 |
20180066258 | Powell | Mar 2018 | A1 |
20180068062 | Zhang et al. | Mar 2018 | A1 |
20180073012 | Liu et al. | Mar 2018 | A1 |
20180080051 | Sheikh et al. | Mar 2018 | A1 |
20180100147 | Yates et al. | Apr 2018 | A1 |
20180105867 | Xiao et al. | Apr 2018 | A1 |
20180119118 | Lu et al. | May 2018 | A1 |
20180127780 | Liu et al. | May 2018 | A1 |
20180155708 | Church et al. | Jun 2018 | A1 |
20180155720 | Donohoue et al. | Jun 2018 | A1 |
20180163213 | Aneja et al. | Jun 2018 | A1 |
20180170984 | Harris et al. | Jun 2018 | A1 |
20180179503 | Maianti et al. | Jun 2018 | A1 |
20180179547 | Zhang et al. | Jun 2018 | A1 |
20180201921 | Malcolm | Jul 2018 | A1 |
20180230464 | Zhong | Aug 2018 | A1 |
20180230471 | Storici et al. | Aug 2018 | A1 |
20180236081 | Liu et al. | Aug 2018 | A1 |
20180237787 | Maianti et al. | Aug 2018 | A1 |
20180245066 | Yao et al. | Aug 2018 | A1 |
20180265864 | Li et al. | Sep 2018 | A1 |
20180273939 | Yu et al. | Sep 2018 | A1 |
20180282722 | Jakimo et al. | Oct 2018 | A1 |
20180298391 | Jakimo et al. | Oct 2018 | A1 |
20180305688 | Zhong | Oct 2018 | A1 |
20180305704 | Zhang | Oct 2018 | A1 |
20180312822 | Lee et al. | Nov 2018 | A1 |
20180312825 | Liu et al. | Nov 2018 | A1 |
20180312828 | Liu et al. | Nov 2018 | A1 |
20180312835 | Yao et al. | Nov 2018 | A1 |
20180327756 | Zhang et al. | Nov 2018 | A1 |
20190010481 | Joung et al. | Jan 2019 | A1 |
20190055543 | Tran et al. | Feb 2019 | A1 |
20190093099 | Liu et al. | Mar 2019 | A1 |
20190185883 | Liu et al. | Jun 2019 | A1 |
20190225955 | Liu et al. | Jul 2019 | A1 |
20190233847 | Savage et al. | Aug 2019 | A1 |
20190241633 | Fotin-Mleczek et al. | Aug 2019 | A1 |
20190264202 | Church et al. | Aug 2019 | A1 |
20190322992 | Liu et al. | Oct 2019 | A1 |
20190352632 | Liu et al. | Nov 2019 | A1 |
20190367891 | Liu et al. | Dec 2019 | A1 |
20200010818 | Liu et al. | Jan 2020 | A1 |
20200010835 | Maianti et al. | Jan 2020 | A1 |
20200063127 | Lu et al. | Feb 2020 | A1 |
20200109398 | Rubens et al. | Apr 2020 | A1 |
20200172931 | Liu et al. | Jun 2020 | A1 |
20200181619 | Tang et al. | Jun 2020 | A1 |
20200190493 | Liu et al. | Jun 2020 | A1 |
20200255868 | Liu et al. | Aug 2020 | A1 |
20200323984 | Liu et al. | Oct 2020 | A1 |
20200399619 | Maianti et al. | Dec 2020 | A1 |
20200399626 | Liu et al. | Dec 2020 | A1 |
20210054416 | Liu et al. | Feb 2021 | A1 |
20210115428 | Maianti et al. | Apr 2021 | A1 |
20230123669 | Liu et al. | Apr 2023 | A1 |
20230127008 | Liu et al. | Apr 2023 | A1 |
20230159913 | Liu et al. | May 2023 | A1 |
Number | Date | Country |
---|---|---|
2012244264 | Nov 2012 | AU |
2012354062 | Jul 2014 | AU |
2015252023 | Nov 2015 | AU |
2015101792 | Jan 2016 | AU |
112015013786 | Jul 2017 | BR |
2894668 | Jun 2014 | CA |
2894681 | Jun 2014 | CA |
2894684 | Jun 2014 | CA |
2852593 | Nov 2015 | CA |
1069962 | Mar 1993 | CN |
101460619 | Jun 2009 | CN |
101873862 | Oct 2010 | CN |
102892777 | Jan 2013 | CN |
103224947 | Jul 2013 | CN |
103233028 | Aug 2013 | CN |
103388006 | Nov 2013 | CN |
103614415 | Mar 2014 | CN |
103642836 | Mar 2014 | CN |
103668472 | Mar 2014 | CN |
103820441 | May 2014 | CN |
103820454 | May 2014 | CN |
103911376 | Jul 2014 | CN |
103923911 | Jul 2014 | CN |
103088008 | Aug 2014 | CN |
103981211 | Aug 2014 | CN |
103981212 | Aug 2014 | CN |
104004778 | Aug 2014 | CN |
104004782 | Aug 2014 | CN |
104017821 | Sep 2014 | CN |
104109687 | Oct 2014 | CN |
104178461 | Dec 2014 | CN |
104342457 | Feb 2015 | CN |
104404036 | Mar 2015 | CN |
104450774 | Mar 2015 | CN |
104480144 | Apr 2015 | CN |
104498493 | Apr 2015 | CN |
104504304 | Apr 2015 | CN |
104531704 | Apr 2015 | CN |
104531705 | Apr 2015 | CN |
104560864 | Apr 2015 | CN |
104561095 | Apr 2015 | CN |
104593418 | May 2015 | CN |
104593422 | May 2015 | CN |
104611370 | May 2015 | CN |
104651392 | May 2015 | CN |
104651398 | May 2015 | CN |
104651399 | May 2015 | CN |
104651401 | May 2015 | CN |
104673816 | Jun 2015 | CN |
104725626 | Jun 2015 | CN |
104726449 | Jun 2015 | CN |
104726494 | Jun 2015 | CN |
104745626 | Jul 2015 | CN |
104762321 | Jul 2015 | CN |
104805078 | Jul 2015 | CN |
104805099 | Jul 2015 | CN |
104805118 | Jul 2015 | CN |
104846010 | Aug 2015 | CN |
104894068 | Sep 2015 | CN |
104894075 | Sep 2015 | CN |
104928321 | Sep 2015 | CN |
105039339 | Nov 2015 | CN |
105039399 | Nov 2015 | CN |
105063061 | Nov 2015 | CN |
105087620 | Nov 2015 | CN |
105112422 | Dec 2015 | CN |
105112445 | Dec 2015 | CN |
105112519 | Dec 2015 | CN |
105121648 | Dec 2015 | CN |
105132427 | Dec 2015 | CN |
105132451 | Dec 2015 | CN |
105177038 | Dec 2015 | CN |
105177126 | Dec 2015 | CN |
105210981 | Jan 2016 | CN |
105219799 | Jan 2016 | CN |
105238806 | Jan 2016 | CN |
105255937 | Jan 2016 | CN |
105274144 | Jan 2016 | CN |
105296518 | Feb 2016 | CN |
105296537 | Feb 2016 | CN |
105316324 | Feb 2016 | CN |
105316327 | Feb 2016 | CN |
105316337 | Feb 2016 | CN |
105331607 | Feb 2016 | CN |
105331608 | Feb 2016 | CN |
105331609 | Feb 2016 | CN |
105331627 | Feb 2016 | CN |
105400773 | Mar 2016 | CN |
105400779 | Mar 2016 | CN |
105400810 | Mar 2016 | CN |
105441451 | Mar 2016 | CN |
105462968 | Apr 2016 | CN |
105463003 | Apr 2016 | CN |
105463027 | Apr 2016 | CN |
105492608 | Apr 2016 | CN |
105492609 | Apr 2016 | CN |
105505976 | Apr 2016 | CN |
105505979 | Apr 2016 | CN |
105518134 | Apr 2016 | CN |
105518135 | Apr 2016 | CN |
105518137 | Apr 2016 | CN |
105518138 | Apr 2016 | CN |
105518139 | Apr 2016 | CN |
105518140 | Apr 2016 | CN |
105543228 | May 2016 | CN |
105543266 | May 2016 | CN |
105543270 | May 2016 | CN |
105567688 | May 2016 | CN |
105567689 | May 2016 | CN |
105567734 | May 2016 | CN |
105567735 | May 2016 | CN |
105567738 | May 2016 | CN |
105593367 | May 2016 | CN |
105594664 | May 2016 | CN |
105602987 | May 2016 | CN |
105624146 | Jun 2016 | CN |
105624187 | Jun 2016 | CN |
105646719 | Jun 2016 | CN |
105647922 | Jun 2016 | CN |
105647962 | Jun 2016 | CN |
105647968 | Jun 2016 | CN |
105647969 | Jun 2016 | CN |
105671070 | Jun 2016 | CN |
105671083 | Jun 2016 | CN |
105695485 | Jun 2016 | CN |
105779448 | Jul 2016 | CN |
105779449 | Jul 2016 | CN |
105802980 | Jul 2016 | CN |
105821039 | Aug 2016 | CN |
105821040 | Aug 2016 | CN |
105821049 | Aug 2016 | CN |
105821072 | Aug 2016 | CN |
105821075 | Aug 2016 | CN |
105821116 | Aug 2016 | CN |
105838733 | Aug 2016 | CN |
105861547 | Aug 2016 | CN |
105861552 | Aug 2016 | CN |
105861554 | Aug 2016 | CN |
105886498 | Aug 2016 | CN |
105886534 | Aug 2016 | CN |
105886616 | Aug 2016 | CN |
105907758 | Aug 2016 | CN |
105907785 | Aug 2016 | CN |
105925608 | Sep 2016 | CN |
105934516 | Sep 2016 | CN |
105950560 | Sep 2016 | CN |
105950626 | Sep 2016 | CN |
105950633 | Sep 2016 | CN |
105950639 | Sep 2016 | CN |
105985985 | Oct 2016 | CN |
106011104 | Oct 2016 | CN |
106011150 | Oct 2016 | CN |
106011167 | Oct 2016 | CN |
106011171 | Oct 2016 | CN |
106032540 | Oct 2016 | CN |
106047803 | Oct 2016 | CN |
106047877 | Oct 2016 | CN |
106047930 | Oct 2016 | CN |
106086008 | Nov 2016 | CN |
106086028 | Nov 2016 | CN |
106086061 | Nov 2016 | CN |
106086062 | Nov 2016 | CN |
106109417 | Nov 2016 | CN |
106119275 | Nov 2016 | CN |
106119283 | Nov 2016 | CN |
106148286 | Nov 2016 | CN |
106148370 | Nov 2016 | CN |
106148416 | Nov 2016 | CN |
106167525 | Nov 2016 | CN |
106167808 | Nov 2016 | CN |
106167810 | Nov 2016 | CN |
106167821 | Nov 2016 | CN |
106172238 | Dec 2016 | CN |
106190903 | Dec 2016 | CN |
106191057 | Dec 2016 | CN |
106191061 | Dec 2016 | CN |
106191062 | Dec 2016 | CN |
106191064 | Dec 2016 | CN |
106191071 | Dec 2016 | CN |
106191099 | Dec 2016 | CN |
106191107 | Dec 2016 | CN |
106191113 | Dec 2016 | CN |
106191114 | Dec 2016 | CN |
106191116 | Dec 2016 | CN |
106191124 | Dec 2016 | CN |
106222177 | Dec 2016 | CN |
106222193 | Dec 2016 | CN |
106222203 | Dec 2016 | CN |
106244555 | Dec 2016 | CN |
106244591 | Dec 2016 | CN |
106244609 | Dec 2016 | CN |
106282241 | Jan 2017 | CN |
106318934 | Jan 2017 | CN |
106318973 | Jan 2017 | CN |
106350540 | Jan 2017 | CN |
106367435 | Feb 2017 | CN |
106399306 | Feb 2017 | CN |
106399311 | Feb 2017 | CN |
106399360 | Feb 2017 | CN |
106399367 | Feb 2017 | CN |
106399375 | Feb 2017 | CN |
106399377 | Feb 2017 | CN |
106434651 | Feb 2017 | CN |
106434663 | Feb 2017 | CN |
106434688 | Feb 2017 | CN |
106434737 | Feb 2017 | CN |
106434748 | Feb 2017 | CN |
106434752 | Feb 2017 | CN |
106434782 | Feb 2017 | CN |
106446600 | Feb 2017 | CN |
106479985 | Mar 2017 | CN |
106480027 | Mar 2017 | CN |
106480036 | Mar 2017 | CN |
106480067 | Mar 2017 | CN |
106480080 | Mar 2017 | CN |
106480083 | Mar 2017 | CN |
106480097 | Mar 2017 | CN |
106544351 | Mar 2017 | CN |
106544353 | Mar 2017 | CN |
106544357 | Mar 2017 | CN |
2017054721 | Apr 2017 | CN |
106554969 | Apr 2017 | CN |
106566838 | Apr 2017 | CN |
106701763 | May 2017 | CN |
106701808 | May 2017 | CN |
106701818 | May 2017 | CN |
106701823 | May 2017 | CN |
106701830 | May 2017 | CN |
106754912 | May 2017 | CN |
106755026 | May 2017 | CN |
106755077 | May 2017 | CN |
106755088 | May 2017 | CN |
106755091 | May 2017 | CN |
106755097 | May 2017 | CN |
106755424 | May 2017 | CN |
106801056 | Jun 2017 | CN |
106834323 | Jun 2017 | CN |
106834341 | Jun 2017 | CN |
106834347 | Jun 2017 | CN |
106845151 | Jun 2017 | CN |
106868008 | Jun 2017 | CN |
106868031 | Jun 2017 | CN |
106906240 | Jun 2017 | CN |
106906242 | Jun 2017 | CN |
106916820 | Jul 2017 | CN |
106916852 | Jul 2017 | CN |
106939303 | Jul 2017 | CN |
106947750 | Jul 2017 | CN |
106947780 | Jul 2017 | CN |
106957830 | Jul 2017 | CN |
106957831 | Jul 2017 | CN |
106957844 | Jul 2017 | CN |
106957855 | Jul 2017 | CN |
106957858 | Jul 2017 | CN |
106967697 | Jul 2017 | CN |
106967726 | Jul 2017 | CN |
106978428 | Jul 2017 | CN |
106987570 | Jul 2017 | CN |
106987757 | Jul 2017 | CN |
107012164 | Aug 2017 | CN |
107012174 | Aug 2017 | CN |
107012213 | Aug 2017 | CN |
107012250 | Aug 2017 | CN |
107022562 | Aug 2017 | CN |
107034188 | Aug 2017 | CN |
107034218 | Aug 2017 | CN |
107034229 | Aug 2017 | CN |
107043775 | Aug 2017 | CN |
107043779 | Aug 2017 | CN |
107043787 | Aug 2017 | CN |
107058320 | Aug 2017 | CN |
107058328 | Aug 2017 | CN |
107058358 | Aug 2017 | CN |
107058372 | Aug 2017 | CN |
107083392 | Aug 2017 | CN |
107099533 | Aug 2017 | CN |
107099850 | Aug 2017 | CN |
107119053 | Sep 2017 | CN |
107119071 | Sep 2017 | CN |
107129999 | Sep 2017 | CN |
107130000 | Sep 2017 | CN |
107142272 | Sep 2017 | CN |
107142282 | Sep 2017 | CN |
107177591 | Sep 2017 | CN |
107177595 | Sep 2017 | CN |
107177625 | Sep 2017 | CN |
107177631 | Sep 2017 | CN |
107190006 | Sep 2017 | CN |
107190008 | Sep 2017 | CN |
107217042 | Sep 2017 | CN |
107217075 | Sep 2017 | CN |
107227307 | Oct 2017 | CN |
107227352 | Oct 2017 | CN |
107236737 | Oct 2017 | CN |
107236739 | Oct 2017 | CN |
107236741 | Oct 2017 | CN |
107245502 | Oct 2017 | CN |
107254485 | Oct 2017 | CN |
107266541 | Oct 2017 | CN |
107267515 | Oct 2017 | CN |
107287245 | Oct 2017 | CN |
107298701 | Oct 2017 | CN |
107299114 | Oct 2017 | CN |
107304435 | Oct 2017 | CN |
107312785 | Nov 2017 | CN |
107312793 | Nov 2017 | CN |
107312795 | Nov 2017 | CN |
107312798 | Nov 2017 | CN |
107326042 | Nov 2017 | CN |
107326046 | Nov 2017 | CN |
107354156 | Nov 2017 | CN |
107354173 | Nov 2017 | CN |
107356793 | Nov 2017 | CN |
107362372 | Nov 2017 | CN |
107365786 | Nov 2017 | CN |
107365804 | Nov 2017 | CN |
107384894 | Nov 2017 | CN |
107384922 | Nov 2017 | CN |
107384926 | Nov 2017 | CN |
107400677 | Nov 2017 | CN |
107418974 | Dec 2017 | CN |
107435051 | Dec 2017 | CN |
107435069 | Dec 2017 | CN |
107446922 | Dec 2017 | CN |
107446923 | Dec 2017 | CN |
107446924 | Dec 2017 | CN |
107446932 | Dec 2017 | CN |
107446951 | Dec 2017 | CN |
107446954 | Dec 2017 | CN |
107460196 | Dec 2017 | CN |
107474129 | Dec 2017 | CN |
107475300 | Dec 2017 | CN |
107488649 | Dec 2017 | CN |
107502608 | Dec 2017 | CN |
107502618 | Dec 2017 | CN |
107513531 | Dec 2017 | CN |
107519492 | Dec 2017 | CN |
107523567 | Dec 2017 | CN |
107523583 | Dec 2017 | CN |
107541525 | Jan 2018 | CN |
107557373 | Jan 2018 | CN |
107557378 | Jan 2018 | CN |
107557381 | Jan 2018 | CN |
107557390 | Jan 2018 | CN |
107557393 | Jan 2018 | CN |
107557394 | Jan 2018 | CN |
107557455 | Jan 2018 | CN |
107574179 | Jan 2018 | CN |
107586777 | Jan 2018 | CN |
107586779 | Jan 2018 | CN |
107604003 | Jan 2018 | CN |
107619829 | Jan 2018 | CN |
107619837 | Jan 2018 | CN |
107630006 | Jan 2018 | CN |
107630041 | Jan 2018 | CN |
107630042 | Jan 2018 | CN |
107630043 | Jan 2018 | CN |
107641631 | Jan 2018 | CN |
107653256 | Feb 2018 | CN |
107686848 | Feb 2018 | CN |
107760684 | Feb 2018 | CN |
206970581 | Feb 2018 | CN |
107760652 | Mar 2018 | CN |
107760663 | Mar 2018 | CN |
107760715 | Mar 2018 | CN |
107784200 | Mar 2018 | CN |
107794272 | Mar 2018 | CN |
107794276 | Mar 2018 | CN |
107815463 | Mar 2018 | CN |
107828738 | Mar 2018 | CN |
107828794 | Mar 2018 | CN |
107828826 | Mar 2018 | CN |
107828874 | Mar 2018 | CN |
107858346 | Mar 2018 | CN |
107858373 | Mar 2018 | CN |
107880132 | Apr 2018 | CN |
107881184 | Apr 2018 | CN |
107893074 | Apr 2018 | CN |
107893075 | Apr 2018 | CN |
107893076 | Apr 2018 | CN |
107893080 | Apr 2018 | CN |
107893086 | Apr 2018 | CN |
107904261 | Apr 2018 | CN |
107937427 | Apr 2018 | CN |
107937432 | Apr 2018 | CN |
107937501 | Apr 2018 | CN |
107974466 | May 2018 | CN |
107988229 | May 2018 | CN |
107988246 | May 2018 | CN |
107988256 | May 2018 | CN |
107988268 | May 2018 | CN |
108018316 | May 2018 | CN |
108034656 | May 2018 | CN |
108048466 | May 2018 | CN |
108102940 | Jun 2018 | CN |
108103092 | Jun 2018 | CN |
108103098 | Jun 2018 | CN |
108103586 | Jun 2018 | CN |
108148835 | Jun 2018 | CN |
108148837 | Jun 2018 | CN |
108148873 | Jun 2018 | CN |
108192956 | Jun 2018 | CN |
108251423 | Jul 2018 | CN |
108251451 | Jul 2018 | CN |
108251452 | Jul 2018 | CN |
108342480 | Jul 2018 | CN |
108359691 | Aug 2018 | CN |
108359712 | Aug 2018 | CN |
108384784 | Aug 2018 | CN |
108396027 | Aug 2018 | CN |
108410877 | Aug 2018 | CN |
108410906 | Aug 2018 | CN |
108410907 | Aug 2018 | CN |
108410911 | Aug 2018 | CN |
108424931 | Aug 2018 | CN |
108441519 | Aug 2018 | CN |
108441520 | Aug 2018 | CN |
108486108 | Sep 2018 | CN |
108486111 | Sep 2018 | CN |
108486145 | Sep 2018 | CN |
108486146 | Sep 2018 | CN |
108486154 | Sep 2018 | CN |
108486159 | Sep 2018 | CN |
108486234 | Sep 2018 | CN |
108504657 | Sep 2018 | CN |
108504685 | Sep 2018 | CN |
108504693 | Sep 2018 | CN |
108546712 | Sep 2018 | CN |
108546717 | Sep 2018 | CN |
108546718 | Sep 2018 | CN |
108559730 | Sep 2018 | CN |
108559732 | Sep 2018 | CN |
108559745 | Sep 2018 | CN |
108559760 | Sep 2018 | CN |
108570479 | Sep 2018 | CN |
108588071 | Sep 2018 | CN |
108588123 | Sep 2018 | CN |
108588128 | Sep 2018 | CN |
108588182 | Sep 2018 | CN |
108610399 | Oct 2018 | CN |
108611364 | Oct 2018 | CN |
108624622 | Oct 2018 | CN |
108642053 | Oct 2018 | CN |
108642055 | Oct 2018 | CN |
108642077 | Oct 2018 | CN |
108642078 | Oct 2018 | CN |
108642090 | Oct 2018 | CN |
108690844 | Oct 2018 | CN |
108707604 | Oct 2018 | CN |
108707620 | Oct 2018 | CN |
108707621 | Oct 2018 | CN |
108707628 | Oct 2018 | CN |
108707629 | Oct 2018 | CN |
108715850 | Oct 2018 | CN |
108728476 | Nov 2018 | CN |
108728486 | Nov 2018 | CN |
108753772 | Nov 2018 | CN |
108753783 | Nov 2018 | CN |
108753813 | Nov 2018 | CN |
108753817 | Nov 2018 | CN |
108753832 | Nov 2018 | CN |
108753835 | Nov 2018 | CN |
108753836 | Nov 2018 | CN |
108795902 | Nov 2018 | CN |
108822217 | Nov 2018 | CN |
108823248 | Nov 2018 | CN |
108823249 | Nov 2018 | CN |
108823291 | Nov 2018 | CN |
108841845 | Nov 2018 | CN |
108853133 | Nov 2018 | CN |
108866093 | Nov 2018 | CN |
108893529 | Nov 2018 | CN |
108913664 | Nov 2018 | CN |
108913691 | Nov 2018 | CN |
108913714 | Nov 2018 | CN |
108913717 | Nov 2018 | CN |
208034188 | Nov 2018 | CN |
109517841 | Mar 2019 | CN |
264166 | Apr 1988 | EP |
321201 | Jun 1989 | EP |
519463 | Dec 1992 | EP |
2604255 | Jun 2013 | EP |
2840140 | Feb 2015 | EP |
2877490 | Jun 2015 | EP |
2966170 | Jan 2016 | EP |
3009511 | Apr 2016 | EP |
3031921 | Jun 2016 | EP |
3045537 | Jul 2016 | EP |
3 115 457 | Jan 2017 | EP |
3115457 | Jan 2017 | EP |
3144390 | Mar 2017 | EP |
3199632 | Aug 2017 | EP |
3216867 | Sep 2017 | EP |
3252160 | Dec 2017 | EP |
3450553 | Dec 2019 | EP |
2740248 | Feb 2020 | ES |
2528177 | Jan 2016 | GB |
2531454 | Apr 2016 | GB |
2542653 | Mar 2017 | GB |
1208045 | Feb 2016 | HK |
2007-501626 | Feb 2007 | JP |
2008-515405 | May 2008 | JP |
2010-033344 | Feb 2010 | JP |
2010-535744 | Nov 2010 | JP |
2010-539929 | Dec 2010 | JP |
2011-081011 | Apr 2011 | JP |
2011-523353 | Aug 2011 | JP |
2012-525146 | Oct 2012 | JP |
2012-210172 | Nov 2012 | JP |
2012-531909 | Dec 2012 | JP |
2015-523856 | Aug 2015 | JP |
2015-532654 | Nov 2015 | JP |
2016-525888 | Sep 2016 | JP |
2016-534132 | Nov 2016 | JP |
2017-500035 | Jan 2017 | JP |
6629734 | Jan 2020 | JP |
101584933 | Jan 2016 | KR |
2016-0050069 | May 2016 | KR |
20160133380 | Nov 2016 | KR |
20170037025 | Apr 2017 | KR |
20170037028 | Apr 2017 | KR |
101748575 | Jun 2017 | KR |
20170128137 | Nov 2017 | KR |
2018-0022465 | Mar 2018 | KR |
2016104674 | Aug 2017 | RU |
2634395 | Oct 2017 | RU |
2652899 | May 2018 | RU |
2015128057 | Mar 2019 | RU |
2015128098 | Mar 2019 | RU |
2687451 | May 2019 | RU |
2019112514 | Jun 2019 | RU |
2019127300 | Sep 2019 | RU |
2701850 | Oct 2019 | RU |
I608100 | Dec 2017 | TW |
2018-29773 | Aug 2018 | TW |
1990002809 | Mar 1990 | WO |
1991003162 | Mar 1991 | WO |
1991016024 | Oct 1991 | WO |
1991017271 | Nov 1991 | WO |
1991017424 | Nov 1991 | WO |
1992006188 | Apr 1992 | WO |
1992006200 | Apr 1992 | WO |
1992007065 | Apr 1992 | WO |
1993015187 | Aug 1993 | WO |
1993024641 | Dec 1993 | WO |
1994018316 | Aug 1994 | WO |
1994026877 | Nov 1994 | WO |
1996004403 | Feb 1996 | WO |
1996010640 | Apr 1996 | WO |
1998032845 | Jul 1998 | WO |
2001036452 | May 2001 | WO |
2001038547 | May 2001 | WO |
2002059296 | Aug 2002 | WO |
2002068676 | Sep 2002 | WO |
2002103028 | Dec 2002 | WO |
2004007684 | Jan 2004 | WO |
200514791 | Feb 2005 | WO |
2005014791 | Feb 2005 | WO |
2005019415 | Mar 2005 | WO |
2006002547 | Jan 2006 | WO |
2006042112 | Apr 2006 | WO |
2007025097 | Mar 2007 | WO |
2007037444 | Apr 2007 | WO |
2007066923 | Jun 2007 | WO |
2007136815 | Nov 2007 | WO |
2007143574 | Dec 2007 | WO |
2008005529 | Jan 2008 | WO |
2008108989 | Sep 2008 | WO |
2009002418 | Dec 2008 | WO |
2009098290 | Aug 2009 | WO |
2009134808 | Nov 2009 | WO |
2010011961 | Jan 2010 | WO |
2010011565 | Jan 2010 | WO |
2010012902 | Feb 2010 | WO |
2010028347 | Mar 2010 | WO |
2010054108 | May 2010 | WO |
2010054154 | May 2010 | WO |
2010068289 | Jun 2010 | WO |
2010075424 | Jul 2010 | WO |
2010102257 | Sep 2010 | WO |
2010104749 | Sep 2010 | WO |
2010129019 | Nov 2010 | WO |
2010129023 | Nov 2010 | WO |
2010132092 | Nov 2010 | WO |
2010144150 | Dec 2010 | WO |
2011002503 | Jan 2011 | WO |
2011017293 | Feb 2011 | WO |
2011053868 | May 2011 | WO |
2011053982 | May 2011 | WO |
2011068810 | Jun 2011 | WO |
2011075627 | Jun 2011 | WO |
2011091311 | Jul 2011 | WO |
2011091396 | Jul 2011 | WO |
2011109031 | Sep 2011 | WO |
2011143124 | Nov 2011 | WO |
2011147590 | Nov 2011 | WO |
2011159369 | Dec 2011 | WO |
2012054726 | Apr 2012 | WO |
2012065043 | May 2012 | WO |
2012088381 | Jun 2012 | WO |
2012125445 | Sep 2012 | WO |
2012138927 | Oct 2012 | WO |
2012149470 | Nov 2012 | WO |
2012158985 | Nov 2012 | WO |
2012158986 | Nov 2012 | WO |
2012164565 | Dec 2012 | WO |
2012170930 | Dec 2012 | WO |
2013012674 | Jan 2013 | WO |
2013013105 | Jan 2013 | WO |
2013039857 | Mar 2013 | WO |
2013039861 | Mar 2013 | WO |
2013045632 | Apr 2013 | WO |
2013047844 | Apr 2013 | WO |
2013066438 | May 2013 | WO |
2013086441 | Jun 2013 | WO |
2013086444 | Jun 2013 | WO |
2013098244 | Jul 2013 | WO |
2013119602 | Aug 2013 | WO |
2013126794 | Aug 2013 | WO |
2013130824 | Sep 2013 | WO |
2013141680 | Sep 2013 | WO |
2013142578 | Sep 2013 | WO |
2013152359 | Oct 2013 | WO |
2013160230 | Oct 2013 | WO |
2013166315 | Nov 2013 | WO |
2013169398 | Nov 2013 | WO |
2013169802 | Nov 2013 | WO |
2013176772 | Nov 2013 | WO |
2013176915 | Nov 2013 | WO |
2013176916 | Nov 2013 | WO |
2013181440 | Dec 2013 | WO |
2013186754 | Dec 2013 | WO |
2013188037 | Dec 2013 | WO |
2013188522 | Dec 2013 | WO |
2013188638 | Dec 2013 | WO |
2013192278 | Dec 2013 | WO |
2013142378 | Jan 2014 | WO |
2014004336 | Jan 2014 | WO |
2014005042 | Jan 2014 | WO |
2014011237 | Jan 2014 | WO |
2014011901 | Jan 2014 | WO |
2014018423 | Jan 2014 | WO |
2014020608 | Feb 2014 | WO |
2014022120 | Feb 2014 | WO |
2014022702 | Feb 2014 | WO |
2014036219 | Mar 2014 | WO |
2014039513 | Mar 2014 | WO |
2014039523 | Mar 2014 | WO |
2014039585 | Mar 2014 | WO |
2014039684 | Mar 2014 | WO |
2014039692 | Mar 2014 | WO |
2014039702 | Mar 2014 | WO |
2014039872 | Mar 2014 | WO |
2014039970 | Mar 2014 | WO |
2014041327 | Mar 2014 | WO |
2014043143 | Mar 2014 | WO |
2014047103 | Mar 2014 | WO |
2014055782 | Apr 2014 | WO |
2014059173 | Apr 2014 | WO |
2014059255 | Apr 2014 | WO |
2014065596 | May 2014 | WO |
2014066505 | May 2014 | WO |
2014068346 | May 2014 | WO |
2014070887 | May 2014 | WO |
2014071006 | May 2014 | WO |
2014071219 | May 2014 | WO |
2014071235 | May 2014 | WO |
2014072941 | May 2014 | WO |
2014081729 | May 2014 | WO |
2014081730 | May 2014 | WO |
2014081855 | May 2014 | WO |
2014082644 | Jun 2014 | WO |
2014085261 | Jun 2014 | WO |
2014085593 | Jun 2014 | WO |
2014085830 | Jun 2014 | WO |
2014089212 | Jun 2014 | WO |
2014089290 | Jun 2014 | WO |
2014089348 | Jun 2014 | WO |
2014089513 | Jun 2014 | WO |
2014089533 | Jun 2014 | WO |
2014089541 | Jun 2014 | WO |
2014093479 | Jun 2014 | WO |
2014093595 | Jun 2014 | WO |
2014093622 | Jun 2014 | WO |
2014093635 | Jun 2014 | WO |
2014093655 | Jun 2014 | WO |
2014093661 | Jun 2014 | WO |
2014093694 | Jun 2014 | WO |
2014093701 | Jun 2014 | WO |
2014093709 | Jun 2014 | WO |
2014093712 | Jun 2014 | WO |
2014093718 | Jun 2014 | WO |
2014093736 | Jun 2014 | WO |
2014093768 | Jun 2014 | WO |
2014093852 | Jun 2014 | WO |
2014096972 | Jun 2014 | WO |
2014099744 | Jun 2014 | WO |
2014099750 | Jun 2014 | WO |
2014104878 | Jul 2014 | WO |
2014110006 | Jul 2014 | WO |
2014110552 | Jul 2014 | WO |
2014113493 | Jul 2014 | WO |
2014123967 | Aug 2014 | WO |
2014124226 | Aug 2014 | WO |
2014125668 | Aug 2014 | WO |
2014127287 | Aug 2014 | WO |
2014128324 | Aug 2014 | WO |
2014128659 | Aug 2014 | WO |
2014130706 | Aug 2014 | WO |
2014130955 | Aug 2014 | WO |
2014131833 | Sep 2014 | WO |
2014138379 | Sep 2014 | WO |
2014143381 | Sep 2014 | WO |
2014144094 | Sep 2014 | WO |
2014144155 | Sep 2014 | WO |
2014144288 | Sep 2014 | WO |
2014144592 | Sep 2014 | WO |
2014144761 | Sep 2014 | WO |
2014144951 | Sep 2014 | WO |
2014145599 | Sep 2014 | WO |
2014145736 | Sep 2014 | WO |
2014150624 | Sep 2014 | WO |
2014152432 | Sep 2014 | WO |
2014152940 | Sep 2014 | WO |
2014153118 | Sep 2014 | WO |
2014153470 | Sep 2014 | WO |
2014158593 | Oct 2014 | WO |
2014161821 | Oct 2014 | WO |
2014164466 | Oct 2014 | WO |
2014165177 | Oct 2014 | WO |
2014165349 | Oct 2014 | WO |
2014165612 | Oct 2014 | WO |
2014165707 | Oct 2014 | WO |
2014165825 | Oct 2014 | WO |
2014172458 | Oct 2014 | WO |
2014172470 | Oct 2014 | WO |
2014172489 | Oct 2014 | WO |
2014173955 | Oct 2014 | WO |
2014182700 | Nov 2014 | WO |
2014183071 | Nov 2014 | WO |
2014184143 | Nov 2014 | WO |
2014184741 | Nov 2014 | WO |
2014184744 | Nov 2014 | WO |
2014186585 | Nov 2014 | WO |
2014186686 | Nov 2014 | WO |
2014190181 | Nov 2014 | WO |
2014191128 | Dec 2014 | WO |
2014191518 | Dec 2014 | WO |
2014191521 | Dec 2014 | WO |
2014191525 | Dec 2014 | WO |
2014191527 | Dec 2014 | WO |
2014193583 | Dec 2014 | WO |
2014194190 | Dec 2014 | WO |
2014197568 | Dec 2014 | WO |
2014197748 | Dec 2014 | WO |
2014199358 | Dec 2014 | WO |
2014200659 | Dec 2014 | WO |
2014201015 | Dec 2014 | WO |
2014204578 | Dec 2014 | WO |
2014204723 | Dec 2014 | WO |
2014204724 | Dec 2014 | WO |
2014204725 | Dec 2014 | WO |
2014204726 | Dec 2014 | WO |
2014204727 | Dec 2014 | WO |
2014204728 | Dec 2014 | WO |
2014204729 | Dec 2014 | WO |
2014205192 | Dec 2014 | WO |
2014207043 | Dec 2014 | WO |
2015002780 | Jan 2015 | WO |
2015004241 | Jan 2015 | WO |
2015006290 | Jan 2015 | WO |
2015006294 | Jan 2015 | WO |
2015006437 | Jan 2015 | WO |
2015006498 | Jan 2015 | WO |
2015006747 | Jan 2015 | WO |
2015007194 | Jan 2015 | WO |
2015010114 | Jan 2015 | WO |
2015011483 | Jan 2015 | WO |
2015013583 | Jan 2015 | WO |
2015017866 | Feb 2015 | WO |
2015018503 | Feb 2015 | WO |
2015021353 | Feb 2015 | WO |
2015021426 | Feb 2015 | WO |
2015021990 | Feb 2015 | WO |
2015024017 | Feb 2015 | WO |
2015024986 | Feb 2015 | WO |
2015026883 | Feb 2015 | WO |
2015026885 | Feb 2015 | WO |
2015026886 | Feb 2015 | WO |
2015026887 | Feb 2015 | WO |
2015027134 | Feb 2015 | WO |
2015028969 | Mar 2015 | WO |
2015030881 | Mar 2015 | WO |
2015031619 | Mar 2015 | WO |
2015031775 | Mar 2015 | WO |
2015032494 | Mar 2015 | WO |
2015033293 | Mar 2015 | WO |
2015034872 | Mar 2015 | WO |
2015034885 | Mar 2015 | WO |
2015035136 | Mar 2015 | WO |
2015035139 | Mar 2015 | WO |
2015035162 | Mar 2015 | WO |
2015040075 | Mar 2015 | WO |
2015040402 | Mar 2015 | WO |
2015042393 | Mar 2015 | WO |
2015042585 | Mar 2015 | WO |
2015048577 | Apr 2015 | WO |
2015048690 | Apr 2015 | WO |
2015048707 | Apr 2015 | WO |
2015048801 | Apr 2015 | WO |
2015049897 | Apr 2015 | WO |
2015051191 | Apr 2015 | WO |
2015052133 | Apr 2015 | WO |
2015052231 | Apr 2015 | WO |
2015052335 | Apr 2015 | WO |
2015053995 | Apr 2015 | WO |
2015054253 | Apr 2015 | WO |
2015054315 | Apr 2015 | WO |
2015057671 | Apr 2015 | WO |
2015057834 | Apr 2015 | WO |
2015057852 | Apr 2015 | WO |
2015057976 | Apr 2015 | WO |
2015057980 | Apr 2015 | WO |
2015059265 | Apr 2015 | WO |
2015065964 | May 2015 | WO |
2015066119 | May 2015 | WO |
2015066634 | May 2015 | WO |
2015066636 | May 2015 | WO |
2015066637 | May 2015 | WO |
2015066638 | May 2015 | WO |
2015066643 | May 2015 | WO |
2015069682 | May 2015 | WO |
2015070083 | May 2015 | WO |
2015070193 | May 2015 | WO |
2015070212 | May 2015 | WO |
2015071474 | May 2015 | WO |
2015073683 | May 2015 | WO |
2015073867 | May 2015 | WO |
2015073990 | May 2015 | WO |
2015075056 | May 2015 | WO |
2015075154 | May 2015 | WO |
2015075175 | May 2015 | WO |
2015075195 | May 2015 | WO |
2015075557 | May 2015 | WO |
2015077058 | May 2015 | WO |
2015077290 | May 2015 | WO |
2015077318 | May 2015 | WO |
2015079056 | Jun 2015 | WO |
2015079057 | Jun 2015 | WO |
2015086795 | Jun 2015 | WO |
2015086798 | Jun 2015 | WO |
2015088643 | Jun 2015 | WO |
2015089046 | Jun 2015 | WO |
2015089077 | Jun 2015 | WO |
2015089277 | Jun 2015 | WO |
2015089351 | Jun 2015 | WO |
2015089354 | Jun 2015 | WO |
2015089364 | Jun 2015 | WO |
2015089406 | Jun 2015 | WO |
2015089419 | Jun 2015 | WO |
2015089427 | Jun 2015 | WO |
2015089462 | Jun 2015 | WO |
2015089465 | Jun 2015 | WO |
2015089473 | Jun 2015 | WO |
2015089486 | Jun 2015 | WO |
2015089486 | Jun 2015 | WO |
2015095804 | Jun 2015 | WO |
2015099850 | Jul 2015 | WO |
2015100929 | Jul 2015 | WO |
2015103057 | Jul 2015 | WO |
2015103153 | Jul 2015 | WO |
2015105928 | Jul 2015 | WO |
2015108993 | Jul 2015 | WO |
2015109752 | Jul 2015 | WO |
2015110474 | Jul 2015 | WO |
2015112790 | Jul 2015 | WO |
2015112896 | Jul 2015 | WO |
2015113063 | Jul 2015 | WO |
2015114365 | Aug 2015 | WO |
2015115903 | Aug 2015 | WO |
2015116686 | Aug 2015 | WO |
2015116969 | Aug 2015 | WO |
2015117021 | Aug 2015 | WO |
2015117041 | Aug 2015 | WO |
2015117081 | Aug 2015 | WO |
2015118156 | Aug 2015 | WO |
2015119941 | Aug 2015 | WO |
2015121454 | Aug 2015 | WO |
2015122967 | Aug 2015 | WO |
2015123339 | Aug 2015 | WO |
2015124715 | Aug 2015 | WO |
2015124718 | Aug 2015 | WO |
2015126927 | Aug 2015 | WO |
2015127428 | Aug 2015 | WO |
2015127439 | Aug 2015 | WO |
2015129686 | Sep 2015 | WO |
2015131101 | Sep 2015 | WO |
2015133554 | Sep 2015 | WO |
2015134121 | Sep 2015 | WO |
2015134812 | Sep 2015 | WO |
2015136001 | Sep 2015 | WO |
2015138510 | Sep 2015 | WO |
2015138739 | Sep 2015 | WO |
2015138855 | Sep 2015 | WO |
2015138870 | Sep 2015 | WO |
2015139008 | Sep 2015 | WO |
2015139139 | Sep 2015 | WO |
2015143046 | Sep 2015 | WO |
2015143177 | Sep 2015 | WO |
2015145417 | Oct 2015 | WO |
2015148431 | Oct 2015 | WO |
2015148670 | Oct 2015 | WO |
2015148680 | Oct 2015 | WO |
2015148760 | Oct 2015 | WO |
2015148761 | Oct 2015 | WO |
2015148860 | Oct 2015 | WO |
2015148863 | Oct 2015 | WO |
2015153760 | Oct 2015 | WO |
2015153780 | Oct 2015 | WO |
2015153789 | Oct 2015 | WO |
2015153791 | Oct 2015 | WO |
2015153889 | Oct 2015 | WO |
2015153940 | Oct 2015 | WO |
2015155341 | Oct 2015 | WO |
2015155686 | Oct 2015 | WO |
2015157070 | Oct 2015 | WO |
2015157534 | Oct 2015 | WO |
2015159068 | Oct 2015 | WO |
2015159086 | Oct 2015 | WO |
2015159087 | Oct 2015 | WO |
2015160683 | Oct 2015 | WO |
2015161276 | Oct 2015 | WO |
2015163733 | Oct 2015 | WO |
2015164740 | Oct 2015 | WO |
2015164748 | Oct 2015 | WO |
2015165274 | Nov 2015 | WO |
2015165275 | Nov 2015 | WO |
2015165276 | Nov 2015 | WO |
2015166272 | Nov 2015 | WO |
2015167766 | Nov 2015 | WO |
2015167956 | Nov 2015 | WO |
2015168125 | Nov 2015 | WO |
2015168158 | Nov 2015 | WO |
2015168404 | Nov 2015 | WO |
2015168547 | Nov 2015 | WO |
2015168800 | Nov 2015 | WO |
2015171603 | Nov 2015 | WO |
2015171894 | Nov 2015 | WO |
2015171932 | Nov 2015 | WO |
2015172128 | Nov 2015 | WO |
2015173436 | Nov 2015 | WO |
2015175642 | Nov 2015 | WO |
2015179540 | Nov 2015 | WO |
2015183025 | Dec 2015 | WO |
2015183026 | Dec 2015 | WO |
2015183885 | Dec 2015 | WO |
2015184259 | Dec 2015 | WO |
2015184262 | Dec 2015 | WO |
2015184268 | Dec 2015 | WO |
2015188056 | Dec 2015 | WO |
2015188065 | Dec 2015 | WO |
2015188094 | Dec 2015 | WO |
2015188109 | Dec 2015 | WO |
2015188132 | Dec 2015 | WO |
2015188135 | Dec 2015 | WO |
2015188191 | Dec 2015 | WO |
2015189693 | Dec 2015 | WO |
2015191693 | Dec 2015 | WO |
2015191899 | Dec 2015 | WO |
2015191911 | Dec 2015 | WO |
2015193858 | Dec 2015 | WO |
2015195547 | Dec 2015 | WO |
2015195621 | Dec 2015 | WO |
2015195798 | Dec 2015 | WO |
2015198020 | Dec 2015 | WO |
2015200334 | Dec 2015 | WO |
2015200378 | Dec 2015 | WO |
2015200555 | Dec 2015 | WO |
2015200805 | Dec 2015 | WO |
2016001978 | Jan 2016 | WO |
2016004010 | Jan 2016 | WO |
2016004318 | Jan 2016 | WO |
2016007347 | Jan 2016 | WO |
2016007604 | Jan 2016 | WO |
2016007948 | Jan 2016 | WO |
2016011080 | Jan 2016 | WO |
2016011210 | Jan 2016 | WO |
2016011428 | Jan 2016 | WO |
2016012544 | Jan 2016 | WO |
2016012552 | Jan 2016 | WO |
2016014409 | Jan 2016 | WO |
2016014565 | Jan 2016 | WO |
2016014794 | Jan 2016 | WO |
2016014837 | Jan 2016 | WO |
2016016119 | Feb 2016 | WO |
2016016358 | Feb 2016 | WO |
2016019144 | Feb 2016 | WO |
2016020399 | Feb 2016 | WO |
2016021972 | Feb 2016 | WO |
2016021973 | Feb 2016 | WO |
2016022363 | Feb 2016 | WO |
2016022866 | Feb 2016 | WO |
2016022931 | Feb 2016 | WO |
2016025131 | Feb 2016 | WO |
2016025469 | Feb 2016 | WO |
2016025759 | Feb 2016 | WO |
2016026444 | Feb 2016 | WO |
2016028682 | Feb 2016 | WO |
2016028843 | Feb 2016 | WO |
2016028843 | Feb 2016 | WO |
2016028887 | Feb 2016 | WO |
2016033088 | Mar 2016 | WO |
2016033230 | Mar 2016 | WO |
2016033246 | Mar 2016 | WO |
2016033298 | Mar 2016 | WO |
2016035044 | Mar 2016 | WO |
2016036754 | Mar 2016 | WO |
2016037157 | Mar 2016 | WO |
2016040030 | Mar 2016 | WO |
2016040594 | Mar 2016 | WO |
2016044182 | Mar 2016 | WO |
2016044416 | Mar 2016 | WO |
2016046635 | Mar 2016 | WO |
2016049024 | Mar 2016 | WO |
2016049163 | Mar 2016 | WO |
2016049230 | Mar 2016 | WO |
2016049251 | Mar 2016 | WO |
2016049258 | Mar 2016 | WO |
2016053397 | Apr 2016 | WO |
2016054326 | Apr 2016 | WO |
2016057061 | Apr 2016 | WO |
2016057821 | Apr 2016 | WO |
2016057835 | Apr 2016 | WO |
2016057850 | Apr 2016 | WO |
2016057951 | Apr 2016 | WO |
2016057961 | Apr 2016 | WO |
2016061073 | Apr 2016 | WO |
2016061374 | Apr 2016 | WO |
2016061481 | Apr 2016 | WO |
2016061523 | Apr 2016 | WO |
2016064894 | Apr 2016 | WO |
2016065364 | Apr 2016 | WO |
2016069282 | May 2016 | WO |
2016069283 | May 2016 | WO |
2016069591 | May 2016 | WO |
2016069774 | May 2016 | WO |
2016069910 | May 2016 | WO |
2016069912 | May 2016 | WO |
2016070037 | May 2016 | WO |
2016070070 | May 2016 | WO |
2016070129 | May 2016 | WO |
2016072399 | May 2016 | WO |
2016072936 | May 2016 | WO |
2016073433 | May 2016 | WO |
2016073559 | May 2016 | WO |
2016073990 | May 2016 | WO |
2016075662 | May 2016 | WO |
2016076672 | May 2016 | WO |
2016077273 | May 2016 | WO |
2016077350 | May 2016 | WO |
2016080097 | May 2016 | WO |
2016080795 | May 2016 | WO |
2016081923 | May 2016 | WO |
2016081924 | May 2016 | WO |
2016082135 | Jun 2016 | WO |
2016083811 | Jun 2016 | WO |
2016084084 | Jun 2016 | WO |
2016084088 | Jun 2016 | WO |
2016086177 | Jun 2016 | WO |
2016089433 | Jun 2016 | WO |
2016089866 | Jun 2016 | WO |
2016089883 | Jun 2016 | WO |
2016090385 | Jun 2016 | WO |
2016094679 | Jun 2016 | WO |
2016094845 | Jun 2016 | WO |
2016094867 | Jun 2016 | WO |
2016094872 | Jun 2016 | WO |
2016094874 | Jun 2016 | WO |
2016094880 | Jun 2016 | WO |
2016094888 | Jun 2016 | WO |
2016097212 | Jun 2016 | WO |
2016097231 | Jun 2016 | WO |
2016097751 | Jun 2016 | WO |
2016099887 | Jun 2016 | WO |
2016100272 | Jun 2016 | WO |
2016100389 | Jun 2016 | WO |
2016100568 | Jun 2016 | WO |
2016100571 | Jun 2016 | WO |
2016100951 | Jun 2016 | WO |
2016100955 | Jun 2016 | WO |
2016100974 | Jun 2016 | WO |
2016103233 | Jun 2016 | WO |
2016104716 | Jun 2016 | WO |
2016106236 | Jun 2016 | WO |
2016106239 | Jun 2016 | WO |
2016106244 | Jun 2016 | WO |
2016106338 | Jun 2016 | WO |
2016108926 | Jul 2016 | WO |
2016109255 | Jul 2016 | WO |
2016109840 | Jul 2016 | WO |
2016110214 | Jul 2016 | WO |
2016110453 | Jul 2016 | WO |
2016110511 | Jul 2016 | WO |
2016110512 | Jul 2016 | WO |
2016111546 | Jul 2016 | WO |
2016112242 | Jul 2016 | WO |
2016112351 | Jul 2016 | WO |
2016112963 | Jul 2016 | WO |
2016113357 | Jul 2016 | WO |
2016114972 | Jul 2016 | WO |
2016115179 | Jul 2016 | WO |
2016115326 | Jul 2016 | WO |
2016115355 | Jul 2016 | WO |
2016116032 | Jul 2016 | WO |
2016120480 | Aug 2016 | WO |
2016123071 | Aug 2016 | WO |
2016123230 | Aug 2016 | WO |
2016123243 | Aug 2016 | WO |
2016123578 | Aug 2016 | WO |
2016126747 | Aug 2016 | WO |
2016130600 | Aug 2016 | WO |
2016130697 | Aug 2016 | WO |
2016131009 | Aug 2016 | WO |
2016132122 | Aug 2016 | WO |
2016133165 | Aug 2016 | WO |
2016135507 | Sep 2016 | WO |
2016135557 | Sep 2016 | WO |
2016135558 | Sep 2016 | WO |
2016135559 | Sep 2016 | WO |
2016137774 | Sep 2016 | WO |
2016137949 | Sep 2016 | WO |
2016141224 | Sep 2016 | WO |
2016141893 | Sep 2016 | WO |
2016142719 | Sep 2016 | WO |
2016145150 | Sep 2016 | WO |
2016148994 | Sep 2016 | WO |
2016149484 | Sep 2016 | WO |
2016149547 | Sep 2016 | WO |
2016150336 | Sep 2016 | WO |
2016150855 | Sep 2016 | WO |
2016154016 | Sep 2016 | WO |
2016154579 | Sep 2016 | WO |
2016154596 | Sep 2016 | WO |
2016155482 | Oct 2016 | WO |
2016161004 | Oct 2016 | WO |
2016161207 | Oct 2016 | WO |
2016161260 | Oct 2016 | WO |
2016161380 | Oct 2016 | WO |
2016161446 | Oct 2016 | WO |
2016164356 | Oct 2016 | WO |
2016164797 | Oct 2016 | WO |
2016166340 | Oct 2016 | WO |
2016167300 | Oct 2016 | WO |
2016168631 | Oct 2016 | WO |
2016170484 | Oct 2016 | WO |
2016172359 | Oct 2016 | WO |
2016172727 | Oct 2016 | WO |
2016174056 | Nov 2016 | WO |
2016174151 | Nov 2016 | WO |
2016174250 | Nov 2016 | WO |
2016176191 | Nov 2016 | WO |
2016176404 | Nov 2016 | WO |
2016176690 | Nov 2016 | WO |
2016177682 | Nov 2016 | WO |
2016178207 | Nov 2016 | WO |
2016179038 | Nov 2016 | WO |
2016179112 | Nov 2016 | WO |
2016181357 | Nov 2016 | WO |
2016182893 | Nov 2016 | WO |
2016182917 | Nov 2016 | WO |
2016182959 | Nov 2016 | WO |
2016183236 | Nov 2016 | WO |
2016183298 | Nov 2016 | WO |
2016183345 | Nov 2016 | WO |
2016183402 | Nov 2016 | WO |
2016183438 | Nov 2016 | WO |
2016183448 | Nov 2016 | WO |
2016184955 | Nov 2016 | WO |
2016184989 | Nov 2016 | WO |
2016185411 | Nov 2016 | WO |
2016186745 | Nov 2016 | WO |
2016186772 | Nov 2016 | WO |
2016186946 | Nov 2016 | WO |
2016186953 | Nov 2016 | WO |
2016187717 | Dec 2016 | WO |
2016187904 | Dec 2016 | WO |
2016191684 | Dec 2016 | WO |
2016191869 | Dec 2016 | WO |
2016196273 | Dec 2016 | WO |
2016196282 | Dec 2016 | WO |
2016196308 | Dec 2016 | WO |
2016196361 | Dec 2016 | WO |
2016196499 | Dec 2016 | WO |
2016196539 | Dec 2016 | WO |
2016196655 | Dec 2016 | WO |
2016196805 | Dec 2016 | WO |
2016196887 | Dec 2016 | WO |
2016197132 | Dec 2016 | WO |
2016197133 | Dec 2016 | WO |
2016197354 | Dec 2016 | WO |
2016197355 | Dec 2016 | WO |
2016197356 | Dec 2016 | WO |
2016197357 | Dec 2016 | WO |
2016197358 | Dec 2016 | WO |
2016197359 | Dec 2016 | WO |
2016197360 | Dec 2016 | WO |
2016197361 | Dec 2016 | WO |
2016197362 | Dec 2016 | WO |
2016198361 | Dec 2016 | WO |
2016198500 | Dec 2016 | WO |
2016200263 | Dec 2016 | WO |
2016201047 | Dec 2016 | WO |
2016201138 | Dec 2016 | WO |
2016201152 | Dec 2016 | WO |
2016201153 | Dec 2016 | WO |
2016201155 | Dec 2016 | WO |
2016205276 | Dec 2016 | WO |
2016205613 | Dec 2016 | WO |
2016205623 | Dec 2016 | WO |
2016205680 | Dec 2016 | WO |
2016205688 | Dec 2016 | WO |
2016205703 | Dec 2016 | WO |
2016205711 | Dec 2016 | WO |
2016205728 | Dec 2016 | WO |
2016205745 | Dec 2016 | WO |
2016205749 | Dec 2016 | WO |
2016205759 | Dec 2016 | WO |
2016205764 | Dec 2016 | WO |
2017001572 | Jan 2017 | WO |
2017001988 | Jan 2017 | WO |
2017004261 | Jan 2017 | WO |
2017004279 | Jan 2017 | WO |
2017004616 | Jan 2017 | WO |
2017005807 | Jan 2017 | WO |
2017009399 | Jan 2017 | WO |
2017010556 | Jan 2017 | WO |
2017011519 | Jan 2017 | WO |
2017011721 | Jan 2017 | WO |
2017011804 | Jan 2017 | WO |
2017015015 | Jan 2017 | WO |
2017015101 | Jan 2017 | WO |
2017015545 | Jan 2017 | WO |
2017015567 | Jan 2017 | WO |
2017015637 | Jan 2017 | WO |
2017017016 | Feb 2017 | WO |
2017019867 | Feb 2017 | WO |
2017019895 | Feb 2017 | WO |
2017023803 | Feb 2017 | WO |
2017023974 | Feb 2017 | WO |
2017024047 | Feb 2017 | WO |
2017024319 | Feb 2017 | WO |
2017024343 | Feb 2017 | WO |
2017024602 | Feb 2017 | WO |
2017025323 | Feb 2017 | WO |
2017027423 | Feb 2017 | WO |
2017028768 | Feb 2017 | WO |
2017029664 | Feb 2017 | WO |
2017031360 | Feb 2017 | WO |
2017031483 | Feb 2017 | WO |
2017035416 | Mar 2017 | WO |
2017040348 | Mar 2017 | WO |
2017040511 | Mar 2017 | WO |
2017040709 | Mar 2017 | WO |
2017040786 | Mar 2017 | WO |
2017040793 | Mar 2017 | WO |
2017040813 | Mar 2017 | WO |
2017043573 | Mar 2017 | WO |
2017043656 | Mar 2017 | WO |
2017044419 | Mar 2017 | WO |
2017044776 | Mar 2017 | WO |
2017044857 | Mar 2017 | WO |
2017049129 | Mar 2017 | WO |
2017050963 | Mar 2017 | WO |
2017053312 | Mar 2017 | WO |
2017053431 | Mar 2017 | WO |
2017053713 | Mar 2017 | WO |
2017053729 | Mar 2017 | WO |
2017053753 | Mar 2017 | WO |
2017053762 | Mar 2017 | WO |
2017053879 | Mar 2017 | WO |
2017058658 | Apr 2017 | WO |
2017059241 | Apr 2017 | WO |
2017062605 | Apr 2017 | WO |
2017062723 | Apr 2017 | WO |
2017062754 | Apr 2017 | WO |
2017062855 | Apr 2017 | WO |
2017062886 | Apr 2017 | WO |
2017062983 | Apr 2017 | WO |
2017064439 | Apr 2017 | WO |
2017064546 | Apr 2017 | WO |
2017064566 | Apr 2017 | WO |
2017066175 | Apr 2017 | WO |
2017066497 | Apr 2017 | WO |
2017066588 | Apr 2017 | WO |
2017066707 | Apr 2017 | WO |
2017068077 | Apr 2017 | WO |
2017068377 | Apr 2017 | WO |
2017069829 | Apr 2017 | WO |
2017070029 | Apr 2017 | WO |
2017070032 | Apr 2017 | WO |
2017070169 | Apr 2017 | WO |
2017070284 | Apr 2017 | WO |
2017070598 | Apr 2017 | WO |
2017070605 | Apr 2017 | WO |
2017070632 | Apr 2017 | WO |
2017070633 | Apr 2017 | WO |
2017072590 | May 2017 | WO |
2017074526 | May 2017 | WO |
2017074962 | May 2017 | WO |
2017075261 | May 2017 | WO |
2017075335 | May 2017 | WO |
2017075475 | May 2017 | WO |
2017077135 | May 2017 | WO |
2017077329 | May 2017 | WO |
2017078751 | May 2017 | WO |
2017079400 | May 2017 | WO |
2017079428 | May 2017 | WO |
2017079673 | May 2017 | WO |
2017079724 | May 2017 | WO |
2017081097 | May 2017 | WO |
2017081288 | May 2017 | WO |
2017083368 | May 2017 | WO |
2017083722 | May 2017 | WO |
2017083766 | May 2017 | WO |
2017087395 | May 2017 | WO |
2017090724 | Jun 2017 | WO |
2017091510 | Jun 2017 | WO |
2017091630 | Jun 2017 | WO |
2017092201 | Jun 2017 | WO |
2017093370 | Jun 2017 | WO |
2017093969 | Jun 2017 | WO |
2017095111 | Jun 2017 | WO |
2017096041 | Jun 2017 | WO |
2017096237 | Jun 2017 | WO |
2017100158 | Jun 2017 | WO |
2017100431 | Jun 2017 | WO |
2017104404 | Jun 2017 | WO |
2017105251 | Jun 2017 | WO |
2017105350 | Jun 2017 | WO |
2017105991 | Jun 2017 | WO |
2017106414 | Jun 2017 | WO |
2017106528 | Jun 2017 | WO |
2017106537 | Jun 2017 | WO |
2017106569 | Jun 2017 | WO |
2017106616 | Jun 2017 | WO |
2017106657 | Jun 2017 | WO |
2017106767 | Jun 2017 | WO |
2017109134 | Jun 2017 | WO |
2017109757 | Jun 2017 | WO |
2017112620 | Jun 2017 | WO |
2017115268 | Jun 2017 | WO |
2017115268 | Jul 2017 | WO |
2017117395 | Jul 2017 | WO |
2017118598 | Jul 2017 | WO |
2017118720 | Jul 2017 | WO |
2017123609 | Jul 2017 | WO |
2017123910 | Jul 2017 | WO |
2017124086 | Jul 2017 | WO |
2017124100 | Jul 2017 | WO |
2017124652 | Jul 2017 | WO |
2017126987 | Jul 2017 | WO |
2017127807 | Jul 2017 | WO |
2017131237 | Aug 2017 | WO |
2017132112 | Aug 2017 | WO |
2017132580 | Aug 2017 | WO |
2017136520 | Aug 2017 | WO |
2017136629 | Aug 2017 | WO |
2017136794 | Aug 2017 | WO |
2017139264 | Aug 2017 | WO |
2017139505 | Aug 2017 | WO |
2017141173 | Aug 2017 | WO |
2017142835 | Aug 2017 | WO |
2017142999 | Aug 2017 | WO |
2017143042 | Aug 2017 | WO |
2017147278 | Aug 2017 | WO |
2017147432 | Aug 2017 | WO |
2017147446 | Aug 2017 | WO |
2017147555 | Aug 2017 | WO |
2017151444 | Sep 2017 | WO |
2017151719 | Sep 2017 | WO |
2017152015 | Sep 2017 | WO |
2017155717 | Sep 2017 | WO |
2017157422 | Sep 2017 | WO |
2017158153 | Sep 2017 | WO |
2017160689 | Sep 2017 | WO |
2017160752 | Sep 2017 | WO |
2017160890 | Sep 2017 | WO |
2017161068 | Sep 2017 | WO |
2017165826 | Sep 2017 | WO |
2017165862 | Sep 2017 | WO |
2017172644 | Oct 2017 | WO |
2017172645 | Oct 2017 | WO |
2017172860 | Oct 2017 | WO |
2017173004 | Oct 2017 | WO |
2017173054 | Oct 2017 | WO |
2017173092 | Oct 2017 | WO |
2017174329 | Oct 2017 | WO |
2017176529 | Oct 2017 | WO |
2017176806 | Oct 2017 | WO |
2017178590 | Oct 2017 | WO |
2017180694 | Oct 2017 | WO |
2017180711 | Oct 2017 | WO |
2017180915 | Oct 2017 | WO |
2017180926 | Oct 2017 | WO |
2017181107 | Oct 2017 | WO |
2017181735 | Oct 2017 | WO |
2017182468 | Oct 2017 | WO |
2017184334 | Oct 2017 | WO |
2017184768 | Oct 2017 | WO |
2017184786 | Oct 2017 | WO |
2017186550 | Nov 2017 | WO |
2017189308 | Nov 2017 | WO |
2017189336 | Nov 2017 | WO |
2017190041 | Nov 2017 | WO |
2017190257 | Nov 2017 | WO |
2017190664 | Nov 2017 | WO |
2017191210 | Nov 2017 | WO |
2017191274 | Nov 2017 | WO |
2017192172 | Nov 2017 | WO |
2017192512 | Nov 2017 | WO |
2017192544 | Nov 2017 | WO |
2017192573 | Nov 2017 | WO |
2017193029 | Nov 2017 | WO |
2017193053 | Nov 2017 | WO |
2017196768 | Nov 2017 | WO |
2017197038 | Nov 2017 | WO |
2017197238 | Nov 2017 | WO |
2017197301 | Nov 2017 | WO |
2017201476 | Nov 2017 | WO |
2017205290 | Nov 2017 | WO |
2017205423 | Nov 2017 | WO |
2017207589 | Dec 2017 | WO |
2017208247 | Dec 2017 | WO |
2017209809 | Dec 2017 | WO |
2017213896 | Dec 2017 | WO |
2017213898 | Dec 2017 | WO |
2017214460 | Dec 2017 | WO |
2017216392 | Dec 2017 | WO |
2017216771 | Dec 2017 | WO |
2017218185 | Dec 2017 | WO |
2017219027 | Dec 2017 | WO |
2017219033 | Dec 2017 | WO |
2017220751 | Dec 2017 | WO |
2017222370 | Dec 2017 | WO |
2017222773 | Dec 2017 | WO |
2017222834 | Dec 2017 | WO |
2017223107 | Dec 2017 | WO |
2017223330 | Dec 2017 | WO |
2018000657 | Jan 2018 | WO |
2018002719 | Jan 2018 | WO |
2018005117 | Jan 2018 | WO |
2018005289 | Jan 2018 | WO |
2018005691 | Jan 2018 | WO |
2018005782 | Jan 2018 | WO |
2018005873 | Jan 2018 | WO |
201806693 | Jan 2018 | WO |
2018009520 | Jan 2018 | WO |
2018009562 | Jan 2018 | WO |
2018009822 | Jan 2018 | WO |
2018013821 | Jan 2018 | WO |
2018013932 | Jan 2018 | WO |
2018013990 | Jan 2018 | WO |
2018014384 | Jan 2018 | WO |
2018015444 | Jan 2018 | WO |
2018015936 | Jan 2018 | WO |
2018017754 | Jan 2018 | WO |
2018018979 | Feb 2018 | WO |
2018020248 | Feb 2018 | WO |
2018022480 | Feb 2018 | WO |
2018022634 | Feb 2018 | WO |
2018025206 | Feb 2018 | WO |
2018026723 | Feb 2018 | WO |
2018026976 | Feb 2018 | WO |
2018027078 | Feb 2018 | WO |
2018030608 | Feb 2018 | WO |
2018031683 | Feb 2018 | WO |
2018035250 | Feb 2018 | WO |
2018035300 | Feb 2018 | WO |
2018035423 | Feb 2018 | WO |
2018035503 | Feb 2018 | WO |
2018039145 | Mar 2018 | WO |
2018039438 | Mar 2018 | WO |
2018039440 | Mar 2018 | WO |
2018039448 | Mar 2018 | WO |
2018045630 | Mar 2018 | WO |
2018048827 | Mar 2018 | WO |
2018049073 | Mar 2018 | WO |
2018049168 | Mar 2018 | WO |
2018051347 | Mar 2018 | WO |
2018058064 | Mar 2018 | WO |
2018062866 | Apr 2018 | WO |
2018064352 | Apr 2018 | WO |
2018064371 | Apr 2018 | WO |
2018064516 | Apr 2018 | WO |
2018067546 | Apr 2018 | WO |
2018067846 | Apr 2018 | WO |
2018068053 | Apr 2018 | WO |
2018069474 | Apr 2018 | WO |
2018071623 | Apr 2018 | WO |
2018071663 | Apr 2018 | WO |
2018071868 | Apr 2018 | WO |
2018071892 | Apr 2018 | WO |
2018074979 | Apr 2018 | WO |
2018079134 | May 2018 | WO |
2018080573 | May 2018 | WO |
2018081504 | May 2018 | WO |
2018081535 | May 2018 | WO |
2018081728 | May 2018 | WO |
2018083128 | May 2018 | WO |
2018083606 | May 2018 | WO |
2018085288 | May 2018 | WO |
2018085414 | May 2018 | WO |
2018086623 | May 2018 | WO |
2018089664 | May 2018 | WO |
2018093990 | May 2018 | WO |
2018098383 | May 2018 | WO |
2018098480 | May 2018 | WO |
2018098587 | Jun 2018 | WO |
2018099256 | Jun 2018 | WO |
2018103686 | Jun 2018 | WO |
2018106268 | Jun 2018 | WO |
2018107028 | Jun 2018 | WO |
2018107103 | Jun 2018 | WO |
2018107129 | Jun 2018 | WO |
2018108272 | Jun 2018 | WO |
2018109101 | Jun 2018 | WO |
2018111946 | Jun 2018 | WO |
2018111947 | Jun 2018 | WO |
2018112336 | Jun 2018 | WO |
2018112446 | Jun 2018 | WO |
2018119354 | Jun 2018 | WO |
2018119359 | Jun 2018 | WO |
2018120283 | Jul 2018 | WO |
2018130830 | Jul 2018 | WO |
2018135838 | Jul 2018 | WO |
2018136396 | Jul 2018 | WO |
2018138385 | Aug 2018 | WO |
2018142364 | Aug 2018 | WO |
2018148246 | Aug 2018 | WO |
2018148256 | Aug 2018 | WO |
2018148647 | Aug 2018 | WO |
2018149418 | Aug 2018 | WO |
2018149888 | Aug 2018 | WO |
2018149915 | Aug 2018 | WO |
2018152197 | Aug 2018 | WO |
2018152418 | Aug 2018 | WO |
2018154380 | Aug 2018 | WO |
2018154387 | Aug 2018 | WO |
2018154412 | Aug 2018 | WO |
2018154413 | Aug 2018 | WO |
2018154418 | Aug 2018 | WO |
2018154439 | Aug 2018 | WO |
2018154459 | Aug 2018 | WO |
2018154462 | Aug 2018 | WO |
2018156372 | Aug 2018 | WO |
2018156824 | Aug 2018 | WO |
2018161009 | Sep 2018 | WO |
2018165504 | Sep 2018 | WO |
2018165629 | Sep 2018 | WO |
2018170015 | Sep 2018 | WO |
2018170340 | Sep 2018 | WO |
2018175502 | Sep 2018 | WO |
2018176009 | Sep 2018 | WO |
2018177351 | Oct 2018 | WO |
2018179578 | Oct 2018 | WO |
2018183403 | Oct 2018 | WO |
2018189184 | Oct 2018 | WO |
2018195402 | Oct 2018 | WO |
2018195545 | Oct 2018 | WO |
2018195555 | Oct 2018 | WO |
2018197020 | Nov 2018 | WO |
2018197495 | Nov 2018 | WO |
2018202800 | Nov 2018 | WO |
2018204493 | Nov 2018 | WO |
2018208755 | Nov 2018 | WO |
2018208998 | Nov 2018 | WO |
2018209158 | Nov 2018 | WO |
2018209320 | Nov 2018 | WO |
2018213351 | Nov 2018 | WO |
2018213708 | Nov 2018 | WO |
2018213726 | Nov 2018 | WO |
2018213771 | Nov 2018 | WO |
2018213791 | Nov 2018 | WO |
2018217852 | Nov 2018 | WO |
2018217981 | Nov 2018 | WO |
2018218166 | Nov 2018 | WO |
2018218188 | Nov 2018 | WO |
2018218206 | Nov 2018 | WO |
2019005884 | Jan 2019 | WO |
2019005886 | Jan 2019 | WO |
2019010384 | Jan 2019 | WO |
2019023680 | Jan 2019 | WO |
2019051097 | Mar 2019 | WO |
2019079347 | Apr 2019 | WO |
2019118949 | Jun 2019 | WO |
2019139645 | Jul 2019 | WO |
2019139951 | Jul 2019 | WO |
2019147014 | Aug 2019 | WO |
2019226953 | Nov 2019 | WO |
2020014261 | Jan 2020 | WO |
2020028555 | Feb 2020 | WO |
2020041751 | Feb 2020 | WO |
2020047124 | Mar 2020 | WO |
2020051360 | Mar 2020 | WO |
2020086908 | Apr 2020 | WO |
2020092453 | May 2020 | WO |
2020102659 | May 2020 | WO |
2020154500 | Jul 2020 | WO |
2020181178 | Sep 2020 | WO |
2020181180 | Sep 2020 | WO |
2020181193 | Sep 2020 | WO |
2020181195 | Sep 2020 | WO |
2020181202 | Sep 2020 | WO |
2020191153 | Sep 2020 | WO |
2020191171 | Sep 2020 | WO |
2020191233 | Sep 2020 | WO |
2020191234 | Sep 2020 | WO |
2020191239 | Sep 2020 | WO |
2020191241 | Sep 2020 | WO |
2020191242 | Sep 2020 | WO |
2020191243 | Sep 2020 | WO |
2020191245 | Sep 2020 | WO |
2020191246 | Sep 2020 | WO |
2020191248 | Sep 2020 | WO |
2020191249 | Sep 2020 | WO |
2020210751 | Oct 2020 | WO |
2020214842 | Oct 2020 | WO |
2020236982 | Nov 2020 | WO |
2021025750 | Feb 2021 | WO |
2021030666 | Feb 2021 | WO |
2021072328 | Apr 2021 | WO |
2021108717 | Jun 2021 | WO |
2021155065 | Aug 2021 | WO |
2021158921 | Aug 2021 | WO |
2021158995 | Aug 2021 | WO |
2021158999 | Aug 2021 | WO |
2021222318 | Nov 2021 | WO |
2021226558 | Nov 2021 | WO |
2023039440 | Mar 2023 | WO |
2023039447 | Mar 2023 | WO |
Entry |
---|
Chen et al.,“Targeting genomic rearrangements in tumor cells through Cas0-mediated insertion of a suicide gene”, Nature Biotechnology, vol. 35, No. 6, pp. 543-552 June (Year: 2017). |
Zhou et al., “Cas12a variants designed for lower genome-wide off-target effect through stringent PAM recognition”, Molecular Therapy, vol. 30, No. 1 , pp. 1-12 Jan. (Year: 2022). |
Doudna, “The promise and challenge of therapeutic genome editing”, Nature vol. 578 pp. 229-236, Feb. (Year: 2020). |
Wan et al.,“ Material solutions for delivery of CRISPR/Cas-based genome editing tools: current status and future outlook”, Materials Today vol. 26, pp. 40-66 June (Year: 2019). |
Song et al.,“ Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy”, Advanced Drug Delivery Reviews 168: 150-180 (Year: 2021). |
U.S. Appl. No. 61/716,256, filed Oct. 19, 2012, Jinek et al.. |
U.S. Appl. No. 61/717,324, filed Oct. 23, 2012, Cho et al. |
U.S. Appl. No. 61/734,256, filed Dec. 6, 2012, Chen et al. |
U.S. Appl. No. 61/758,624, filed Jan. 30, 2013, Chen et al. |
U.S. Appl. No. 61/761,046, filed Feb. 5, 2013, Knight et al. |
U.S. Appl. No. 61/794,422, filed Mar. 15, 2013, Knight et al. |
U.S. Appl. No. 61/803,599, filed Mar. 20, 2013, Kim et al. |
U.S. Appl. No. 61/837,481, filed Jun. 20, 2013, Cho et al. |
U.S. Appl. No. 61/838,178, filed Jun. 21, 2013, Joung et al. |
U.S. Appl. No. 61/874,682, filed Sep. 6, 2013, Liu et al. |
U.S. Appl. No. 61/874,746, filed Sep. 6, 2013, Liu et al. |
U.S. Appl. No. 62/288,661, filed Jan. 29, 2016, Muir et al. |
U.S. Appl. No. 62/357,332, filed Jun. 30, 2016, Liu et al. |
U.S. Appl. No. 62/498,686. |
Extended European Search Report for EP 19181479.7, mailed Oct. 31, 2019. |
International Search Report and Written Opinion for PCT/US2014/070038, mailed Apr. 14, 2015. |
International Preliminary Report on Patentability for PCT/US2014/070038, mailed Jun. 23, 2016. |
[No. Author Listed] “FokI” from New England Biolabs Inc. Last accessed online via https://www.neb.com/products/r0109-foki#Product%20Information on Mar. 19, 2021. 1 page. |
[No. Author Listed] “Nucleic Acids Sizes and Molecular Weights.” Printed Mar. 19, 2021. 2 pages. |
[No. Author Listed] “Zinc Finger Nuclease” from Wikipedia. Retrieved from https://en.wikipedia.org/w/index.php?title=Zinc_finger_nuclease&oldid=1007053318. Page last edited Feb. 16, 2021. Printed on Mar. 19, 2021. |
[No. Author Listed] ATCC Catalogue of Bacteria and Bacteriophage. Gherna et al., Eds. 1992. |
[No Author Listed] NCBI Accession No. XP_015843220.1. C->U editing enzyme APOBEC-1 [Peromyscus maniculatus bairdii], XP002793540. |
[No Author Listed] NCBI Accession No. XP_015843220.1. C->U editing enzyme APOBEC-1 [Peromyscus maniculatus bairdii], XP002793540. Mar. 21, 2016. |
[No Author Listed] NCBI Accession No. XP_021505673.1. C->U editing enzyme APOBEC-1 [Meriones unguiculatus], XP002793541. |
[No Author Listed] NCBI Accession No. XP_021505673.1. C->U editing enzyme APOBEC-1 [Meriones unguiculatus], XP002793541. Jun. 27, 2017. |
[No. Author Listed] Score result for SEQ 355 to W02017032580. Muir et al. 2016. |
[No Author Listed], EMBL Accession No. Q99ZW2. Nov. 2012. 2 pages. |
[No. Author Listed], Invitrogen Lipofectamine™ 2000 product sheets, 2002. 2 pages. |
[No. Author Listed], Invitrogen Lipofectamine™ 2000 product sheets, 2005. 3 pages. |
[No. Author Listed], Invitrogen Lipofectamine™ LTX product sheets, 2011. 4 pages. |
[No. Author Listed], Thermo Fisher Scientific—How Cationic Lipid Mediated Transfection Works, retrieved from the internet Aug. 27, 2015. 2 pages. |
Abremski et al., Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J Biol Chem. Feb. 10, 1984;259(3):1509-14. |
Abudayyeh et al., C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science Aug. 2016;353(6299):aaf5573. DOI: 10.1126/science.aaf5573. |
Ada et al., Carbohydrate-protein conjugate vaccines. Clin Microbiol Infect. Feb. 2003;9(2):79-85. doi: 10.1046/j.1469-0691.2003.00530.x. |
Adamala et al., Programmable RNA-binding protein composed of repeats of a single modular unit. Proc Natl Acad Sci U S A. May 10, 2016;113(19):E2579-88. doi: 10.1073/pnas.1519368113. Epub Apr. 26, 2016. |
Adams et al., New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc. May 29, 2002;124(21):6063-76. doi: 10.1021/ja017687n. |
Addgene Plasmid # 44246. pdCas9-humanized, 2017, Stanley Qi. |
Addgene Plasmid # 73021. PCMV-BE3, 2017, David Liu. |
Addgene Plasmid # 79620. pcDNA3.1_pCMV-nCas-PmCDA1-ugi pH1-gRNA(HPRT), 2017, Akihiko Kondo. |
Adrian et al., Targeted SAINT-O-Somes for improved intracellular delivery of siRNA and cytotoxic drugs into endothelial cells. J Control Release. Jun. 15, 2010;144(3):341-9. doi: 10.1016/j.jconrel.2010.03.003. Epub Mar. 11, 2010. |
Advisory Action, mailed Dec. 21, 2015, in connection with U.S. Appl. No. 14/326,303. |
Advisory Action, mailed Sep. 23, 2015, in connection with U.S. Appl. No. 14/326,318. |
Advisory Action mailed Nov. 28, 2016 in connection with U.S. Appl. No. 14/325,815. |
Advisory Action mailed Sep. 16, 2015 in connection with U.S. Appl. No. 14/325,815. |
Advisory Action, mailed Feb. 5, 2016, in connection with U.S. Appl. No. 14/326,290. |
Advisory Action, mailed Jul. 6, 2018, in connection with U.S. Appl. No. 14/326,290. |
Advisory Action, mailed Jun. 16, 2017, in connection with U.S. Appl. No. 14/326,318. |
Advisory Action, mailed Nov. 26, 2016, in connection with U.S. Appl. No. 14/326,109. |
Advisory Action, mailed Sep. 15, 2015, in connection with U.S. Appl. No. 14/326,140. |
Aguilera et al., Systemic in vivo distribution of activatable cell penetrating peptides is superior to that of cell penetrating peptides. Integr Biol (Camb). Jun. 2009;1(5-6):371-81. doi: 10.1039/b904878b. Epub May 11, 2009. |
Aguilo et al., Coordination of m(6)A mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming. Cell Stem Cell. Dec. 3, 2015;17(6):689-704. doi: 10.1016/j.stem.2015.09.005. Epub Oct. 29, 2015. |
Ahmad et al., Antibody-mediated specific binding and cytotoxicity of liposome-entrapped doxorubicin to lung cancer cells in vitro. Cancer Res. Sep. 1, 1992;52(17):4817-20. |
Aihara et al., A conformational switch controls the DNA cleavage activity of lambda integrase. Mol Cell. Jul. 2003;12(1):187-98. |
Aik et al., Structure of human RNA N?-methyladenine demethylase ALKBH5 provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res. Apr. 2014;42(7):4741-54. doi: 10.1093/nar/gku085. Epub Jan. 30, 2014. |
Akinc et al., A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat Biotechnol. May 2008;26(5):561-9. doi: 10.1038/nbt1402. Epub Apr. 27, 2008. |
Akins et al., Mitochondrial plasmids of Neurospora: integration into mitochondrial DNA and evidence for reverse transcription in mitochondria. Cell. Nov. 21, 1986;47(4):505-16. doi: 10.1016/0092-8674(86)90615-x. |
Akinsheye et al., Fetal hemoglobin in sickle cell anemia. Blood. Jul. 7, 2011;118(1):19-27. doi: 10.1182/blood-2011-03-325258. Epub Apr. 13, 2011. |
Akopian et al., Chimeric recombinases with designed DNA sequence recognition. Proc Natl Acad Sci U S A. Jul. 22, 2003;100(15):8688-91. Epub Jul. 1, 2003. |
Al-Taei et al., Intracellular traffic and fate of protein transduction domains HIV-1 Tat peptide and octaarginine. Implications for their utilization as drug delivery vectors. Bioconjug Chem. Jan.-Feb. 2006;17(1):90-100. |
Alarcón et al., HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events. Cell. Sep. 10, 2015;162(6):1299-308. doi: 10.1016/j.cell.2015.08.011. Epub Aug. 27, 2015. |
Alarcón et al., N6-methyladenosine marks primary microRNAs for processing. Nature. Mar. 26, 2015;519(7544):482-5. doi: 10.1038/nature14281. Epub Mar. 18, 2015. |
Alexander, HFE-associated hereditary hemochromatosis. Genet Med. May 2009;11(5):307-13. doi: 10.1097/GIM.0b013e31819d30f2. |
Alexandrov et al., Signatures of mutational processes in human cancer. Nature. Aug. 22, 2013;500(7463):415-21. doi: 10.1038/nature12477. Epub Aug. 14, 2013. |
Ali et al., Novel genetic abnormalities in Bernard-Soulier syndrome in India. Ann Hematol. Mar. 2014;93(3):381-4. doi: 10.1007/s00277-013-1895-x. Epub Sep. 1, 2013. |
Allen et al., Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. Jan. 2013;65(1):36-48. doi: 10.1016/j.addr.2012.09.037. Epub Oct. 1, 2012. |
Altschul et al., Basic local alignment search tool. J Mol Biol. Oct. 5, 1990;215(3):403-10. doi: 10.1016/S0022-2836(05)80360-2. |
Amato et al., Interpreting elevated fetal hemoglobin in pathology and health at the basic laboratory level: new and known γ-gene mutations associated with hereditary persistence of fetal hemoglobin. Int J Lab Hematol. Feb. 2014;36(1):13-9. doi: 10.1111/ijlh.12094. Epub Apr. 29, 2013. |
Ames et al., A eubacterial riboswich class that senses the coenzyme tetrahydrofolate. Chem Bio Jul. 30, 2010; 17(7);681-5. doi: 10.1016/j.chembio.2010.05.020. |
Ames et al., A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate. Chem Biol. Jul. 30, 2010;17(7):681-5. doi: 10.1016/j.chembiol.2010.05.020. |
Amrann et al., Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene. Sep. 30, 1988;69(2):301-15. |
Anders et al., Chapter One: In Vitro Enzymology of Cas9. in Methods in Enzymology, eds Doudna et al. 2014: 546:1-20. |
Anders et al., Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature. Sep. 25, 2014;513(7519):569-73. doi: 10.1038/nature13579. Epub Jul. 27, 2014. |
Anders et al., Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature. Sep. 25, 2014;513(7519):569-73. doi: 10.1038/nature13579. Epub Jul. 27, 2014. Europe PMC Funders Group. Author manuscript. Available OMC Mar. 25, 2015. |
Anderson, Human gene therapy. Science. May 8, 1992;256(5058):808-13. doi: 10.1126/science.1589762. |
André et al., Axotomy-induced expression of calcium-activated chloride current in subpopulations of mouse dorsal root ganglion neurons. J Neurophysiol. Dec. 2003;90(6):3764-73. doi: 10.1152/jn.00449.2003. Epub Aug. 27, 2003. |
Anzalone et al., Reprogramming eukaryotic translation with ligand-responsive synthetic RNA switches. Nat Methods. May 2016;13(5):453-8. doi: 10.1038/nmeth.3807. Epub Mar. 21, 2016. |
Anzalone et al., Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. Dec. 2019;576(7785):149-157. doi: 10.1038/s41586-019-1711-4. Epub Oct. 21, 2019. |
Aplan, Causes of oncogenic chromosomal translocation. Trends Genet. Jan. 2006;22(1):46-55. doi: 10.1016/j.tig.2005.10.002. Epub Oct. 28, 2005. |
Applicant Initiated Interview Summary, mailed Dec. 6, 2016, in connection with U.S. Appl. No. 14/326,290. |
Applicant Initiated Interview Summary, mailed May 2, 2017, in connection with U.S. Appl. No. 14/325,815. |
Applicant Intitiated Interview Summary, mailed May 22, 2017, in connection with U.S. Appl. No. 14/326,109. |
Arakawa et al., A method to convert mRNA into a gRNA library for CRISPR/Cas9 editing of any organism. Sci Adv. Aug. 24, 2016;2(8):e1600699. doi: 10.1126/sciadv.1600699. |
Araki et al., Comparative analysis of right element mutant lox sites on recombination efficiency in embryonic stem cells. BMC Biotechnol. Mar. 31, 2010;10:29. doi: 10.1186/1472-6750-10-29. |
Araki et al., Site-specific recombinase, R, encoded by yeast plasmid pSR1. J Mol Biol. May 5, 1992;225(1):25-37. doi: 10.1016/0022-2836(92)91023-i. |
Araki et al., Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res. Feb. 15, 1997;25(4):868-72. doi: 10.1093/nar/25.4.868. |
Arambula et al., Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement. Proc Natl Acad Sci U S A. May 14, 2013;110(20):8212-7. doi: 10.1073/pnas.1301366110. Epub Apr. 30, 2013. |
Arazoe et al., Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering. Biotechnol J. Sep. 2018;13(9):e1700596. doi: 10.1002/biot.201700596. Epub Jun. 19, 2018. |
Arbab et al., Cloning-free CRISPR. Stem Cell Reports. Nov. 10, 2015;5(5):908-917. doi: 10.1016/j.stemcr.2015.09.022. Epub Oct. 29, 2015. |
Arezi et al., Novel mutations in Moloney Murine Leukemia Virus reverse transcriptase increase thermostability through tighter binding to template-primer. Nucleic Acids Res. Feb. 2009;37(2):473-81. doi: 10.1093/nar/gkn952. Epub Dec. 4, 2008. |
Asante et al., A naturally occurring variant of the human prion protein completely prevents prion disease. Nature. Jun. 25, 2015;522(7557):478-81. doi: 10.1038/nature14510. Epub Jun. 10, 2015. |
Atkins et al., Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res. Sep. 6, 2016;44(15):7007-78. doi: 10.1093/nar/gkw530. Epub Jul. 19, 2016. |
Atlas et al., The Handbook of Microbiol Media. 1993. CRC Press. |
Auer et al., Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. Jan. 2014;24(1):142-53. doi: 10.1101/gr.161638.113. Epub Oct. 31, 2013. |
Autieri et al., IRT-1, a novel interferon-gamma-responsive transcript encoding a growth-suppressing basic leucine zipper protein. J Biol Chem. Jun. 12, 1998;273(24):14731-7. doi: 10.1074/jbc.273.24.14731. |
Avidan et al., The processivity and fidelity of DNA synthesis exhibited by the reverse transcriptase of bovine leukemia virus. Eur J Biochem. Feb. 2002;269(3):859-67. doi: 10.1046/j.0014-2956.2001.02719.x. |
Babacic et al., CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review. PLoS One. Feb. 22, 2019;14(2):e0212198. doi: 10.1371/journal.pone.0212198. |
Bachovchin et al., A high-throughput, multiplexed assay for superfamily-wide profiling of enzyme activity. Nat Chem Biol. Aug. 2014;10(8):656-63. doi: 10.1038/nchembio.1578. Epub Jul. 6, 2014. |
Bachovchin et al., Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes. Nat Biotechnol. Apr. 2009;27(4):387-94. doi: 10.1038/nbt.1531. Epub Mar. 29, 2009. |
Bachovchin et al., Superfamily-wide portrait of serine hydrolase inhibition achieved by library-versus-library screening. Proc Natl Acad Sci U S A. Dec. 7, 2010;107(49):20941-6. doi: 10.1073/pnas.1011663107. Epub Nov. 17, 2010. |
Bacman et al., Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med. Sep. 2013;19(9):1111-3. doi: 10.1038/nm.3261. Epub Aug. 4, 2013. |
Badran et al., Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature. May 5, 2016;533(7601):58-63. doi: 10.1038/nature17938. Epub Apr. 27, 2016. |
Badran et al., Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat Commun. Oct. 7, 2015;6:8425. doi: 10.1038/ncomms9425. |
Badran et al., In vivo continuous directed evolution. Curr Opin Chem Biol. Feb. 2015;24:1-10. doi: 10.1016/j.cbpa.2014.09.040. Epub Nov. 7, 2014. |
Bae et al., Microhomology-based choice of Cas9 nuclease target sites. Nat Methods. Jul. 2014;11(7):705-6. doi: 10.1038/nmeth.3015. |
Balakrishnan et al., Flap endonuclease 1. Annu Rev Biochem. 2013;82:119-38. doi: 10.1146/annurev-biochem-072511-122603. Epub Feb. 28, 2013. |
Baldari et al., A novel leader peptide which allows efficient secretion of a fragment of human interleukin 1 beta in Saccharomyces cerevisiae. Embo J. Jan. 1987;6(1):229-34. |
Banerjee et al., Cadmium inhibits mismatch repair by blocking the ATPase activity of the MSH2-MSH6 complex [published correction appears in Nucleic Acids Res. 2005;33(5):1738]. Nucleic Acids Res. 2005;33(4):1410-1419. Published Mar. 3, 2005. doi: 10.1093/nar/gki291. |
Banerji et al., A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell. Jul. 1983;33(3):729-40. doi: 10.1016/0092-8674(83)90015-6. |
Bannert et al., Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci U S A. Oct. 5, 2004;101 Suppl 2(Suppl 2):14572-9. doi: 10.1073/pnas.0404838101. Epub Aug. 13, 2004. |
Baranauskas et al., Generation and characterization of new highly thermostable and processive M-MuLV reverse transcriptase variants. Protein Eng Des Sel. Oct. 2012;25(10):657-68. doi: 10.1093/protein/gzs034. Epub Jun. 12, 2012. |
Barnes et al., Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 2004;38:445-76. |
Barnes et al., The fidelity of Taq polymerase catalyzing PCR is improved by an N-terminal deletion. Gene. Mar. 1, 1992;112(1):29-35. doi: 10.1016/0378-1119(92)90299-5. |
Barrangou et al., CRISPR provides acquired resistance against viruses in prokaryotes. Science. Mar. 23, 2007;315(5819):1709-12. |
Barrangou, RNA-mediated programmable DNA cleavage. Nat Biotechnol. Sep. 2012;30(9):836-8. doi: 10.1038/nbt.2357. |
Bartlett et al., Efficient expression of protein coding genes from the murine U1 small nuclear RNA promoters. Proc Natl Acad Sci U S A. Aug. 20, 1996;93(17):8852-7. doi: 10.1073/pnas.93.17.8852. |
Basturea et al., Substrate specificity and properties of the Escherichia coli 16S rRNA methyltransferase, RsmE. RNA. Nov. 2007;13(11):1969-76. doi: 10.1261/rna.700507. Epub Sep. 13, 2007. |
Batey et al., Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature. Nov. 18, 2004;432(7015):411-5. |
Beale et al., Comparison of the differential context-dependence of DNA deamination by APOBEC enzymes: correlation with mutation spectra in vivo. J Mol Biol. Mar. 26, 2004;337(3):585-96. |
Bebenek et al., Error-prone polymerization by HIV-1 reverse transcriptase. Contribution of template-primer misalignment, miscoding, and termination probability to mutational hot spots. J Biol Chem. May 15, 1993;268(14):10324-34. |
Bedell et al., In vivo genome editing using a high-efficiency TALEN system. Nature. Nov. 1, 2012;491(7422):114-8. Doi: 10.1038/nature11537. Epub Sep. 23, 2012. |
Begley, Scientists unveil the ‘most clever CRISPR gadget’ so far. STAT, Apr. 20, 2016. https://www.statnews.com/2016/04/20/clever-crispr-advance-unveiled/. |
Behr, Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy. Bioconjug Chem. Sep.-Oct 1994;5(5):382-9. doi: 10.1021/bc00029a002. |
Belshaw et al., Controlling programmed cell death with a cyclophilin-cyclosporin-based chemical inducer of dimerization. Chem Biol. Sep. 1996;3(9):731-8. doi: 10.1016/s1074-5521(96)90249-5. |
Belshaw et al., Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins. Proc Natl Acad Sci U S A. May 14, 1996;93(10):4604-7. doi: 10.1073/pnas.93.10.4604. |
Benarroch, HCN channels: function and clinical implications. Neurology. Jan. 15, 2013;80(3):304-10. doi: 10.1212/WNL.0b013e31827dec42. |
Bennett et al., Painful and painless channelopathies. Lancet Neurol. Jun. 2014;13(6):587-99. doi: 10.1016/S1474-4422(14)70024-9. Epub May 6, 2014. |
Berger et al., Reverse transcriptase and its associated ribonuclease H: interplay of two enzyme activities controls the yield of single-stranded complementary deoxyribonucleic acid. Biochemistry. May 10, 1983;22(10):2365-72. doi: 10.1021/bi00279a010. |
Berges et al., Transduction of brain by herpes simplex virus vectors. Mol Ther. Jan. 2007;15(1):20-9. doi: 10.1038/sj.mt.6300018. |
Berkhout et al., Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus. J Virol. Mar. 1999;73(3):2365-75. doi: 10.1128/JVI.73.3.2365-2375.1999. |
Bernhart et al., Local RNA base pairing probabilities in large sequences. Bioinformatics. Mar. 1, 2006;22(5):614-5. doi: 10.1093/bioinformatics/btk014. Epub Dec. 20, 2005. |
Bernstein et al., Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. Jan. 18, 2001;409(6818):363-6. doi: 10.1038/35053110. |
Bershtein et al., Advances in laboratory evolution of enzymes. Curr Opin Chem Biol. Apr. 2008;12(2):151-8. doi: 10.1016/j.cbpa.2008.01.027. Epub Mar. 7, 2008. Review. |
Bershtein S, Tawfik DS. Advances in laboratory evolution of enzymes. Curr Opin Chem Biol. 2008; 12(2): 151-8. PMID: 18284924. |
Bertolotti et al., Toward genosafe endonuclease-boosted gene targeting using breakthrough CRISP/Cas9 for next generation stem cell gene therapy culminating in efficient ex VIVO in VIVO gene repair/genomic editing. Molecular Therapy. May 2015;23(Suppl1):S139. Abstract 350. 18th Ann Meeting of the American Society of Gene and Cell Therapy. ASGCT 2015. New Orleans, LA. May 13-16, 2015. |
Bertrand et al., Localization of ASHI mRNA particles in living yeast. Mol Cell. Oct. 1998;2(4):437-45. doi: 10.1016/s1097-2765(00)80143-4. |
Beumer et al., Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics. Apr. 2006;172(4):2391-403. Epub Feb. 1, 2006. |
Bhagwat, DNA-cytosine deaminases: from antibody maturation to antiviral defense. DNA Repair (Amst). Jan. 5, 2004;3(1):85-9. |
Bi et al., Pseudo attP sites in favor of transgene integration and expression in cultured porcine cells identified by Streptomyces phage phiC31 integrase. BMC Mol Biol. Sep. 8, 2013;14:20. doi: 10.1186/1471-2199-14-20. |
Bibb et al., Integration and excision by the large serine recombinase phiRv1 integrase. Mol Microbiol. Mar. 2005;55(6):1896-910. doi: 10.1111/j.1365-2958.2005.04517.x. |
Bibikova et al., Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol. Jan. 2001;21(1):289-97. |
Bibikova et al., Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. Jul. 2002;161(3):1169-75. |
Biehs et al., DNA Double-Strand Break Resection Occurs during Non-homologous End Joining in G1 but Is Distinct from Resection during Homologous Recombination. Mol Cell. Feb. 16, 2017;65(4):671-684.e5. doi: 10.1016/j.molcel.2016.12.016. Epub Jan. 26, 2017. |
Billon et al., CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons. Mol Cell. Sep. 21, 2017;67(6):1068-1079.e4. doi: 10.1016/j.molcel.2017.08.008. Epub Sep. 7, 2017. |
Birling et al., Site-specific recombinases for manipulation of the mouse genome. Methods Mol Biol. 2009;561:245-63. doi: 10.1007/978-1-60327-019-9_16. |
Biswas et al., A structural basis for allosteric control of DNA recombination by lambda integrase. Nature. Jun. 23, 2005;435(7045):1059-66. doi: 10.1038/nature03657. |
Bitinaite et al., FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10570-5. |
Blaese et al., Vectors in cancer therapy: how will they deliver? Cancer Gene Ther. Dec. 1995;2(4):291-7. |
Blain et al., Nuclease activities of Moloney murine leukemia virus reverse transcriptase. Mutants with altered substrate specificities. J Biol Chem. Nov. 5, 1993;268(31):23585-92. |
Blaisonneau et al., A circular plasmid from the yeast Torulaspora delbrueckii. Plasmid. 1997;38(3):202-9. doi: 10.1006/plas.1997.1315. |
Blau et al., A proliferation switch for genetically modified cells. PNAS Apr. 1, 1997 94 (7) 3076-3081; https://doi.org/10.1073/pnas.94.7.3076. |
Bloom et al., Evolving strategies for enzyme engineering. Curr Opin Struct Biol. Aug. 2005;15(4):447-52. |
Boch et al., Breaking the code of DNA binding specificity of TAL-type III effectors. Science. Dec. 11, 2009;326(5959):1509-12. Doi: 10.1126/science.1178811. |
Boch, TALEs of genome targeting. Nat Biotechnol. Feb. 2011;29(2):135-6. Doi: 10.1038/nbt.1767. |
Bodi et al., Yeast m6A Methylated mRNAs Are Enriched on Translating Ribosomes during Meiosis, and under Rapamycin Treatment. PLoS One. Jul. 17, 2015;10(7):e0132090. doi: 10.1371/journal.pone.0132090. |
Boeckle et al., Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes. J Control Release. May 15, 2006;112(2):240-8. Epub Mar. 20, 2006. |
Boersma et al., Selection strategies for improved biocatalysts. Febs J. May 2007;274(9):2181-95. |
Bogdanove et al., TAL effectors: customizable proteins for DNA targeting. Science. Sep. 30, 2011;333(6051):1843-6. doi: 10.1126/science.1204094. |
Bohlke et al., Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion. FEMS Microbiol Lett. Feb. 2014;351(2):133-44. doi: 10.1111/1574-6968.12371. Epub Jan. 27, 2014. |
Bolotin et al., Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. Aug. 2005;151(Pt 8):2551-61. |
Bolusani et al., Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites. Nucleic Acids Res. 2006;34(18):5259-69. Epub Sep. 26, 2006. |
Bondeson et al., Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol. Aug. 2015;11(8):611-7. doi: 10.1038/nchembio.1858. Epub Jun. 10, 2015. |
Bondeson et al., Inversion of the IDS gene resulting from recombination with IDS-related sequences is a common cause of the Hunter syndrome. Hum Mol Genet. Apr. 1995;4(4):615-21. doi: 10.1093/hmg/4.4.615. |
Borchardt et al., Controlling mRNA stability and translation with the CRISPR endoribonuclease Csy4. RNA. Nov. 2015;21(11):1921-30. doi: 10.1261/rna.051227.115. Epub Sep. 9, 2015. |
Borman, Improved route to single-base genome editing. Chemical & Engineering News, Apr. 25, 2016;94(17)p5. http://cen.acs.org/articles/94/i17/Improved-route-single-base-genome.html. |
Bourinet et al., Silencing of the Cav3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. Embo J. Jan. 26, 2005;24(2):315-24. doi: 10.1038/sj.emboj.7600515. Epub Dec. 16, 2004. |
Boutabout et al., DNA synthesis fidelity by the reverse transcriptase of the yeast retrotransposon Ty1. Nucleic Acids Res. Jun. 1, 2001;29(11):2217-22. doi: 10.1093/nar/29.11.2217. |
Box et al., A multi-domain protein system based on the HC fragment of tetanus toxin for targeting DNA to neuronal cells. J Drug Target. Jul. 2003;11(6):333-43. doi: 10.1080/1061186310001634667. |
Branden and Tooze, Introduction to Protein Structure. 1999; 2nd edition. Garland Science Publisher: 3-12. |
Braun et al., Immunogenic duplex nucleic acids are nuclease resistant. J Immunol. Sep. 15, 1988;141(6):2084-9. |
Briner et al., Guide RNA functional modules direct Cas9 activity and orthogonality. Mol Cell. Oct. 23, 2014;56(2):333-339. doi: 10.1016/j.molcel.2014.09.019. |
Britt et al., Re-engineering plant gene targeting. Trends Plant Sci. Feb. 2003;8(2):90-5. |
Brouns et al., Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. Aug. 15, 2008;321(5891):960-4. doi: 10.1126/science.1159689. |
Brown et al., A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. Jun. 30, 1994;369(6483):756-8. doi: 10.1038/369756a0. |
Brown et al., Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea. J Bacteriol. Apr. 1990;172(4):1877-88. doi: 10.1128/jb.172.4.1877-1888.1990. |
Brown et al., Serine recombinases as tools for genome engineering. Methods. Apr. 2011;53(4):372-9. doi: 10.1016/j.ymeth.2010.12.031. Epub Dec. 30, 2010. |
Brown et al., Structural insights into the stabilization of MALATI noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol. Jul. 2014;21(7):633-40. doi: 10.1038/nsmb.2844. Epub Jun. 22, 2014. |
Brusse et al., Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype. Mov Disord. Mar. 2006;21(3):396-401. |
Brzezicha et al., Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res. 2006;34(20):6034-43. doi: 10.1093/nar/gk1765. Epub Oct. 27, 2006. |
Buchholz et al., Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat Biotechnol. Nov. 2001;19(11):1047-52. |
Buchschacher et al., Human immunodeficiency virus vectors for inducible expression of foreign genes. J Virol. May 1992;66(5):2731-9. doi: 10.1128/JVI.66.5.2731-2739.1992. |
Buchwald et al., Long-term, continuous intravenous heparin administration by an implantable infusion pump in ambulatory patients with recurrent venous thrombosis. Surgery. Oct. 1980;88(4):507-16. |
Buckley et al., Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1? interaction. J Am Chem Soc. Mar. 14, 2012;134(10):4465-8. doi: 10.1021/ja209924v. Epub Feb. 27, 2012. |
Budisa et al., Residue-specific bioincorporation of non-natural, biologically active amino acids into proteins as possible drug carriers: structure and stability of the per-thiaproline mutant of annexin V. Proc Natl Acad Sci U S A. Jan. 20, 1998;95(2):455-9. |
Budker et al., Protein/amphipathic polyamine complexes enable highly efficient transfection with minimal toxicity. Biotechniques. Jul. 1997;23(1):139, 142-7. doi: 10.2144/97231rr02. |
Budworth et al., A brief history of triplet repeat diseases. Methods Mol Biol. 2013;1010:3-17. doi: 10.1007/978-1-62703-411-1_1. |
Bulow et al., Multienzyme systems obtained by gene fusion. Trends Biotechnol. Jul. 1991;9(7):226-31. |
Bulyk et al., Exploring the DNA-binding specificities of zinc fingers with DNA microarrays. Proc Natl Acad Sci U S A. Jun. 19, 2001;98(13):7158-63. Epub Jun. 12, 2001. |
Burke et al., Activating mutations of Tn3 resolvase marking interfaces important in recombination catalysis and its regulation. Mol Microbiol. Feb. 2004;51(4):937-48. |
Burke et al., RNA Aptamers to the Adenosine Moiety of S-adenosyl Methionine: Structural Inferences From Variations on a Theme and the Reproducibility of SELEX. Nucleic Acids Res. May 15, 1997;25(10):2020-4. doi: 10.1093/nar/25.10.2020. |
Burstein et al., New CRISPR-Cas systems from uncultivated microbes. Nature Feb. 2017;542(7640):237-240. |
Burstein et al.: New CRISPR-Cas systems from uncultivated microbes. Nature. vol. 542. no. 7640. Dec. 22, 2016 (Dec. 22, 2016). pp. 237-241. XP055480893.GB ISSN: 0028-0836. DOI: 10.1038jnature21059. |
Burton et al., Gene delivery using herpes simplex virus vectors. DNA Cell Biol. Dec. 2002;21(12):915-36. doi: 10.1089/104454902762053864. |
Buskirk et al., Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc Natl Acad Sci U S A. Jul. 20, 2004;101(29):10505-10. Epub Jul. 9, 2004. |
Buskirk et al., In vivo evolution of an RNA-based transcriptional activator. Chem Biol. Jun. 2003; 10(6):533-40. doi: 10.1016/s1074-5521(03)00109-1. |
Buskirk et al: “Directed evolution of ligand dependence: Small molecule-activated protein splicing”, Proceedings National Academy of Sciences PNAS, val. 101, No. 29, Jul. 9, 2004 (Jul. 9, 2004), pp. 10505-10510,XP055452151. |
Byrne et al., Multiplex gene regulation: a two-tiered approach to transgene regulation in transgenic mice. Proc Natl Acad Sci U S A. Jul. 1989;86(14):5473-7. doi: 10.1073/pnas.86.14.5473. |
Böck et al., Selenocysteine: the 21st amino acid. Mol Microbiol. Mar. 1991;5(3):515-20. |
Cade et al., Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res. Sep. 2012;40(16):8001-10. Doi: 10.1093/nar/gks518. Epub Jun. 7, 2012. |
Cadwell et al., Randomization of genes by PCR mutagenesis. PCR Methods Appl. Aug. 1992;2(1):28-33. doi: 10.1101/gr.2.1.28. |
Cai et al., Reconstruction of ancestral protein sequences and its applications. BMC Evol Biol. Sep. 17, 2004;4:33. doi: 10.1186/1471-2148-4-33. |
Calame et al., Transcriptional controlling elements in the immunoglobulin and T cell receptor loci. Adv Immunol. 1988;43:235-75. doi: 10.1016/s0065-2776(08)60367-3. |
Caldecott et al., Single-strand break repair and genetic disease. Nat Rev Genet. Aug. 2008;9(8):619-31. doi: 10.1038/nrg2380. |
Camarero et al., Biosynthesis of a Head-to-Tail Cyclized Protein with Improved Biological Activity. J. Am. Chem. Soc. May 29, 1999; 121(23):5597-5598. https://doi.org/10.1021/ja990929n. |
Cameron, Recent advances in transgenic technology. Mol Biotechnol. Jun. 1997;7(3):253-65. |
Camper et al., Postnatal repression of the alpha-fetoprotein gene is enhancer independent. Genes Dev. Apr. 1989;3(4):537-46. doi: 10.1101/gad.3.4.537. |
Camps et al., Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. Proc Natl Acad Sci U S A. Aug. 19, 2003;100(17):9727-32. Epub Aug. 8, 2003. |
Canchaya et al., Genome analysis of an inducible prophage and prophage remnants integrated in the Streptococcus pyogenes strain SF370. Virology. Oct. 25, 2002;302(2):245-58. doi: 10.1006/viro.2002.1570. |
Canver et al., Customizing the genome as therapy for the β-hemoglobinopathies. Blood. May 26, 2016;127(21):2536-45. doi: 10.1182/blood-2016-01-678128. Epub Apr. 6, 2016. |
Cargill et al., Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. Jul. 1999;22(3):231-8. |
Carlier et al., Burkholderia cenocepacia H111 Rhy-family protein. Apr. 16, 2015. Retrieved from the Internet via https://www.ebi.ac.uk/ena/browser/api/embl/CDN65395.1?lineLimit=1000. Last retrieved Apr. 26, 2021. |
Carlson et al., Negative selection and stringency modulation in phage-assisted continuous evolution. Nat Chem Biol. Mar. 2014;10(3):216-22. doi: 10.1038/nchembio.1453. Epub Feb. 2, 2014. With Supplementary Results. |
Caron et al., Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Mol Ther. Mar. 2001;3(3):310-8. |
Carr et al., Genome engineering. Nat Biotechnol. Dec. 2009;27(12):1151-62. doi: 10.1038/nbt.1590. |
Carroll et al., Gene targeting in Drosophila and Caenorhabditis elegans with zinc-finger nucleases. Methods Mol Biol. 2008;435:63-77. doi: 10.1007/978-1-59745-232-8_5. |
Carroll et al., Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther. Nov. 2008;15(22):1463-8. doi: 10.1038/gt.2008.145. Epub Sep. 11, 2008. |
Carroll, a CRISPR approach to gene targeting. Mol Ther. Sep. 2012;20(9):1658-60. doi: 10.1038/mt.2012.171. |
Carroll, Genome engineering with zinc-finger nucleases. Genetics. Aug. 2011;188(4):773-82. doi: 10.1534/genetics.111.131433. Review. |
Carvalho et al., Evolution in health and medicine Sackler colloquium: Genomic disorders: a window into human gene and genome evolution. Proc Natl Acad Sci U S A. Jan. 26, 2010;107 Suppl 1(Suppl 1):1765-71. doi: 10.1073/pnas.0906222107. Epub Jan. 13, 2010. |
Caspi et al., Distribution of split DnaE inteins in cyanobacteria. Mol Microbiol. Dec. 2003;50(5):1569-77. doi: 10.1046/j.1365-2958.2003.03825.x. |
Cattaneo et al., SEL1L affects human pancreatic cancer cell cycle and invasiveness through modulation of PTEN and genes related to cell-matrix interactions. Neoplasia. 2005;7(11):1030-1038. |
Ceccaldi et al., Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol. Jan. 2016;26(1):52-64. doi: 10.1016/j.tcb.2015.07.009. Epub Oct. 1, 2015. |
Cermak et al., Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. Jul. 2011;39(12):e82. Doi: 10.1093/nar/gkr218. Epub Apr. 14, 2011. |
Chadalavada et al., Wild-type is the optimal sequence of the HDV ribozyme under cotranscriptional conditions. RNA. Dec. 2007;13(12):2189-201. doi: 10.1261/rna.778107. Epub Oct. 23, 2007. |
Chadwick et al., In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing. Arterioscler Thromb Vasc Biol. Sep. 2017;37(9):1741-1747. doi: 10.1161/ATVBAHA.117.309881. Epub Jul. 27, 2017. |
Chaikind et al., A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Res. Nov. 16, 2016;44(20):9758-9770. Epub Aug. 11, 2016. |
Chalberg et al., Integration specificity of phage phiC31 integrase in the human genome. J Mol Biol. Mar. 17, 2006;357(1):28-48. doi: 10.1016/j.jmb.2005.11.098. Epub Dec. 22, 2005. |
Chalberg et al., phiC31 integrase confers genomic integration and long-term transgene expression in rat retina. Invest Ophthalmol Vis Sci. Jun. 2005;46(6):2140-6. doi: 10.1167/iovs.04-1252. |
Chan et al., Novel selection methods for DNA-encoded chemical libraries. Curr Opin Chem Biol. 2015;26:55-61. doi: 10.1016/j.cbpa.2015.02.010. |
Chan et al., The choice of nucleotide inserted opposite abasic sites formed within chromosomal DNA reveals the polymerase activities participating in translesion DNA synthesis. DNA Repair (Amst). Nov. 2013;12(11):878-89. doi: 10.1016/j.dnarep.2013.07.008. Epub Aug. 26, 2013. |
Chang et al., Modification of DNA ends can decrease end joining relative to homologous recombination in mammalian cells. Proc Natl Acad Sci U S A. Jul. 1987;84(14):4959-63. |
Chapman et al., Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. Aug. 24, 2012;47(4):497-510. doi: 10.1016/j.molcel.2012.07.029. |
Chari et al., Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat Methods. Sep. 2015;12(9):823-6. doi: 10.1038/nmeth.3473. Epub Jul. 13, 2015. |
Charpentier et al., Biotechnology: Rewriting a genome. Nature. Mar. 7, 2013;495(7439):50-1. doi: 10.1038/495050a. |
Chaturvedi et al., Stabilization of triple-stranded oligonucleotide complexes: use of probes containing alternating phosphodiester and stereo-uniform cationic phosphoramidate linkages. Nucleic Acids Res. Jun. 15, 1996;24(12):2318-23. |
Chavez et al., Highly efficient Cas9-mediated transcriptional programming. Nat Methods. Apr. 2015;12(4):326-8. doi: 10.1038/nmeth.3312. Epub Mar. 2, 2015. |
Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. Proc Natl Acad Sci U S A. Apr. 3, 2018;115(14):3669-3673. doi: 10.1073/pnas.1718148115. Epub Mar. 19, 2018. bioRxiv preprint first posted online Jun. 14, 2016. |
Chavez et al., Therapeutic applications of the ?C31 integrase system. Curr Gene Ther. Oct. 2011;11(5):375-81. Review. |
Chavez et al., Therapeutic applications of the PhiC31 integrase system. Curr Gene Ther. Oct. 2011;11(5):375-81. Review. |
Chelico et al., Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G. J Biol Chem. Oct. 9, 2009;284(41):27761-5. doi: 10.1074/jbc.R109.052449. Epub Aug. 13, 2009. |
Chelico et al., Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G. Philos Trans R Soc Lond B Biol Sci. Mar. 12, 2009;364(1517):583-93. doi: 10.1098/rstb.2008.0195. |
Chen et al., A general strategy for the evolution of bond-forming enzymes using yeast display. Proc Natl Acad Sci U S A. Jul. 12, 2011;108(28):11399-404. doi: 10.1073/pnas.1101046108. Epub Jun. 22, 2011. |
Chen et al., Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. Oct. 2013;65(10):1357-69. doi: 10.1016/j.addr.2012.09.039. Epub Sep. 29, 2012. |
Chen et al., Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell. Mar. 12, 2015;160(6):1246-60. doi: 10.1016/j.cell.2015.02.038. Epub Mar. 5, 2015. |
Chen et al., Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes. J Biol Chem. Jul. 8, 2016;291(28):14457-67. doi: 10.1074/jbc.M116.733154. Epub May 5, 2016. |
Chen et al., m(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell. Mar. 5, 2015;16(3):289-301. doi: 10.1016/j.stem.2015.01.016. Epub Feb. 12, 2015. |
Chen et al., Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature. Mar. 6, 2008;452(7183):116-9. doi: 10.1038/nature06638. Epub Feb. 20, 2008. |
Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013; 65(10): 1357-69. PMID: 23026637. |
Chew et al., A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. Oct. 2016;13(10):868-74. doi: 10.1038/nmeth.3993. Epub Sep. 5, 2016. |
Chew et al., A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. Oct. 2016;13(10):868-74. doi: 10.1038/nmeth.3993. Epub Sep. 5, 2016. Supplementary Information. |
Chichili et al., Linkers in the structural biology of protein-protein interactions. Protein Science. 2013;22:153-67. |
Chin et al., Addition of a photocrosslinking amino acid to the genetic code of Escherichiacoli. Proc Natl Acad Sci U S A. Aug. 20, 2002;99(17):11020-4. Epub Aug. 1, 2002. |
Chin et al., In vivo photocrosslinking with unnatural amino Acid mutagenesis. Chembiochem. Nov. 4, 2002;3(11):1135-7. |
Chin, Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem. 2014;83:379-408. doi: 10.1146/annurev-biochem-060713-035737. Epub Feb. 10, 2014. |
Chipev et al., A leucine—proline mutation in the H1 subdomain of keratin 1 causes epidermolytic hyperkeratosis. Cell. Sep. 4, 1992;70(5):821-8. |
Cho et al., Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. Jan. 2014;24(1):132-41. doi: 10.1101/gr.162339.113. Epub Nov. 19, 2013. |
Cho et al., Site-specific recombination of bacteriophage P22 does not require integration host factor. J Bacteriol. Jul. 1999; 181(14):4245-9. doi: 10.1128/JB.181.14.4245-4249.1999. |
Cho et al., Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. Mar. 2013;31(3):230-2. doi: 10.1038/nbt.2507. Epub Jan. 29, 2013. |
Cho et al., The calcium-activated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons. Nat Neurosci. May 27, 2012;15(7):1015-21. doi: 10.1038/nn.3111. |
Choi et al., N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat Struct Mol Biol. Feb. 2016;23(2):110-5. doi: 10.1038/nsmb.3148. Epub Jan. 11, 2016. |
Choi et al., Protein trans-splicing and characterization of a split family B-type DNA polymerase from the hyperthermophilic archaeal parasite Nanoarchaeum equitans. J Mol Biol. Mar. 10, 2006;356(5):1093-106. doi: 10.1016/j.jmb.2005.12.036. Epub Dec. 277, 2005. |
CHOI et at al., Translesion synthesis across abasic lesions by human B-family and Y-family DNA polymerases ?, ?, ?, ?, ?, and REV1. J Mol Biol. Nov. 19, 2010;404(1):34-44. doi: 10.1016/j.jmb.2010.09.015. Epub Oct. 1, 2010. |
Chong et al., Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J Biol Chem. Apr. 24, 1998;273(17):10567-77. doi: 10.1074/jbc.273.17.10567. |
Chong et al., Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res. Nov. 15, 1998;26(22):5109-15. doi: 10.1093/nar/26.22.5109. |
Chong et al., Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J Biol Chem. Sep. 6, 1996;271(36):22159-68. doi: 10.1074/jbc.271.36.22159. |
Chong et al., Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J Biol Chem. Jun. 20, 1997;272(25):15587-90. doi: 10.1074/jbc.272.25.15587. |
Chong et al., Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene. Jun. 19, 1997;192(2):271-81. doi: 10.1016/s0378-1119(97)00105-4. |
Choudhury et al., Engineering RNA endonucleases with customized sequence specificities. Nat Commun. 2012;3:1147. doi: 10.1038/ncomms2154. |
Choulika et al., Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol. Apr. 1995;15(4):1968-73. doi: 10.1128/MCB.15.4.1968. |
Christian et al., Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. PLoS One. 2012;7(9):e45383. doi: 10.1371/journal.pone.0045383. Epub Sep. 24, 2012. |
Christian et al., Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. Oct. 2010;186(2):757-61. Doi: 10.1534/genetics.110.120717. Epub Jul. 26, 2010. |
Christiansen et al., Characterization of the lactococcal temperate phage TP901-1 and its site-specific integration. J Bacteriol. Feb. 1994;176(4):1069-76. doi: 10.1128/jb.176.4.1069-1076.1994. |
Chu et al., Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotech. Feb. 13, 2015;33:543-8. |
Chu et al., Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotech. Feb. 13, 2015;33:543-8. doi: 10.1038/nbt.3198. Epub Mar. 24, 2015. |
Chuai et al., In Silico Meets In Vivo: Towards Computational CRISPR-Based sgRNA Design. Trends Biotechnol. Jan. 2017;35(1):12-21. doi: 10.1016/j.tibtech.2016.06.008. Epub Jul. 11, 2016. |
Chujo et al, Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA. Dec. 2012;18(12):2269-76. doi: 10.1261/rna.035600.112. Epub Oct. 24, 2012. |
Chung-Il et al., Artificial control of gene expression in mammalian cells by modulating RNA interference through aptamer-small molecule interaction. RNA. May 2006;12(5):710-6. Epub Apr. 10, 2006. |
Chylinski et al., The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. May 2013;10(5):726-37. doi: 10.4161/rna.24321. Epub Apr. 5, 2013. |
Clackson et al., Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10437-42. doi: 10.1073/pnas.95.18.10437. |
Cobb et al., Directed evolution an enabling synthetic biology tool. Curr Opin chem Biol. Aug. 2012;16(3-4):285-91. doi:10.1016/j.cbpa.2012.05.186.Epub Jun. 4, 2012. Review. |
Cobb et al., Directed evolution as a powerful synthetic biology tool. Methods. Mar. 15, 2013;60(1):81-90. doi: 10.1016/j.ymeth.2012.03.009. Epub Mar. 23, 2012. |
Cobb et al., Directed evolution: an evolving and enabling synthetic biology tool. Curr Opin Chem Biol. Aug. 2012;16(3-4):285-91. doi:10.1016/j.cbpa.2012.05.186. Epub Jun. 4, 2012. Review. |
Cokol et al., Finding nuclear localization signals. EMBO Rep. Nov. 2000;1(5):411-5. doi: 10.1093/embo-reports/kvd092. |
Cole et al., Reconstructing evolutionary adaptive paths for protein engineering. Methods Mol Biol. 2013;978:115-25. doi: 10.1007/978-1-62703-293-3_8. |
Cole-Strauss et al., Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science. Sep. 6, 1996;273(5280):1386-9. |
Colletier et al., Protein encapsulation in liposomes: efficiency depends on interactions between protein and phospholipid bilayer. BMC Biotechnol. May 10, 2002;2:9. |
Collinge, Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci. 2001;24:519-50. doi: 10.1146/annurev.neuro.24.1.519. |
Cong et al., Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun. Jul. 24, 2012;3:968. doi: 10.1038/ncomms1962. |
Cong et al., Multiplex genome engineering using CRISPR/Cas systems. Science. Feb. 15, 2013;339(6121):819-23. doi: 10.1126/science.1231143. Epub Jan. 3, 2013. |
Conrad et al., A Kaposi's sarcoma virus RNA element that increases the nuclear abundance of intronless transcripts. Embo J. May 18, 2005;24(10):1831-41. doi: 10.1038/sj.emboj.7600662. Epub Apr. 28, 2005. |
Conticello, The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008;9(6):229. doi: 10.1186/GB-2008-9-6-229. Epub Jun. 17, 2008. |
Cornu et al., DNA-binding specificity is a major determinant of the activity and toxicity of zinc-finger nucleases. Mol Ther. Feb. 2008;16(2):352-8. Epub Nov. 20, 2007. |
Cornu et al., Refining strategies to translate genome editing to the clinic. Nat Med. Apr. 3, 2017;23(4):415-423. doi: 10.1038/nm.4313. |
Costa et al., Frequent use of the same tertiary motif by self-folding RNAs. Embo J. Mar. 15, 1995;14(6):1276-85. |
Cotton et al., Insertion of a Synthetic Peptide into a Recombinant Protein Framework: A Protein Biosensor. J. Am. Chem. Soc. Jan. 22, 1999; 121(5):1100-1. https://doi.org/10.1021/ja983804b. |
Covino et al., The CCL2/CCR2 Axis in the Pathogenesis of HIV-1 Infection: A New Cellular Target for Therapy? Current Drug Targets Dec. 2016;17(1):76-110. DOI : 10.2174/138945011701151217110917. |
Cox et al., An SCN9A channelopathy causes congenital inability to experience pain. Nature. Dec. 14, 2006;444(7121):894-8. doi: 10.1038/nature05413. |
Cox et al., Conditional gene expression in the mouse inner ear using Cre-loxP. J Assoc Res Otolaryngol. Jun. 2012;13(3):295-322. doi: 10.1007/s10162-012-0324-5. Epub Apr. 24, 2012. |
Cox et al., Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations. Hum Mutat. Sep. 2010;31(9):E1670-86. doi: 10.1002/humu.21325. |
Cox et al., RNA editing with CRISPR-Cas13. Science. Nov. 24, 2017;358(6366):1019-1027. doi: 10.1126/science.aaq0180. Epub Oct. 25, 2017. |
Cox et al., Therapeutic genome editing: prospects and challenges. Nat Med. Feb. 2015;21(2):121-31. doi: 10.1038/nm.3793. |
Cox, Proteins pinpoint double strand breaks. Elife. Oct. 29, 2013;2:e01561. doi: 10.7554/eLife.01561. |
Cradick et al., CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. Nov. 1, 2013;41(20):9584-92. doi: 10.1093/nar/gkt714. Epub Aug. 11, 2013. |
Cradick et al., ZFN-site searches genomes for zinc finger nuclease target sites and off-target sites. BMC Bioinformatics. May 13, 2011;12:152. doi: 10.1186/1471-2105-12-152. |
Cradick et al., Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol Ther. May 2010;18(5):947-54. Doi: 10.1038/mt.2010.20. Epub Feb. 16, 2010. |
Crick, On protein synthesis. Symp Soc Exp Biol. 1958;12:138-63. |
Cronican et al., A class of human proteins that deliver functional proteins into mammalian cells in vitro and in vivo. Chem Biol. Jul. 29, 2011;18(7):833-8. doi: 10.1016/j.chembiol.2011.07.003. |
Cronican et al., Potent delivery of functional proteins into mammalian cells in vitro and in vivo using a supercharged protein. ACS Chem Biol. Aug. 20, 2010;5(8):747-52. doi: 10.1021/cb1001153. |
Crystal, Transfer of genes to humans: early lessons and obstacles to success. Science. Oct. 20, 1995;270(5235):404-10. doi: 10.1126/science.270.5235.404. |
Cui et al., Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res. May 19, 2016;44(9):4243-51. doi: 10.1093/nar/gkw223. Epub Apr. 8, 2016. |
Cui et al., Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol. Jan. 2011;29(1):64-7. Doi: 10.1038/nbt.1731. Epub Dec. 12, 2010. |
Cunningham et al., Ensembl 2015. Nucleic Acids Res. Jan. 2015;43(Database issue):D662-9. doi: 10.1093/nar/gku1010. Epub Oct. 28, 2014. |
Cupples et al., A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci U S A. Jul. 1989;86(14):5345-9. |
D'adda di Fagagna et al., The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku. EMBO Rep. Jan. 2003;4(1):47-52. |
Dahlem et al., Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 2012;8(8):e1002861. doi: 10.1371/journal.pgen.1002861. Epub Aug. 16, 2012. |
Dahlgren et al., A novel mutation in ribosomal protein S4 that affects the function of a mutated RF1. Biochimie. Aug. 2000;82(8):683-91. |
Dahlman et al., Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat Biotechnol. Nov. 2015;33(11):1159-61. doi: 10.1038/nbt.3390. |
Dang et al., Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol. Dec. 15, 2015;16:280. doi: 10.1186/s13059-015-0846-3. |
Das et al., The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus. Structure. May 2004;12(5):819-29. doi: 10.1016/j.str.2004.02.032. |
Dassa et al., Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family. Nucleic Acids Res. May 2009;37(8):2560-73. doi: 10.1093/nar/gkp095. Epub Mar. 5, 2009. |
Dassa et al., Trans protein splicing of cyanobacterial split inteins in endogenous and exogenous combinations. Biochemistry. Jan. 9, 2007;46(1):322-30. doi: 10.1021/bi0611762. |
Database EBI Accession No. ADE34233 Jan. 29, 2004. |
Database EBI Accession No. BFF09785. May 31, 2018. 2 pages. |
Database EBI Accession No. BGE38086. Jul. 25, 2019. 2 pages. |
Database UniProt Accession No. G813E0. Jan. 14, 2012. |
Datsenko et al., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. Jun. 6, 2000;97(12):6640-5. |
Davidson et al., Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci. May 2003;4(5):353-64. doi: 10.1038/nrn1104. |
Davis et al., DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. Jun. 2013;2(3):130-143. |
Davis et al., DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. Jun. 2013;2(3):130-143. doi: 10.3978/j.issn.2218-676X.2013.04.02. |
Davis et al., Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol. May 2015;11(5):316-8. doi: 10.1038/nchembio.1793. Epub Apr. 6, 2015. |
De Felipe et al., Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide. J Biol Chem. Mar. 28, 2003;278(13):11441-8. doi: 10.1074/jbc.M211644200. Epub Jan. 8, 2003. |
De Souza, Primer: genome editing with engineered nucleases. Nat Methods. Jan. 2012;9(1):27. |
Dean et al., Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, Alive Study. Science. Sep. 27, 1996;273(5283):1856-62. doi: 10.1126/science.273.5283.1856. |
Dekosky et al., Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proc Natl Acad Sci U S A. May 10, 2016;113(19):E2636-45. doi: 10.1073/pnas.1525510113. Epub Apr. 25, 2016. |
Delebecque et al., Organization of intracellular reactions with rationally designed RNA assemblies. Science. Jul. 22, 2011;333(6041):470-4. doi: 10.1126/science.1206938. Epub Jun. 23, 2011. |
Deltcheva et al., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. Mar. 31, 2011;471(7340):602-7. doi: 10.1038/nature09886. |
Deng et al., Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic Acids Res. Jul. 27, 2015;43(13):6557-67. doi: 10.1093/nar/gkv596. Epub Jun. 11, 2015. |
Deriano et al., Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet. 2013;47:433-55. doi: 10.1146/annurev-genet-110711-155540. Epub Sep. 11, 2013. |
Deussing, Targeted mutagenesis tools for modelling psychiatric disorders. Cell Tissue Res. Oct. 2013;354(1):9-25. doi: 10.1007/s00441-013-1708-5. Epub Sep. 10, 2013. |
Dever et al., CRISPR/Cas9 ?—globin gene targeting in human haematopoietic stem cells. Nature. Nov. 17, 2016;539(7629):384-389. doi: 10.1038/nature20134. Epub Nov. 7, 2016. |
Deverman et al., Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. Feb. 2016;34(2):204-9. doi: 10.1038/nbt.3440. Epub Feb. 1, 2016. |
Devigili et al., Paroxysmal itch caused by gain-of-function Nav1.7 mutation. Pain. Sep. 2014;155(9):1702-1707. doi: 10.1016/j.pain.2014.05.006. Epub May 10, 2014. |
Dianov et al., Mammalian base excision repair: the forgotten archangel. Nucleic Acids Res. Apr. 1, 2013;41(6):3483-90. doi: 10.1093/nar/gkt076. Epub Feb. 13, 2013. |
Dicarlo et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research Apr. 2013;41(7):4336-43. |
Dicarlo et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res. Apr. 2013;41(7):4336-43. doi: 10.1093/nar/gkt135. Epub Mar. 4, 2013. |
Dicarlo et al., Safeguarding CRISPR-Cas9 gene drives in yeast. Nat Biotechnol. Dec. 2015;33(12):1250-1255. doi: 10.1038/nbt.3412. Epub Nov. 16, 2015. |
Dickey et al., Single-stranded DNA-binding proteins: multiple domains for multiple functions. Structure. Jul. 2, 2013;21(7):1074-84. doi: 10.1016/j.str.2013.05.013. |
Dickinson et al., Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution. Proc Natl Acad Sci USA. May 2013;110(22):9007-12. |
Dillon, Regulating gene expression in gene therapy. Trends Biotechnol. May 1993;11(5):167-73. doi: 10.1016/0167-7799(93)90109-M. |
Ding et al., A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell. Feb. 7, 2013;12(2):238-51. Doi: 10.1016/j.stem.2012.11.011. Epub Dec. 13, 2012. |
Ding et al., Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ * Res. Aug. 15, 2014;115(5):488-92. doi: 10.1161/CIRCRESAHA.115.304351. Epub Jun. 10, 2014. |
Dingwall et al., Nuclear targeting sequences—a consensus? Trends Biochem Sci. Dec. 1991;16(12):478-81. doi: 10.1016/0968-0004(91)90184-w. |
Diver et al., Single-Step Synthesis of Cell-Permeable Protein Dimerizers That Activate Signal Transduction and Gene Expression. J. Am. Chem. Soc. Jun. 4, 1997;119(22):5106-5109. https://doi.org/10.1021/ja963891c. |
Dixon et al., Reengineering orthogonally selective riboswitches. Proc Natl Acad Sci U S A. Feb. 16, 2010;107(7):2830-5. doi: 10.1073/pnas.0911209107. Epub Jan. 26, 2010. |
Doench et al., Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. Feb. 2016;34(2):184-191. doi: 10.1038/nbt.3437. |
Doench et al., Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat Biotechnol. Dec. 2014;32(12):1262-7. doi: 10.1038/nbt.3026. Epub Sep. 3, 2014. |
Dominissini et al., Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. Apr. 29, 2012;485(7397):201-6. doi: 10.1038/nature11112. |
Dorgan et al., An enzyme-coupled continuous spectrophotometric assay for S-adenosylmethionine-dependent methyltransferases. Anal Biochem. Mar. 15, 2006;350(2):249-55. doi: 10.1016/j.ab.2006.01.004. Epub Feb. 7, 2006. |
Dormiani et al., Long-term and efficient expression of human β-globin gene in a hematopoietic cell line using a new site-specific integrating non-viral system. Gene Ther. Aug. 2015;22(8):663-74. doi: 10.1038/gt.2015.30. Epub Apr. 1, 2015. |
Dorr et al., Reprogramming the specificity of sortase enzymes. Proc Natl Acad Sci U S A. Sep. 16, 2014;111(37):13343-8. doi: 10.1073/pnas.1411179111. Epub Sep. 3, 2014. |
Doudna et al., Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. Nov. 28, 2014;346(6213):1258096. doi: 10.1126/science.1258096. |
Dove et al., Conversion of the omega subunit of Escherichia coli RNA polymerase into a transcriptional activator or an activation target. Genes Dev. Mar. 1, 1998;12(5):745-54. |
Doyon et al., Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods. Jan. 2011;8(1):74-9. Doi: 10.1038/nmeth.1539. Epub Dec. 5, 2010. |
Doyon et al., Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. Jun. 2008;26(6):702-8. Doi: 10.1038/nbt1409. Epub May 25, 2008. |
Drake, A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA. Aug. 15, 1991;88(16):7160-4. |
Dumas et al., Designing logical codon reassignment—Expanding the chemistry in biology. Chem Sci. Jan. 1, 2015;6(1):50-69. doi: 10.1039/c4sc01534g. Epub Jul. 14, 2014. Review. |
Dunaime, Breakthrough method means CRISPR just got a lot more relevant to human health. The Verge. Apr. 20, 2016. http://www.theverge.com/2016/4/20/11450262/crispr-base-editing-single-nucleotides-dna-gene-liu-harvard. |
Dupuy et al., Le syndrome de De La Chapelle [De La Chapelle syndrome]. Presse Med. Mar. 3, 2001;30(8):369-72. French. |
Durai et al., A bacterial one-hybrid selection system for interrogating zinc finger-DNA interactions. Comb Chem High Throughput Screen. May 2006;9(4):301-11. |
Durai et al., Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. Oct. 26, 2005;33(18):5978-90. doi: 10.1093/nar/gki912. |
During et al., Controlled release of dopamine from a polymeric brain implant: in vivo characterization. Ann Neurol. Apr. 1989;25(4):351-6. |
Döring et al., Enlarging the amino acid set of Escherichia coli by infiltration of the valine coding pathway. Science. Apr. 20, 2001;292(5516):501-4. |
East-Seletsky et al., Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature Oct. 2016;538(7624):270-3. |
Edlund et al., Cell-specific expression of the rat insulin gene: evidence for role of two distinct 5′ flanking elements. Science. Nov. 22, 1985;230(4728):912-6. doi: 10.1126/science.3904002. |
Edwards et al., A bacterial amber suppressor in Saccharomyces cerevisiae is selectively recognized by a bacterial aminoacyl-tRNA synthetase. Molec Cell Biol. Apr. 1990;10(4):1633-41. DOI: 10.1128/MCB.10.4.1633. |
Edwards et al., An Escherichia coli tyrosine transfer RNA is a leucine-specific transfer RNA in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. Feb. 15, 1991;88(4):1153-6. |
Edwards et al., Crystal structure of the thi-box riboswitch bound to thiamine pyrophasphate analogs revela adaptive RNA-small molecute recogniation. Structure. Sep. 2006; 14(0):1459-68. |
Edwards et al., Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. Structure. Sep. 2006;14(9):1459-68. |
Edwards et al., Structural basis for recognition of S-adenosylhomocysteine by riboswitches. RNA. Nov. 2010;16(11):2144-55. doi:10.1261/rna.2341610. Epub Sep. 23, 2010. |
Eiler et al., Structural Basis for the Fast Self-Cleavage Reaction Catalyzed by the Twister Ribozyme. Proc Natl Acad Sci U S A. Sep. 9, 2014;111(36):13028-33. doi: 10.1073/pnas.1414571111. Epub Aug. 25, 2014. |
Ellington et al., In vitro selection of RNA molecules that bind specific ligands. Nature. Aug. 30, 1990;346(6287):818-22. |
Eltoukhy et al., Nucleic acid-mediated intracellular protein delivery by lipid-like nanoparticles. Biomaterials. Aug. 2014;35(24):6454-61. doi: 10.1016/j.biomaterials.2014.04.014. Epub May 13, 2014. |
Emery et al., HCN2 ion channels play a central role in inflammatory and neuropathic pain. Science. Sep. 9, 2011;333(6048):1462-6. doi: 10.1126/science.1206243. |
Endo et al., Toward establishing an efficient and versatile gene targeting system in higher plants. Biocatalysis and Agricultural Biotechnology 2014;3,(1):2-6. |
Engelward et al., Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase. Proc Natl Acad Sci U S A. Nov. 25, 1997;94(24):13087-92. |
England, Unnatural amino acid mutagenesis: a precise tool for probing protein structure and function. Biochemistry. Sep. 21, 2004;43(37):11623-9. |
Enyeart et al., Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis. Mobile DNA 5, 2 (2014). https://doi.org/10.1186/1759-8753-5-2. https://doi.org/10.1186/1759-8753-5-2. |
Epstein, HSV-1-based amplicon vectors: design and applications. Gene Ther. Oct. 2005;12 Suppl 1:S154-8. doi: 10.1038/sj.gt.3302617. |
Erhart et al., Chemical development of intracellular protein; heterodimerizers. Chem Biol. Apr. 18, 2013;20(4):549-57. doi:; 10.1016/j.chembiol.2013.03.010.; |
Eriksson et al., Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. May 15, 2003;423(6937):293-8. doi: 10.1038/nature01629. Epub Apr. 25, 2003. PMID: 12714972. |
Esvelt et al., A system for the continuous directed evolution of biomolecules. Nature. Apr. 28, 2011;472(7344):499-503. doi: 10.1038/nature09929. Epub Apr. 10, 2011. |
Esvelt et al., A system for the continuous directed evolution of biomolecules. Nature. 2011; 472(7344): 499-503. PMID: 21478873. |
Esvelt et al., Genome-scale engineering for systems and synthetic biology. Mol Syst Biol. 2013;9:641. doi: 10.1038/msb.2012.66. |
Esvelt et al., Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods. Nov. 2013;10(11):1116-21. doi: 10.1038/nmeth.2681. Epub Sep. 29, 2013. |
Esvelt KM, Carlson JC, Liu DR. A system for the continuous directed evolution of biomolecules. Nature. 2011; 472(7344): 499-503. PMID: 21478873. |
Evans et al., Protein trans-splicing and cyclization by a naturally split intein from the dnaE gene of Synechocystis species PCC6803. J Biol Chem. Mar. 31, 2000;275(13):9091-4. doi: 10.1074/jbc.275.13.9091. |
Evans et al., Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci. Nov. 1998;7(11):2256-64. doi: 10.1002/pro.5560071103. |
Evans et al., The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. J Biol Chem. Jun. 25, 19995;274(26):18359-63. doi: 10.1074/jbc.274.26.18359. |
Evans et al., The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. J Biol Chem. Feb. 12, 1999;274(7):3923-6. doi: 10.1074/jbc.274.7.3923. |
Evers et al., CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat Biotechnol. Jun. 2016;34(6):631-3. doi: 10.1038/nbt.3536. Epub Apr. 25, 2016. |
Examiner Intitiated Interview Summary, mailed Aug. 17, 2017 in connection with Application No. U.S. Appl. No. 14/326,109. |
Extended European Search Report for EP 15830407.1, mailed Mar. 2, 2018. |
Extended European Search Report for EP18199195.1, mailed Feb. 12, 2019. |
Fagerlund et al., The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biology Nov. 17, 2015;16:251. https://doi.org/10.1186/s13059-015-0824-9. |
Falnes et al., DNA repair by bacterial AlkB proteins. Res Microbiol. Oct. 2003;154(8):531-8. doi: 10.1016/S0923-2508(03)00150-5. |
Falnes et al., Repair of methyl lesions in DNA and RNA by oxidative demethylation. Neuroscience. Apr. 14, 2007;145(4):1222-32. doi: 10.1016/j.neuroscience.2006.11.018. Epub Dec. 18, 2006. |
Fang et al., Synthetic Studies Towards Halichondrins: Synthesis of the Left Halves of Norhalichondrins and Homohalichondrins. Tetrahedron Letters 1992;33(12):1557-1560. |
Farboud et al., Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design. Genetics. Apr. 2015;199(4):959-71. doi: 10.1534/genetics.115.175166. Epub Feb. 18, 2015. |
Farhood et al., Codelivery to mammalian cells of a transcriptional factor with cis-acting element using cationic liposomes. Anal Biochem. Feb. 10, 1995;225(1):89-93. |
Fawcett et al., Transposable elements controlling I-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs. Cell. Dec. 26, 1986;47(6):1007-15. doi: 10.1016/0092-8674(86)90815-9. |
Felletti et al., Twister Ribozymes as Highly Versatile Expression Platforms for Artificial Riboswitches. Nat Commun. Sep. 27, 2016;7:12834. doi: 10.1038/ncomms12834. |
Feng et al., Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. J Biol Chem. Apr. 25, 2014;289(17):11571-11583. doi: 10.1074/jbc.M113.546168. Epub Mar. 10, 2014. |
Feng et al., Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell. Nov. 29, 1996;87(5):905-16. doi: 10.1016/s0092-8674(00)81997-2. |
Ferretti et al., Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc Natl Acad Sci U S A. Apr. 10, 2001;98(8):4658-63. |
Ferry et al., Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs. Nat Commun. Mar. 3, 2017;8:14633. doi: 10.1038/ncomms14633. |
Feuk, Inversion variants in the human genome: role in disease and genome architecture. Genome Med. Feb. 12, 2010;2(2):11. doi: 10.1186/gm132. |
Filippakopoulos et al., Selective inhibition of BET bromodomains. Nature. Dec. 23, 2010;468(7327):1067-73. doi: 10.1038/nature09504. Epub Sep. 24, 2010. |
Filippov et al., A novel type of RNase III family proteins in eukaryotes. Gene. Mar. 7, 2000;245(1):213-21. doi: 10.1016/s0378-1119(99)00571-5. |
Fine et al., Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes. Scientific Reports 2015;5(1):Article No. 10777. doi:10.1038/srep10777. With Supplementary Information. |
Fine et al: “Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes”, Scientific Reports, val. 5, No. 1, Jul. 1, 2015 (Jul. 1, 2015 ), XP055432264;. |
Fire et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. Feb. 19, 1998;391(6669):806-11. doi: 10.1038/35888. |
Fischbach et al., Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes. Proc Natl Acad Sci U S A. Jul. 17, 2007;104(29):11951-6. doi: 10.1073/pnas.0705348104. Epub Jul. 9, 2007. |
Fischer et al., Cryptic epitopes induce high-titer humoral immune response in patients with cancer. J Immunol. Sep. 1, 2010;185(5):3095-102. doi: 10.4049/jimmuno1.0902166. Epub Jul. 26, 2010. |
Fischer et al., Cryptic epitopes induce high-titer humoral immune response in patients with cancer. J Immunol. Sep. 1, 2010;185(5):3095-102. doi: 10.4049/jimmunol.0902166. Epub Jul. 26, 2010. |
Fitzjohn, Diversitree: comparative phylogenetic analyses of diversification in R. Methods in Evology and Evolution. Dec. 2012;3(6):1084-92 .doi: 10.1111/j.2041-210X.2012.00234.x |
Flajolet et al., Woodchuck hepatitis virus enhancer I and enhancer II are both involved in N-myc2 activation in woodchuck liver tumors. J Virol. Jul. 1998;72(7):6175-80. doi: 10.1128/JVI.72.7.6175-6180.1998. |
Flaman et al., A rapid PCR fidelity assay. Nucleic Acids Res. Aug. 11, 1994;22(15):3259-60. doi: 10.1093/nar/22.15.3259. |
Flynn et al., CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp Hematol. Oct. 2015;43(10):838-848.e3. doi: 10.1016/j.exphem.2015.06.002. Epub Jun. 19, 2015. Including supplementary figures and data. |
Fogg et al., New applications for phage integrases. J Mol Biol. Jul. 29, 2014;426(15):2703-16. doi: 10.1016/j.jmb.2014.05.014. Epub May 22, 2014. |
Fonfara et al., Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. Feb. 2014;42(4):2577-90. doi: 10.1093/nar/gkt1074. Epub Nov. 22, 2013. |
Fonfara et al., Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. Feb. 2014;42(4):2577-90. doi: 10.1093/nar/gkt1074. Epub Nov. 22, 2013. Including Supplementary Information. |
Forster et al., Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell. Jul. 3, 1987;50(1):9-16. doi: 10.1016/0092-8674(87)90657-x. |
Fortini et al., Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells. Biochemistry. Mar. 17, 1998;37(11):3575-80. doi: 10.1021/bi972999h. |
Fouts et al., Sequencing Bacillus anthracis typing phages gamma and cherry reveals a common ancestry. J Bacteriol. May 2006;188(9):3402-8. doi: 10.1128/JB.188.9.3402-3408.2006. |
Freitas et al., Mechanisms and signals for the nuclear import of proteins. Curr Genomics. Dec. 2009;10(8):550-7. doi: 10.2174/138920209789503941. |
Freshney, Culture of Animal Cells. A Manual of Basic Technique. Alan R. Liss, Inc. New York. 1983;4. |
Fu et al., Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. Mar. 2014;32(3):279-84. doi: 10.1038/nbt.2808. Epub Jan. 26, 2014. |
Fu et al., High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. Sep. 2013;31(9):822-6. doi: 10.1038/nbt.2623. Epub Jun. 23, 2013. |
Fu et al., Promises and Pitfalls of Intracellular Delivery of Proteins. Bioconjugate Chemistry. Aug. 2014;25:1602-8. |
Fuchs et al., Polyarginine as a multifunctional fusion tag. Protein Sci. Jun. 2005;14(6):1538-44. |
Fujisawa et al., Disease-associated mutations in CIAS1 induce cathepsin B-dependent rapid cell death of human THP-1 monocytic cells. Blood. Apr. 1, 2007;109(7):2903-11. |
Fukui et al., DNA Mismatch Repair in Eukaryotes and Bacteria. J Nucleic Acids. Jul. 27, 2010;2010. pii: 260512. doi: 10.4061/2010/260512. |
Fung et al., Repair at single targeted DNA double-strand breaks in pluripotent and differentiated human cells. PLoS One. 2011;6(5):e20514. doi: 10.1371/journal.pone.0020514. Epub May 25, 2011. |
Furukawa et al., In vitro selection of allosteric ribozymes that sense the bacterial second messenger c-di-GMP. Methods Mol Biol. 2014;1111:209-20. doi: 10.1007/978-1-62703-755-6_15. |
Fusi et al., In Silico Predictive Modeling of CRISPR/Cas9 guide efficiency. Jun. 26, 2015; bioRxiv. http://dx.doi.org/10.1101/021568. |
Gabriel et al., An unbiased genome-wide analysis of zinc-finger nuclease specificity. Nat Biotechnol. Aug. 7, 2011;29(9):816-23. doi: 10.1038/nbt.1948. |
Gaj et al., 3rd. Genome engineering with custom recombinases. Methods Enzymol. 2014;546:79-91. doi: 10.1016/B978-0-12-801185-0.00004-0. |
Gaj et al., A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Nucleic Acids Res. Feb. 6, 2013;41(6):3937-46. |
Gaj et al., Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign. J Am Chem Soc. Apr. 2, 2014;136(13):5047-56. doi: 10.1021/ja4130059. Epub Mar. 20, 2014. |
Gaj et al., Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol Bioeng. Jan. 2014;111(1):1-15. doi: 10.1002/bit.25096. Epub Sep. 13, 2013. |
Gaj et al., Structure-guided reprogramming of serine recombinase DNA sequence specificity. Proc Natl Acad Sci U S A. Jan. 11, 2011;108(2):498-503. doi: 10.1073/pnas.1014214108. Epub Dec. 27, 2010. |
Gaj et al., ZFN, Talen, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. Jul. 2013;31(7):397-405. doi: 10.1016/j.tibtech.2013.04.004. Epub May 9, 2013. |
Gajula, Designing an Elusive CoG?GoC CRISPR Base Editor. Trends Biochem Sci. Feb. 2019;44(2):91-94. doi: 10.1016/j.tibs.2018.10.004. Epub Nov. 13, 2018. |
Gallo et al., A novel pathogenic PSEN1 mutation in a family with Alzheimer's disease: phenotypical and neuropathological features. J Alzheimers Dis. 2011;25(3):425-31. doi: 10.3233/JAD-2011-110185. |
Gamborg et al., Plant Cell, Tissue and Organ Culture: Fundamental Methods. Springer Lab Manual. Springer-Verlag. |
Gao et al., Cationic liposome-mediated gene transfer. Gene Ther. Dec. 1995;2(10):710-22. |
Gao et al., Crystal structure of a TALE protein reveals an extended N-terminal DNA binding region. Cell Res. Dec. 2012;22(12):1716-20. doi: 10.1038/cr.2012.156. Epub Nov. 13, 2012. |
Gao et al., DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol. Jul. 2016;34(7):768-73. doi: 10.1038/nbt.3547. Epub May 2, 2016. |
Gao et al., Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol. Apr. 2014;56(4):343-9. doi: 10.1111/jipb.12152. Epub Mar. 6, 2014. |
Garcia et al., Transglycosylation: a mechanism for RNA modification (and editing?). Bioorg Chem. Jun. 2005;33(3):229-51. doi: 10.1016/j.bioorg.2005.01.001. Epub Feb. 23, 2005. |
Gardlik et al., Vectors and delivery systems in gene therapy. Med Sci Monit. Apr. 2005;11(4):RA110-21. Epub Mar. 24, 2005. |
Garibyan et al., Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair (Amst). May 13, 2003;2(5):593-608. |
Garneau et al., The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. Nov. 4, 2010;468(7320):67-71. doi: 10.1038/nature09523. |
Gasiunas et al., Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. Sep. 2, 20125;109(39):E2579-86. Epub Sep. 4, 2012. Suppplementary materials included. |
Gasiunas et al., RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Trends Microbiol. Nov. 2013;21(11):562-7. doi: 10.1016/j.tim.2013.09.001. Epub Oct. 1, 2013. |
Gaudelli et al., Programmable base editing of AoT to GoC in genomic DNA without DNA cleavage. Nature. Nov. 23, 2017;551(7681):464-471. doi: 10.1038/nature24644. Epub Oct. 25, 2017. Erratum in: Nature. May 2, 2018. |
GenBank Accession No. J01600.1. Brooks et al., E.coli dam gene coding for DNA adenine methylase. Apr. 26, 1993. |
GenBank Accession No. U07651.1. Lu, Escherichia coli K12 negative regulator of replication initiation (seqA) gene, complete cds. Jul. 19, 1994. |
GenBank Submission; NIH/NCBI, Accession No. AAA66622.1. Martinelli et al., May 18, 1995. 2 pages. |
GenBank Submission; NIH/NCBI, Accession No. AGT42196. Farzadfar et al., Nov. 2, 2013. 2 pages. |
GenBank Submission; NIH/NCBI, Accession No. APG80656.1. Burstein et al., Dec. 10, 2016. 1 pages. |
GenBank Submission; NIH/NCBI, Accession No. BDB43378. Zhang et al., Aug. 11, 2016. 2 pages. |
GenBank Submission; NIH/NCBI, Accession No. J04623. Kita et al., Apr. 26, 1993. 2 pages. |
GenBank Submission; NIH/NCBI, Accession No. KR710351.1. Sahni et al., Jun. 1, 2015. 2 pages. |
GenBank Submission; NIH/NCBI, Accession No. NC_002737.1. Ferretti et al., Jun. 27, 2013. page. |
GenBank Submission; NIH/NCBI, Accession No. NC_015683.1. Trost et al., Jul. 6, 2013. 1 page. |
GenBank Submission; NIH/NCBI, Accession No. NC_016782.1. Trost et al., Jun. 11, 2013. 1 page. |
GenBank Submission; NIH/NCBI, Accession No. NC_016786.1. Trost et al., Aug. 28, 2013. 1 page. |
GenBank Submission; NIH/NCBI, Accession No. NC_017053.1. Fittipaldi et al., Jul. 6, 2013. page. |
GenBank Submission; NIH/NCBI, Accession No. NC_017317.1. Trost et al., Jun. 11, 2013. 1 page. |
GenBank Submission; NIH/NCBI, Accession No. NC_017861.1. Heidelberg et al., Jun. 11, 2013. 1 page. |
GenBank Submission; NIH/NCBI, Accession No. NC_018010.1. Lucas et al., Jun. 11, 2013. 2 pages. |
GenBank Submission; NIH/NCBI, Accession No. NC_018721.1. Feng et al., Jun. 11, 2013. 1 pages. |
GenBank Submission; NIH/NCBI, Accession No. NC_021284.1. Ku et al., Jul. 12, 2013. 1 page. |
GenBank Submission; NIH/NCBI, Accession No. NC_021314.1. Zhang et al., Jul. 15, 2013. 1 page. |
GenBank Submission; NIH/NCBI, Accession No. NC_021846.1. Lo et al., Jul. 22, 2013. 1 page. |
GenBank Submission; NIH/NCBI, Accession No. NM_174936. Guo et al., Oct. 28, 2015. 6 pages. |
GenBank Submission; NIH/NCBI, Accession No. NP_472073.1. Glaser et al., Jun. 27, 2013. 2 pages. |
GenBank Submission; NIH/NCBI, Accession No. P42212. Prasher et al., Mar. 19, 2014. 7 pages. |
GenBank Submission; NIH/NCBI, Accession No. YP_002342100.1. Bernardini et al., Jun. 10, 2013. 2 pages. |
GenBank Submission; NIH/NCBI, Accession No. YP_002344900.1. Gundogdu et al., Mar. 19, 2014. 2 pages. |
GenBank Submission; NIH/NCBI, Accession No. YP_009283008.1. Bernardini et al., Sep. 23, 2016. 2 pages. |
GenBank Submission; NIH/NCBI, Accession No. YP_820832.1. Makarova et al., Aug. 27, 2013. 2 pages. |
George et al., Adenosine deaminases acting on RNA, RNA editing, and interferon action. J Interferon Cytokine Res. Jan. 2011;31(1):99-117. doi: 10.1089/jir.2010.0097. Epub Dec. 23, 2010. PMID: 21182352; PMCID: PMC3034097. |
Gerard et al., Influence on stability in Escherichia coli of the carboxy-terminal structure of cloned Moloney murine leukemia virus reverse transcriptase. DNA. Aug. 1986;5(4):271-9. doi: 10.1089/dna.1986.5.271. |
Gerard et al., Purification and characterization of the DNA polymerase and RNase H activities in Moloney murine sarcoma-leukemia virus. J Virol. Apr. 1975;15(4):785-97. doi: 10.1128/JVI.15.4.785-797.1975. |
Gerard et al., The role of template-primer in protection of reverse transcriptase from thermal inactivation. Nucleic Acids Res. Jul. 15, 2002;30(14):3118-29. doi: 10.1093/nar/gkf417. |
Gerber et al., An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science. Nov. 5, 1999;286(5442):1146-9. doi: 10.1126/science.286.5442.1146. |
Gerber et al., RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem Sci. Jun. 2001;26(6):376-84. |
Gersbach et al., Directed evolution of recombinase specificity by split gene reassembly. Nucleic Acids Res. Jul. 2010;38(12):4198-206. doi: 10.1093/nar/gkq125. Epub Mar. 1, 2010. |
Gersbach et al., Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase. Nucleic Acids Res. Sep. 1, 2011;39(17):7868-78. doi: 10.1093/nar/gkr421. Epub Jun. 7, 2011. |
Gibson et al., Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. May 2009;6(5):343-5. doi: 10.1038/nmeth.1318. Epub Apr. 12, 2009. |
Gil, Position-dependent sequence elements downstream of AAUAAA are required for efficient rabbit beta-globin mRNA 3′ end formation. Cell. May 8, 1987;49(3):399-406. doi: 10.1016/0092-8674(87)90292-3. |
Gilbert et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013 154(2):442-51. |
Gillam et al., Site-specific mutagenesis using synthetic oligodeoxyribonucleotide primers: I. Optimum conditions and minimum oligodeoxyribonucleotide length. Gene. Dec. 1979;8(1):81-97. https://doi.org/10.1016/0378-1119(79)90009-X. |
Gilleron et al., Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. Jul. 2013;31(7):638-46. doi: 10.1038/nbt.2612. Epub Jun. 23, 2013. |
Glasgow et al.,DNA-binding properties of the Hin recombinase. J Biol Chem. Jun. 15, 1989;264(17):10072-82. |
Glassner et al., Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. Proc Natl Acad Sci U S A. Aug. 18, 1998;95(17):9997-10002. |
Goldberg et al., Epigenetics: a landscape takes shape. Cell. Feb. 23, 2007;128(4):635-8. doi: 10.1016/j.cell.2007.02.006. |
Goldberg et al., Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet. Apr. 2007;71(4):311-9. doi: 10.1111/j.1399-0004.2007.00790.x. |
Gong et al., Active DNA demethylation by oxidation and repair. Cell Res. Dec. 2011;21(12):1649-51. doi: 10.1038/cr.2011.140. Epub Aug. 23, 2011. |
Gonzalez et al., An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell. Aug. 7, 2014;15(2):215-26. doi: 10.1016/j.stem.2014.05.018. Epub Jun. 12, 2014. |
Goodnough et al., Development of a delivery vehicle for intracellular transport of botulinum neurotoxin antagonists. FEBS Lett. Feb. 27, 2002;513(2-3):163-8. |
Gordley et al., Evolution of programmable zinc finger-recombinases with activity in human cells. J Mol Biol. Mar. 30, 2007;367(3):802-13. Epub Jan. 12, 2007. |
Gordley et al., Synthesis of programmable integrases. Proc Natl Acad Sci U S A. Mar. 31, 2009;106(13):5053-8. doi: 10.1073/pnas.0812502106. Epub Mar. 12, 2009. |
Grainge et al., The integrase family of recombinase: organization and function of the active site. Mol Microbiol. Aug. 1999;33(3):449-56. |
Gregory et al., Integration site for Streptomyces phage phiBT1 and development of site- specific integrating vectors. J Bacteriol. Sep. 2003;185(17):5320-3. doi: 10.1128/jb.185.17.5320-5323.2003. |
Griffiths, Endogenous retroviruses in the human genome sequence. Genome Biol. 2001;2(6):REVIEWS1017. doi: 10.1186/GB-2001-2-6-reviews1017. Epub Jun. 5, 2001. |
Grindley et al., Mechanisms of site-specific recombination. Annu Rev Biochem. 2006;75:567-605. doi: 10.1146/annurev.biochem.73.011303.073908. |
Grishok et al., Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing. Jul. 13, 2001:106(1):P23-4. |
Groher et al., Synthetic riboswitches—A tool comes of age. Biochim Biophys Acta. Oct. 2014; 1839(10):964-973. doi: 10.1016/j.bbagrm.2014.05.005. Epub May 17, 2014. |
Groth et al., Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics. Apr. 2004;166(4):1775-82. doi: 10.1534/genetics.166.4.1775. |
Groth et al., Phage integrases: biology and applications. J Mol Biol. Jan. 16, 2004;335(3):667-78. |
Gruber et al., Strategies for measuring evolutionary conservation of RNA secondary structures. BMC Bioinformatics. Feb. 26, 2008;9:122. doi: 10.1186/1471-2105-9-122. |
Grundy et al., The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci U S A. Oct. 14, 2003;100(21):12057-62. Epub Oct. 1, 2003. |
Grunebaum et al., Recent advances in understanding and managing adenosine deaminase and purine nucleoside phosphorylase deficiencies. Curr Opin Allergy Clin Immunol. Dec. 2013;13(6):630-8. doi: 10.1097/ACI.0000000000000006. |
Guilinger et al., Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods. Apr. 2014;11(4):429-35. doi: 10.1038/nmeth.2845. Epub Feb. 16, 2014. |
Guilinger et al., Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. Jun. 2014;32(6):577-82. doi: 10.1038/nbt.2909. Epub Apr. 25, 2014. |
Guilinger et al., Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. Jun. 2014;32(6):577-82. doi: 10.1038/nbt.2909. Epub Apr. 25, 2014.and supplemental pages. |
Guo et al., Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. J Mol Biol. Jul. 2, 2010;400(1):96-107. doi: 10.1016/j.jmb.2010.04.060. Epub May 4, 2010. |
Guo et al., Facile functionalization of FK506 for biological studies by the thiol-ene ‘click’ reaction. RSC Advances. 2014;22:11400-3. |
Guo et al., Protein tolerance to random amino acid change. Proc Natl Acad Sci U S A. Jun. 22, 2004;101(25):9205-10. Epub Jun. 14, 2004. |
Guo et al., Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature. Sep. 4, 1997;389(6646):40-6. |
Gupta et al., Cross-talk between cognate and noncognate RpoE sigma factors and Zn(2+)-binding anti-sigma factors regulates photooxidative stress response in Azospirillum brasilense. Antioxid Redox Signal. Jan. 1, 2014;20(1):42-59. doi: 10.1089/ars.2013.5314. Epub Jul. 19, 2013. |
Gupta et al., Sequences in attB that affect the ability of phiC31 integrase to synapse and to activate DNA cleavage. Nucleic Acids Res. 2007;35(10):3407-19. doi: 10.1093/nar/gkm206. Epub May 3, 2007. |
Haddada et al., Gene therapy using adenovirus vectors. Curr Top Microbiol Immunol. 1995;199 ( Pt 3):297-306. doi: 10.1007/978-3-642-79586-2_14. |
Haeussler et al., Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. Jul. 5, 2016;17(1):148. doi: 10.1186/s13059-016-1012-2. |
Hale et al., RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell. Nov. 25, 2009;139(5):945-56. doi: 10.1016/j.cell.2009.07.040. |
Halmai et al., Targeted CRIPSR/dCas9-mediated reactivation of epigenetically silenced genes suggests limited escape from the inactive X chromosome. 2nd Intl Conf on Epigenetics and Bioengineering. Oct. 4, 2018; Retrieved from the Internet: https://aiche.confex.com/aiche/epibiol8/webprogram/paper544785.html. Retrieved Jun. 29, 2020. |
Halperin et al., CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature. Aug. 2018;560(7717):248-252. doi: 10.1038/s41586-018-0384-8. Epub Aug. 1, 2018. |
Halvas et al., Role of murine leukemia virus reverse transcriptase deoxyribonucleoside triphosphate-binding site in retroviral replication and in vivo fidelity. J Virol. Nov. 2000;74(22):10349-58. doi: 10.1128/jvi.74.22.10349-10358.2000. |
Hamano-Takaku et al., A mutant Escherichia coli tyrosyl-tRNA synthetase utilizes the unnatural amino acid azatyrosine more efficiently than tyrosine. J Biol Chem. Dec. 22, 2000;275(51):40324-8. |
Hampel et al., Evidence for preorganization of the glmS ribozyme ligand binding pocket. Biochemistry. 2006; 45(25):7861-71. |
Han, New CRISPR/Cas9-based Tech Edits Single Nucleotides Without Breaking DNA. Genome Web, Apr. 20, 2016. https://www.genomeweb.com/gene-silencinggene-editing/new-crisprcas9-based-tech-edits-single-nucleotides-without-breaking-dna. |
Harms et al., Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat Rev Genet. Aug. 2013;14(8):559-71. doi: 10.1038/nrg3540. |
Harrington et al., A thermostable Cas9 with increased lifetime in human plasma. Nat Commun. Nov. 10, 2017;8(1):1424. doi: 10.1038/s41467-017-01408-4. |
Harrington et al., Recent developments and current status of gene therapy using viral vectors in the United Kingdom. BMJ. 2004;329(7470):839?842. doi:10.1136/bmj.329.7470.839. |
Harris et al., RNA Editing Enzyme APOBEC1 and Some of Its Homologs Can Act as DNA Mutators. Mol Cell. Nov. 2002;10(5):1247-53. |
Hartung et al., Correction of metabolic, craniofacial, and neurologic abnormalities in MPS I mice treated at birth with adeno-associated virus vector transducing the human alpha-L-iduronidase gene. Mol Ther. Jun. 2004;9(6):866-75. |
Hartung et al., Cre mutants with altered DNA binding properties. J Biol Chem. Sep. 4, 1998;273(36):22884-91. |
Hasadsri et al., Functional protein delivery into neurons using polymeric nanoparticles. J Biol Chem. Mar. 13, 2009;284(11):6972-81. doi: 10.1074/jbc.M805956200. Epub Jan. 7, 2009. |
Hasegawa et al., Spontaneous mutagenesis associated with nucleotide excision repair in Escherichia coli. Genes Cells. May 2008;13(5):459-69. doi: 10.1111/j.1365-2443.2008.01185.x. |
Hayes et al., Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc Natl Acad Sci U S A. Mar. 19, 2002;99(6):3440-5. Epub Mar. 12, 2002. |
Heidenreich et al., Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. Embo J. May 1, 2003;22(9):2274-83. doi: 10.1093/emboj/cdg203. |
Heitz et al., Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol. May 2009;157(2):195-206. doi: 10.1111/j.1476-5381.2009.00057.x. Epub Mar. 20, 2009. |
Held et al., In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol Ther. Mar. 2005;11(3):399-408. doi: 10.1016/j.ymthe.2004.11.001. |
Hendricks et al., The S. cerevisiae Mag1 3-methyladenine DNA glycosylase modulates susceptibility to homologous recombination. DNA Repair (Amst). 2002;1(8):645-659. |
Heller et al., Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol. Dec. 2006;7(12):932-43. Epub Nov. 8, 2006. |
Hermonat et al., Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci U S A. Oct. 1984;81(20):6466-70. doi: 10.1073/pnas.81.20.6466. |
Herschhorn et al., Retroviral reverse transcriptases. Cell Mol Life Sci. Aug. 2010;67(16):2717-47. doi: 10.1007/s00018-010-0346-2. Epub Apr. 1, 2010. |
Herzig et al., A Novel Leu92 Mutant of HIV-1 Reverse Transcriptase with a Selective Deficiency in Strand Transfer Causes a Loss of Viral Replication. J Virol. Aug. 2015;89(16):8119-29. doi: 10.1128/JVI.00809-15. Epub May 20, 2015. |
Hess et al., Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods. Dec. 2016;13(12):1036-1042. doi: 10.1038/nmeth.4038. Epub Oct. 31, 2016. |
Hickford et al., Antitumour polyether macrolides: four new halichondrins from the New Zealand deep-water marine sponge Lissodendoryx sp. Bioorg Med Chem. Mar. 15, 2009;17(6):2199-203. doi: 10.1016/j.bmc.2008.10.093. Epub Nov. 19, 2008. |
Hida et al., Directed evolution for drug and nucleic acid delivery. Adv Drug Deliv Rev. Dec. 22, 2007;59(15):1562-78. Epub Aug. 28, 2007. Review. |
Hida K, Hanes J, Ostermeier M. Directed evolution for drug and nucleic acid delivery. Adv Drug Deliv Rev. 2007; 59(15): 1562-78. PMID: 17933418. |
Higgs et al., Genetic complexity in sickle cell disease. Proc Natl Acad Sci U S A. Aug. 19, 2008;105(33):11595-6. doi: 10.1073/pnas.0806633105. Epub Aug. 11, 2008. |
Hill et al., Functional analysis of conserved histidines in ADP-glucose pyrophosphorylase from Escherichia coli.Biochem Biophys Res Commun. Mar. 17, 1998;244(2):573-7. |
Hilton et al., Enabling functional genomics with genome engineering. Genome Res. Oct. 2015;25(10):1442-55. doi: 10.1101/gr.190124.115. |
Hirano et al., Site-specific recombinases as tools for heterologous gene integration. Appl Microbiol Biotechnol. Oct. 2011;92(2):227-39. doi: 10.1007/s00253-011-3519-5. Epub Aug. 7, 2011. Review. |
Hirano et al., Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9. Mol Cell. Mar. 17, 2016;61(6):886-94. doi: 10.1016/j.molcel.2016.02.018. |
Hockemeyer et al., Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. Sep. 2009;27(9):851-7. doi: 10.1038/nbt.1562. Epub Aug. 13, 2009. |
Hockemeyer et al., Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. Jul. 7, 2011;29(8):731-4. doi: 10.1038/nbt.1927. |
Hoernes et al., Translating the epitranscriptome. Wiley Interdiscip Rev RNA. Jan. 2017;8(1):e1375. doi: 10.1002/wrna.1375. Epub Jun. 27, 2016. |
Hoess et al., DNA specificity of the Cre recombinase resides in the 25 kDa carboxyl domain of the protein. J Mol Biol. Dec. 20, 1990;216(4):873-82. doi: 10.1016/S0022-2836(99)80007-2. |
Holden et al., Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature. Nov. 6, 2008;456(7218):121-4. doi: 10.1038/nature07357. Epub Oct. 12, 2008. |
Hollis et al., Phage integrases for the construction and manipulation of transgenic mammals. Reprod Biol Endocrinol. Nov. 7, 2003;1:79. doi: 10.1186/1477-7827-1-79. |
Holsinger et al., Signal transduction in T lymphocytes using a conditional allele of Sos. Proc Natl Acad Sci U S A. Oct. 10, 1995;92(21):9810-4. doi: 10.1073/pnas.92.21.9810. |
Holt et al., Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol. Aug. 2010;28(8):839-47. doi: 10.1038/nbt.1663. Epub Jul. 2, 2010. |
Hondares et al., Peroxisome Proliferator-activated Receptor α (PPARα) Induces PPARγ Coactivator 1a (PGC-1α) Gene Expression and Contributes to Thermogenic Activation of Brown Fat. J Biol. Chem Oct. 2011; 286(50):43112-22. doi: 10.1074/jbc.M111.252775. |
Hoogenboom et al., Natural and designer binding sites made by phage display technology. Immunol Today. Aug. 2000;21(8):371-8. |
Hope et al., Cationic lipids, phosphatidylethanolamine and the intracellular delivery of polymeric, nucleic acid-based drugs (review). Mol Membr Biol. Jan.-Mar. 1998;15(1):1-14. |
Horvath et al., CRISPR/Cas, the immune system of bacteria and archaea. Science. Jan. 8, 2010;327(5962):167-70. doi: 10.1126/science.1179555. |
Horvath et al., Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus Thermophilus. J Bacteriol. Feb. 2008;190(4):1401-12. doi: 10.1128/JB.01415-07. Epub Dec. 2007. |
Hotta et al., [Neurotropic viruses—classification, structure and characteristics]. Nihon Rinsho. Apr. 1997;55(4):777-82. Japanese. |
Hou et al., Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A. Sep. 24, 2013;110(39):15644-9. doi: 10.1073/pnas.1313587110. Epub Aug. 12, 2013. |
Houdebine, The methods to generate transgenic animals and to control transgene expression. J Biotechnol. Sep. 25, 2002;98(2-3):145-60. |
Housden et al., Identification of potential drug targets for tuberous sclerosis complex by synthetic screens combining CRISPR-based knockouts with RNAi. Sci Signal. Sep. 8, 2015;8(393):rs9. doi: 10.1126/scisignal.aab3729. |
Howard et al., Intracerebral drug delivery in rats with lesion-induced memory deficits. J Neurosurg. Jul. 1989;71(1):105-12. |
Hower et al., Shape-based peak identification for ChIP-Seq. BMC Bioinformatics. Jan. 12, 2011;12:15. doi: 10.1186/1471-2105-12-15. |
Hsu et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. Sep. 2013;31(9):827-32. doi: 10.1038/nbt.2647. Epub Jul. 21, 2013. |
Hsu et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. Sep. 2013;31(9):827-32. doi: 10.1038/nbt.2647. Epub Jul. 21, 2013. Supplementary Information. 27 pages. |
Hu et al., Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases. Cell Chem Biol. Jan. 21, 2016;23(1):57-73. doi: 10.1016/j.chembiol.2015.12.009. |
Hu et al., Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. Apr. 5, 2018;556(7699):57-63. doi: 10.1038/nature26155. Epub Feb. 28, 2018. |
Huang et al., Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat Biotechnol. Jun. 2019;37(6):626-631. doi: 10.1038/s41587-019-0134-y. Epub May 20, 2019. Including Supplementary Information. |
Huang et al., Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):699-700. doi: 10.1038/nbt.1939. |
Huang et al., Long-range pseudoknot interactions dictate the regulatory response in the tetrahydrofolate riboswitch. Proc Natl Acad Sci U S A. Sep. 6, 2011;108(36):14801-6. doi: 10.1073/pnas.1111701108. Epub Aug. 22, 2011. |
Hubbard et al., Continuous directed evolution of DNA-binding proteins to improve TALEN specificity. Nat Methods. Oct. 2015; 12(10):939-42. doi: 10.1038/nmeth.3515. Epub Aug. 10, 2015. |
Huggins et al., Flap endonuclease 1 efficiently cleaves base excision repair and DNA replication intermediates assembled into nucleosomes. Mol Cell. Nov. 2002;10(5):1201-11. doi: 10.1016/s1097-2765(02)00736-0. |
Hui Yang and Dinshaw J. Patel: New CRISPR-Cas systems discovered. Cell Research—vo 1 o 27. no. 3. Feb. 21, 2017 (Feb. 21, 2017). pp. 313-314. XP055481126. GB. CN ISSN: 1001-0602. DOI: 10.1038jcr.2017.21. |
Humbert et al., Targeted gene therapies: tools, applications, optimization. Crit Rev Biochem Mol Biol. May-Jun. 2012 47(3):264-81. doi: 10.3109/10409238.2012.658112. |
Hung et al., Protein localization in disease and therapy. J Cell Sci. Oct. 15, 2011;124(Pt 20):3381-92. doi: 10.1242/jcs.089110. |
Hurt et al., Highly specific zinc finger proteins obtained by directed domain shuffling and cell-based selection. Proc Natl Acad Sci U S A. Oct. 14, 2003;100(21):12271-6. Epub Oct. 3, 2003. |
Husimi Y. Selection and evolution of bacteriophages in cellstat. Adv Biophys. 1989; 25: 1-43. PMID: 2696338. |
Husimi, Selection and evolution of bacteriophages in cellstat. Adv Biophys. 1989;25:1-43. Review. |
Huttlin et al., The BioPlex Network: A Systematic Exploration of the Human Interactome. Cell. Jul. 16, 2015;162(2):425-440. doi: 10.1016/j.cell.2015.06.043. |
Hwang et al., Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. Mar. 2013;31(3):227-9. doi: 10.1038/nbt.2501. Epub Jan. 29, 2013. |
Hwang et al., Efficient In Vivo Genome Editing Using RNA-Guided Nucleases. Nat Biotechnol. Mar. 2013; 31(3): 227-229. doi: 10.1038/nbt.2501. Epub Jan. 29, 2013. |
Händel et al., Expanding or restricting the target site repertoire of zinc-finger nucleases: the inter-domain linker as a major determinant of target site selectivity. Mol Ther. Jan. 2009;17(1):104-11. doi: 10.1038/mt.2008.233. Epub Nov. 11, 2008. |
Ibba et al., Relaxing the substrate specificity of an aminoacyl-tRNA synthetase allows in vitro and in vivo synthesis of proteins containing unnatural amino acids. FEBS Lett. May 15, 1995;364(3):272-5. |
Ibba et al., Substrate specificity is determined by amino acid binding pocket size in Escherichia coli phenylalanyl-tRNA synthetase. Biochemistry. Jun. 14, 1994;33(23):7107-12. |
Iida et al., A site-specific, conservative recombination system carried by bacteriophage P1. Mapping the recombinase gene cin and the cross-over sites cix for the inversion of the C segment. EMBO J. 1982;1(11):1445-53. |
Iida et al., The Min DNA inversion enzyme of plasmid p15B of Escherichia coli 15T-: a new member of the Din family of site-specific recombinases. Mol Microbiol. Jun. 1990;4(6):991-7. doi: 10.1111/j.1365-2958.1990.tb00671.x. |
Ikediobi et al., Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther. Nov. 2006;5(11):2606-12. Epub Nov. 6, 2006. |
Imburgio et al., Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants. Biochemistry. Aug. 29, 2000;39(34): 10419-30. |
Ingram, A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature. Oct. 13, 1956;178(4537):792-4. doi: 10.1038/178792a0. |
International Preliminary Report on Patentability for PCT/US2014/048390, mailed on Mar. 7, 2019. |
International Preliminary Report on Patentability for PCT/US2016/058344, mailed May 3, 2018. |
International Preliminary Report on Patentability for PCT/US2017/045381, mailed Feb. 14, 2019. |
International Preliminary Report on Patentability for PCT/US2017/046144, mailed Feb. 21, 2019. |
International Preliminary Report on Patentability for PCT/US2017/056671, mailed on Apr. 25, 2019. |
International Preliminary Report on Patentability for PCT/US2017/068105, mailed on Jul. 4, 2019. |
International Preliminary Report on Patentability for PCT/US2017/068114, mailed on Jul. 4, 2019. |
International Preliminary Report on Patentability for PCT/US2012/047778, mailed Feb. 6, 2014. |
International Preliminary Report on patentability for PCT/US2014/050283, mailed Feb. 18, 2016. |
International Preliminary Report on Patentability for PCT/US2014/052231, mailed Mar. 3, 2016. |
International Preliminary Report on Patentability for PCT/US2014/054247, mailed Mar. 17, 2016. |
International Preliminary Report on Patentability for PCT/US2014/054291, mailed Mar. 17, 2016. |
International Preliminary Report on Patentability for PCT/US2015/042770, mailed Dec. 19, 2016. |
International Preliminary Report on Patentability for PCT/US2015/058479, mailed May 11, 2017. |
International Preliminary Report on Patentability for PCT/US2018/021664, mailed on Sep. 19, 2019. |
International Preliminary Report on Patentability for PCT/US2018/021878, mailed on Sep. 19, 2019. |
International Preliminary Report on Patentability for PCT/US2018/021880, mailed on Sep. 19, 2019. |
International Preliminary Report on Patentability for PCT/US2018/024208, mailed on Oct. 3, 2019. |
International Preliminary Report on Patentability for PCT/US2018/032460, mailed Nov. 21, 2019. |
International Preliminary Report on Patentability for PCT/US2018/044242, mailed Feb. 6, 2020. |
International Preliminary Report on Patentability or PCT/US2014/054252, mailed Mar. 17, 2016. |
International Prelminary Report on Patentability for PCT/US2018/048969, mailed Mar. 12, 2020. |
International Prelminary Report on Patentability mailed Jun. 25, 2020 in connection with PCT/US2018/065886. |
International Search Report and Written Opinion for PCT/US2012/047778, mailed May 30, 2013. |
International Search Report and Written Opinion for PCT/US2014/050283, mailed Nov. 6, 2014. |
International Search Report and Written Opinion for PCT/US2014/052231, mailed Dec. 4, 2014. |
International Search Report and Written Opinion for PCT/US2014/052231, mailed Jan. 30, 2015 (Corrected Version). |
International Search Report and Written Opinion for PCT/US2014/054247, mailed Mar. 27, 2015. |
International Search Report and Written Opinion for PCT/US2014/054252, mailed Mar. 5, 2015. |
International Search Report and Written Opinion for PCT/US2014/054291, mailed Mar. 27, 2015. |
International Search Report and Written Opinion for PCT/US2015/042770, mailed Feb. 23, 2016. |
International Search Report and Written Opinion for PCT/US2015/058479, mailed Feb. 11, 2016. |
International Search Report and Written Opinion for PCT/US2016/044546, mailed Dec. 28, 2016. |
International Search Report and Written Opinion for PCT/US2016/058344, mailed Apr. 20, 2017. |
International Search Report and Written Opinion for PCT/US2017/045381, mailed Oct. 26, 2017. |
International Search Report and Written Opinion for PCT/US2017/046144, mailed Oct. 10, 2017. |
International Search Report and Written Opinion for PCT/US2017/056671, mailed Feb. 20, 2018. |
International Search Report and Written Opinion for PCT/US2017/068105, mailed Apr. 4, 2018. |
International Search Report and Written Opinion for PCT/US2017/068114, mailed Mar. 20, 2018. |
International Search Report and Written Opinion for PCT/US2017/48390, mailed Jan. 9, 2018. |
International Search Report and Written Opinion for PCT/US2018/044242, mailed Nov. 21, 2019. |
International Search Report and Written Opinion mailed Apr. 25, 2019 in connection with PCT/US2018/065886. |
International Search Report for PCT/US2013/032589, mailed Jul. 26, 2013. |
International Search Report for PCT/US2018/021664, mailed Jun. 21, 2018. |
International Search Report for PCT/US2018/021878, mailed Aug. 20, 2018. |
International Search Report for PCT/US2018/021880, mailed Jun. 20, 2018. |
International Search Report for PCT/US2018/024208, mailed Aug. 23, 2018. |
International Search Report for PCT/US2018/025887, mailed Jun. 21, 2018. |
International Search Report for PCT/US2018/032460, mailed Jul. 11, 2018. |
International Search Report for PCT/US2018/048969, mailed Jul. 31, 2019. |
Interview Summary, mailed Jan. 27, 2017, in connection withU.S. Appl. No. 14/326,303. |
Invitation to Pay Additional Fees for PCT/US2014/054291, mailed Dec. 18, 2014. |
Invitation to Pay Additional Fees for PCT/US2016/058344, mailed Mar. 1, 2017. |
Invitation to Pay Additional Fees for PCT/US2017/056671, mailed Dec. 21, 2017. |
Invitation to Pay Additional Fees for PCT/US2017/48390, mailed Nov. 7, 2017. |
Invitation to Pay Additional Fees for PCT/US2018/021878, mailed Jun. 8, 2018. |
Invitation to Pay Additional Fees mailed Mar. 8, 2019 in connection with PCT/US2018/065886. |
Irion et al., Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol. Dec. 2007;25(12):1477-82. doi: 10.1038/nbt1362. Epub Nov. 25, 2007. |
Irrthum et al., Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet. Aug. 2000;67(2):295-301. Epub Jun. 9, 2000. |
Ishino et al., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. Dec. 1987;169(12):5429-33. |
Iwai et al., Circular beta-lactamase: stability enhancement by cyclizing the backbone. FEBS Lett. Oct. 8, 1999;459(2):166-72. doi: 10.1016/s0014-5793(99)01220-x. |
Iwai et al., Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett. Mar. 20, 2006;580(7):1853-8. doi: 10.1016/j.febslet.2006.02.045. Epub Feb. 24, 2006. |
Jamieson et al., Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov. May 2003;2(5):361-8. |
Jansen et al., Backbone and nucleobase contacts to glucosamine-6-phosphate in the glmS ribozyme. Nat Struct Mol Biol. Jun. 2006;13(6):517-23. Epub May 14, 2006. |
Jansen et al., Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. Mar. 2002;43(6):1565-75. |
Jardine et al., HIV-1 Vaccines. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science. Jul. 10, 2015;349(6244):156-61. doi: 10.1126/science.aac5894. Epub Jun. 18, 2015. |
Jasin et al., Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol. Nov. 1, 2013;5(11):a012740. doi: 10.1101/cshperspect.a012740. |
Jeggo, DNA breakage and repair. Adv Genet. 1998;38:185-218. doi: 10.1016/s0065-2660(08)60144-3. |
Jemielity et al., Novel “anti-reverse” cap analogs with superior translational properties. RNA. Sep. 2003;9(9):1108-22. doi: 10.1261/rna.5430403. |
Jenkins et al., Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation. J Biol Chem. Jul. 15, 2011;286(28):24626-37. doi: 10.1074/jbc.M111.230375. Epub May 18, 2011. |
Jeong et al., Measurement of deoxyinosine adduct: Can it be a reliable tool to assess oxidative or nitrosative DNA damage? Toxicol Lett. Oct. 17, 2012;214(2):226-33. doi: 10.1016/j.toxlet.2012.08.013. Epub Aug. 23, 2012. |
Jiang et al., RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. Mar. 2013;31(3):233-9. doi: 10.1038/nbt.2508. Epub Jan. 29, 2013. |
Jiang et al., Structural Biology. A Cas9-guide RNA Complex Preorganized for Target DNA Recognition. Science. Jun. 26, 2015;348(6242):1477-81. doi: 10.1126/science.aab1452. |
Jiang et al., Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science. Feb. 19, 2016;351(6275):867-71. doi: 10.1126/science.aad8282. Epub Jan. 14, 2016. |
Jinek et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. Aug. 17, 2012;337(6096):816-21. doi: 10.1126/science.1225829. Epub Jun. 28, 2012. |
Jinek et al., RNA-programmed genome editing in human cells. Elife. Jan. 29, 2013;2:e00471. |
Jinek et al., Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. Mar. 14, 2014;343(6176):1247997. doi: 10.1126/science.1247997. Epub Feb. 6, 2014. |
Jiricny, The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. May 2006;7(5):335-46. doi: 10.1038/nrm1907. |
Johann et al., GLVR1, a receptor for gibbon ape leukemia virus, is homologous to a phosphate permease of Neurospora crassa and is expressed at high levels in the brain and thymus. J Virol. Mar. 1992;66(3):1635-40. doi: 10.1128/JVI.66.3.1635-1640.1992. |
Johansson et al., RNA Recognition by the MS2 Phage Coat Protein. Seminars in Virology. 1997;8(3):176-85. https://doi.org/10.1006/smvy.1997.0120. |
Johansson et al., Selenocysteine in proteins-properties and biotechnological use. Biochim Biophys Acta. Oct. 30, 2005;1726(1):1-13. Epub Jun. 1, 2005. |
Johns et al., The promise and peril of continuous in vitro evolution. J Mol Evol. Aug. 2005;61(2):253-63. Epub Jun. 27, 2005. |
Joho et al., Identification of a region of the bacteriophage T3 and T7 RNA polymerases that determines promoter specificity. J Mol Biol. Sep. 5, 1990;215(1):31-9. |
Jore et al., Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol. May 2011;18(5):529-36. doi: 10.1038/nsmb.2019. Epub Apr. 3, 2011. |
Joung et al., TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. Jan. 2013;14(1):49-55. doi: 10.1038/nrm3486. Epub Nov. 21, 2012. |
Joyce et al., Amplification, mutation and selection of catalytic RNA. Gene. Oct. 15, 1989;82(1):83-7. doi: 10.1016/0378-1119(89)90033-4. |
Jyothy et al., Translocation Down syndrome. Indian J Med Sci. Mar. 2002;56(3):122-6. |
Kacian et al., Purification of the DNA polymerase of avian myeloblastosis virus. Biochim Biophys Acta. Sep. 24, 1971;246(3):365-83. doi: 10.1016/0005-2787(71)90773-8. |
Kaczmarczyk et al., Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9. PLoS One. Apr. 29, 2016;11(4):e0154604. doi: 10.1371/journal.pone.0154604. |
Kadoch et al., Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell. Mar. 28, 2013;153(1):71-85. doi: 10.1016/j.cell.2013.02.036. |
Kahmann et al., G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell. Jul. 1985;41(3):771-80. doi: 10.1016/s0092-8674(85)80058-1. |
Kaiser et al., Gene therapy. Putting the fingers on gene repair. Science. Dec. 23, 2005;310(5756):1894-6. |
Kakiyama et al., A peptide release system using a photo-cleavable linker in a cell array format for cell-toxicity analysis. Polymer J. Feb. 27, 2013;45:535-9. |
Kandavelou et al., Targeted manipulation of mammalian genomes using designed zinc finger nucleases. Biochem Biophys Res Commun. Oct. 9, 2009;388(1):56-61. doi: 10.1016/j.bbrc.2009.07.112. Epub Jul. 25, 2009. |
Kang et al., Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. Mol Cell. Mar. 27, 2009;33(6):784-90. doi: 10.1016/j.molcel.2009.02.019. Epub Mar. 12, 2009. |
Kang et al., Strucutral Insights into riboswitch control of the biosynthesis of queosine, a modified nublicotide found in the anticodon of tRNA. Mol Cell. Mar. 27, 2009; 33(6):784-90. doi:10.1016/j.molcel.2009.02.019. Epub Mar. 12, 2009. |
Kao et al., Cleavage specificity of Saccharomyces cerevisiae flap endonuclease 1 suggests a double-flap structure as the cellular substrate. J Biol Chem. Apr. 26, 2002;277(17):14379-89. doi: 10.1074/jbc.M110662200. Epub Feb. 1, 2002. |
Kappel et al., Regulating gene expression in transgenic animals.Curr Opin Biotechnol. Oct. 1992;3(5):548-53. |
Karimova et al., Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering. Sci Rep. Jul. 22, 2016;6:30130. doi: 10.1038/srep30130. |
Karimova et al., Vika/vox, a novel efficient and specific Cre/loxP-like site-specific recombination system. Nucleic Acids Res. Jan. 2013;41(2):e37. doi: 10.1093/nar/gks1037. Epub Nov. 9, 2012. |
Karpenshif et al., From yeast to mammals: recent advances in genetic control of homologous recombination. DNA Repair (Amst). Oct. 1, 2012;11(10):781-8. doi: 10.1016/j.dnarep.2012.07.001. Epub Aug. 11, 2012. Review. |
Karpinsky et al., Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nat Biotechnol. Apr. 2016;34(4):401-9. doi: 10.1038/nbt.3467. Epub Feb. 22, 2016. |
Katafuchi et al., DNA polymerases involved in the incorporation of oxidized nucleotides into DNA: their efficiency and template base preference. Mutat Res. Nov. 28, 2010;703(1):24-31. doi: 10.1016/j.mrgentox.2010.06.004. Epub Jun. 11, 2010. |
Kato et al., Improved purification and enzymatic properties of three forms of reverse transcriptase from avian myeloblastosis virus. J Virol Methods. Dec. 1984;9(4):325-39. doi: 10.1016/0166-0934(84)90058-2. |
Katoh et al., MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. Apr. 2013;30(4):772-80. doi: 10.1093/molbev/mst010. Epub Jan. 16, 2013. |
Kaufman et al., Translational efficiency of polycistronic mRNAs and their utilization to express heterologous genes in mammalian cells. EMBO J. Jan. 1987;6(1):187-93. |
Kava et al.: A bacterial Argonaute with noncanonical guide RNA specificity. Proceedings of the National Academy of Sciences. vol. o 113. no. 15. Mar. 30, 2016 (Mar. 30, 2016). pp. 4057-4062. XP055387813. US ISSN: 0027-8424. DOI: 10.1073/pnas.1524385113. |
Kavli et al., Excision of cytosine and thymine from DNA by mutants of human uracil-DNA glycosylase. EMBO J. Jul. 1, 1996;15(13):3442-7. |
Kawarasaki et al., Enhanced crossover SCRATCHY: construction and high-throughput screening of a combinatorial library containing multiple non-homologous crossovers. Nucleic Acids Res. Nov. 1, 2003;31(21):e126. |
Kay et al., Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med. Jan. 2001;7(1):33-40. |
Kaya et al., A bacterial Argonaute with noncanonical guide RNA specificity. Proc. Natl. Acad. Sci. USA Apr. 2016;113(15):4057-62. |
Keijzers et al., Human exonuclease 1 (EXO1) activity characterization and its function on flap structures. Biosci Rep. Apr. 25, 2015;35(3):e00206. doi: 10.1042/BSR20150058. |
Kellendonk et al., Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. Apr. 15, 1996;24(8):1404-11. |
Kelman, PCNA: structure, functions and interactions. Oncogene. Feb. 13, 1997;14(6):629-40. doi: 10.1038/sj.onc.1200886. |
Keravala et al., A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol Genet Genomics. Aug. 2006;276(2):135-46. doi: 10.1007/s00438-006-0129-5. Epub May 13, 2006. |
Kessel et al., Murine developmental control genes. Science. Jul. 27, 1990;249(4967):374-9. doi: 10.1126/science. 1974085. |
Kessler et al., Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci U S A. Nov. 26, 1996;93(24):14082-7. doi: 10.1073/pnas.93.24.14082. |
Ketha et al., Application of bioinformatics-coupled experimental analysis reveals a new transport-competent nuclear localization signal in the nucleoprotein of Influenza A virus strain. BMC Cell Biol. Apr. 28, 2008; 9:22. https://doi.org/10.1186/1471-2121-9-22. |
Kidd et al., Profiling serine hydrolase activities in complex proteomes. Biochemistry. Apr. 3, 2001;40(13):4005-15. |
Kiga et al., An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. Proc Natl Acad Sci U S A. Jul. 23, 2002;99(15):9715-20. Epub Jul. 3, 2002. |
Kilbride et al., Determinants of product topology in a hybrid Cre-Tn3 resolvase site-specific recombination system. J Mol Biol. Jan. 13, 2006;355(2):185-95. Epub Nov. 9, 2005. |
Kilcher et al., Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. J Bacteriol. Oct. 2010;192(20):5441-53. doi: 10.1128/JB.00709-10. Epub Aug. 13, 2010. |
Kim et al., DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell. 2005;7(3):263-273. |
Kim et al., A library of TAL effector nucleases spanning the human genome. Nat Biotechnol. Mar. 2013;31(3):251-8. Doi: 10.1038/nbt.2517. Epub Feb. 17, 2013. |
Kim et al., Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol. May 2017;35(5):475-480. doi: 10.1038/nbt.3852. Epub Apr. 10, 2017. |
Kim et al., High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One. 2011;6(4):e18556. doi: 10.1371/journal.pone.0018556. Epub Apr. 29, 2011. |
Kim et al., Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol. May 2017;35(5):435-437. doi: 10.1038/nbt.3816. Epub Feb. 27, 2017. |
Kim et al., Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. Jun. 2014;24(6):1012-9. doi: 10.1101/gr.171322.113. Epub Apr. 2, 2014. |
Kim et al., Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. Feb. 6, 1996;93(3):1156-60. |
Kim et al., Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. Feb. 6, 1996;93(3):1156-60. doi: 10.1073/pnas.93.3.1156. |
Kim et al., Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol. Apr. 2017;35(4):371-376. doi: 10.1038/nbt.3803. Epub Feb. 13, 2017. |
Kim et al., Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol Microbiol. Oct. 2003;50(2):463-73. doi: 10.1046/j.1365-2958.2003.03723.x. |
Kim et al., Structural and kinetic characterization of Escherichia coli TadA, the wobble-specific tRNA deaminase. Biochemistry. May 23, 2006;45(20):6407-16. doi: 10.1021/bi0522394. PMID: 16700551. |
Kim et al., TALENs and ZFNs are associated with different mutationsignatures. Nat Methods. Mar. 2013;10(3):185. doi: 10.1038/nmeth.2364. Epub Feb. 10, 2013. |
Kim et al., Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. Jul. 2009;19(7):1279-88. doi: 10.1101/gr.089417.108. Epub May 21, 2009. |
Kim et al., The role of apolipoprotein E in Alzheimer's disease. Neuron. Aug. 13, 2009;63(3):287-303. doi: 10.1016/j.neuron.2009.06.026. |
Kim et al., Transcriptional repression by zinc finger peptides. Exploring the potential for applications in gene therapy. J Biol Chem. Nov. 21, 1997;272(47):29795-800. |
Kitamura et al., Uracil DNA glycosylase counteracts APOBEC3G-induced hypermutation of hepatitis B viral genomes: excision repair of covalently closed circular DNA. PLoS Pathog. 2013;9(5):e1003361. doi: 10.1371/journal.ppat.1003361. Epub May 16, 2013. |
Klapacz et al., Frameshift mutagenesis and microsatellite instability induced by human alkyladenine DNA glycosylase. Mol Cell. Mar. 26, 2010;37(6):843-53. doi: 10.1016/j.molcel.2010.01.038. |
Klauser et al., An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Res. May 1, 2013;41(10):5542-52. doi: 10.1093/nar/gkt253. Epub Apr. 12, 2013. |
Klein et al., Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase. Nat Struct Mol Biol. Mar. 2009;16(3):343-4. doi: 10.1038/nsmb.1563.Epub Feb. 22, 2009. |
Klein et al., Cocrystal structure ofa class I preQ1 riboswitch reveals a pseutoknot recognizing an essentail hypermodified nucleobase. Nat Struc Mol Biol. Mar. 2009;16(3):343-4. doi:10.1038/nsmb.1563. Epub Feb. 22, 2009. |
Klein et al., High-velocity microprojectiles for delivering nucleic acids into living cells. Nature. May 7, 1987;327:70-3. |
Kleiner et al., In vitro selection of a DNA-templated small-molecule library reveals a class of macrocyclic kinase inhibitors. J Am Chem Soc. Aug. 25, 2010;132(33):11779-91. doi: 10.1021/ja104903x. |
Kleinstiver et al., Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol. Dec. 2015;33(12):1293-1298. doi: 10.1038/nbt.3404. Epub Nov. 2, 2015. |
Kleinstiver et al., Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. Jul. 23, 2015;523(7561):481-5. doi: 10.1038/nature14592. Epub Jun. 22, 2015. |
Kleinstiver et al., High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. Jan. 28, 2016;529(7587):490-5. doi: 10.1038/nature16526. Epub Jan. 6, 2016. |
Kleinstiver et al., Monomeric site-specific nucleases for genome editing. Proc Natl Acad Sci U S A. May 22, 2012;109(21):8061-6. doi: 10.1073/pnas.1117984109. Epub May 7, 2012. |
Klement et al., Discrimination between bacteriophage T3 and T7 promoters by the T3 and T7 RNA polymerases depends primarily upon a three base-pair region located 10 to 12 base-pairs upstream from the start site. J Mol Biol. Sep. 5, 1990;215(1):21-9. |
Klippel et al., Isolation and characterization of unusual gin mutants. EMBO J. Dec. 1, 1988;7(12):3983-9. |
Klippel et al., The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a phosphoserine at amino acid position 9. EMBO J. Apr. 1988;7(4):1229-37. |
Klompe et al., Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature. Jul. 2019;571(7764):219-225. doi: 10.1038/s41586-019-1323-z. Epub Jun. 12, 2019. |
Klug et al., Zinc fingers: a novel protein fold for nucleic acid recognition. Cold Spring Harb Symp Quant Biol. 1987;52:473-82. |
Koblan et al., Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol. Oct. 2018;36(9):843-846. doi: 10.1038/nbt.4172. Epub May 29, 2018. |
Kobori et al., Deep Sequencing Analysis of Aptazyme Variants Based on a Pistol Ribozyme. ACS Synth Biol. Jul. 21, 2017;6(7):1283-1288. doi: 10.1021/acssynbio.7b00057. Epub Apr. 14, 2017. |
Kohli et al., A portable hot spot recognition loop transfers sequence preferences from APOBEC family members to activation-induced cytidine deaminase. J Biol Chem. Aug. 21, 2009;284(34):22898-904. doi: 10.1074/jbc.M109.025536. Epub Jun. 26, 2009. |
Kohli et al., Local sequence targeting in the AID/APOBEC family differentially impacts retroviral restriction and antibody diversification. J Biol Chem. Dec. 24, 2010;285(52):40956-64. doi: 10.1074/jbc.M110.177402. Epub Oct. 6, 2010. |
Koike-Yusa et al., Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. Mar. 2014;32(3):267-73. doi: 10.1038/nbt.2800. Epub Dec. 23, 2013. |
Kolb et al., Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. Jun. 1, 2001;40(11):2004-2021. |
Kolot et al., Site promiscuity of coliphage HK022 integrase as a tool for gene therapy. Gene Ther. Jul. 2015;22(7):521-7. doi: 10.1038/gt.2015.9. Epub Mar. 12, 2015. |
Kolot et al., Site-specific recombination in mammalian cells expressing the Int recombinase of bacteriophage HK022. Mol Biol Rep. Aug. 1999;26(3):207-13. doi: 10.1023/a:1007096701720. |
Komor Alexis C. et al.: CRISPR-based technologies for the manipulation of eukaryotic genomes Cell. Cell Press. Amsterdam. NL. vol. 168. no. 1. Nov. 17, 2016 (Nov. 17, 2016). pp. 20-36. XP029882172. ISSN: 0092-8674. DOI: 10.1016/J.CELL.2016.10.044. |
Komor et al., CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell. Jan. 12, 2017;168(1-2):20-36. doi: 10.1016/j.cell.2016.10.044. |
Komor et al., Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv. Aug. 30, 2017;3(8):eaao4774. doi: 10.1126/sciadv.aao4774. eCollection Aug. 2017. |
Komor et al., Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. Apr. 20, 2016;533(7603):420-4. doi: 10.1038/nature17946. |
Komor et al., Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. May 19, 2016;533(7603):420-4. |
Komor, Editing the Genome Without Double-Stranded DNA Breaks. ACS Chem Biol. Feb. 16, 2018;13(2):383-388. doi: 10.1021/acschembio.7b00710. Epub Oct. 9, 2017. |
Konermann et al., Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. Jan. 29, 2015;517(7536):583-8. doi: 10.1038/nature14136. Epub Dec. 10, 2014. |
Koonin et al., Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017;37:67?78. doi:10.1016/j.mib.2017.05.008. |
Kotewicz et al., Cloning and overexpression of Moloney murine leukemia virus reverse transcriptase in Escherichia coli. Gene. 1985;35(3):249-58. doi: 10.1016/0378-1119(85)90003-4. |
Kotewicz et al., Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity. Nucleic Acids Res. Jan. 11, 1988;16(1):265-77. doi: 10.1093/nar/16.1.265. |
Kotin, Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum Gene Ther. Jul. 1994;5(7):793-801. doi: 10.1089/hum.1994.5.7-793. |
Kouzminova et al., Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks. Mol Microbiol. Apr. 2008;68(1):202-15. doi: 10.1111/j.1365-2958.2008.06149.x. |
Kowal et al., Exploiting unassigned codons in Micrococcus luteus for tRNA-based amino acid mutagenesis. Nucleic Acids Res. Nov. 15, 1997;25(22):4685-9. |
Kozak, An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. Oct. 26, 1987;15(20):8125-48. doi: 10.1093/nar/15.20.8125. |
Kraft et al., Deletions, Inversions, Duplications: Engineering of Structural Variants using CRISPR/Cas in Mice. Cell Rep. Feb. 10, 2015;10(5):833-839. doi: 10.1016/j.celrep.2015.01.016. Epub Feb. 7, 2015. |
Kremer et al., Adenovirus and adeno-associated virus mediated gene transfer. Br Med Bull. Jan. 1995;51(1):31-44. doi: 10.1093/oxfordjournals.bmb.a072951. |
Krishna et al., Structural classification of zinc fingers: survey and summary. Nucleic Acids Res. Jan. 15, 2003;31(2):532-50. |
Krokan et al., Uracil in DNA—occurrence, consequences and repair. Oncogene. Dec. 16, 2002;21(58):8935-48. doi: 10.1038/sj.onc.1205996. |
Krokan et al., Uracil in DNA—occurrence, consequences and repair. Oncogene. Dec. 16, 2002;21(58):8935-48. doi: 10.1038/sj.onc.1205996. PMID: 12483510. |
Krokan et al., Base excision repair. Cold Spring Harb Perspect Biol. Apr. 1, 2013;5(4):a012583. doi: 10.1101/cshperspect.a012583. |
Krzywkowski et al., Limited reverse transcriptase activity of phi29 DNA polymerase. Nucleic Acids Res. Apr. 20, 2018;46(7):3625-3632. doi: 10.1093/nar/gky190. |
Könke et al., Lenalidomide causes selective degradation of IKZF1 and IKZF3; in multiple myeloma cells. Science. Jan. 17, 2014;343(6168):301-5. doi:; 10.1126/science.1244851. Epub Nov. 29, 2013. |
Kumar et al., Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins. J Biol Chem. Aug. 20, 1999;274(34):24137-41. |
Kundu et al., Leucine to proline substitution by SNP at position 197 in Caspase-9 gene expression leads to neuroblastoma: a bioinformatics analysis. 3 Biotech. 2013; 3:225-34. |
Kunkel et al., Eukaryotic Mismatch Repair in Relation to DNA Replication. Annu Rev Genet. 2015;49:291-313. doi: 10.1146/annurev-genet-112414-054722. |
Kunz et al., DNA Repair in mammalian cells: Mismatched repair: variations on a theme. Cell Mol Life Sci. Mar. 2009;66(6):1021-38. doi: 10.1007/s00018-009-8739-9. |
Kurjan et al., Structure of a yeast pheromone gene (MF alpha): a putative alpha-factor precursor contains four tandem copies of mature alpha-factor. Cell. Oct. 1982;30(3):933-43. doi: 10.1016/0092-8674(82)90298-7. |
Kury et al., De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder. Am J Hum Genet. Feb. 2, 2017;100(2):352-363. doi: 10.1016/j.ajhg.2017.01.003. Epub Jan. 26, 2017. |
Kuscu et al., CRISPR-Cas9-AID base editor is a powerful gain-of-function screening tool. Nat Methods. Nov. 29, 2016;13(12):983-984. doi: 10.1038/nmeth.4076. |
Kuscu et al., CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat Methods. Jul. 2017;14(7):710-712. doi: 10.1038/nmeth.4327. Epub Jun. 5, 2017. |
Kuscu et al., Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol. Jul. 2014;32(7):677-83. doi: 10.1038/nbt.2916. Epub May 18, 2014. |
Kwart et al., Precise and efficient scarless genome editing in stem cells using CORRECT. Nat Protoc. Feb. 2017;12(2):329-354. doi: 10.1038/nprot.2016.171. Epub Jan. 19, 2017. |
Kwon et al., Chemical basis of glycine riobswitch cooperativitiy. RNA. Jan. 2008; 14(1):25-34.Epub Nov. 27, 2007. |
Kwon et al., Chemical basis of glycine riboswitch cooperativity. RNA. Jan. 2008;14(1):25-34. Epub Nov. 27, 2007. |
Köhrer et al., A possible approach to site-specific insertion of two different unnatural amino acids into proteins in mammalian cells via nonsense suppression. Chem Biol. Nov. 2003;10(11):1095-102. |
Köhrer et al., Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells. Nucleic Acids Res. Dec. 1, 2004;32(21):6200-11. Print 2004. |
Kügler et al., Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther. Feb. 2003;10(4):337-47. doi: 10.1038/sj.gt.3301905. |
Lada et al., Mutator effects and mutation signatures of editing deaminases produced in bacteria and yeast. Biochemistry (Mosc). Jan. 2011;76(1):131-46. |
Lakich et al., Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat Genet. Nov. 1993;5(3):236-41. doi: 10.1038/ng1193-236. |
Lancaster et al., Limited trafficking of a neurotropic virus through inefficient retrograde axonal transport and the type I interferon response. PLoS Pathog. Mar. 5, 2010;6(3):e1000791. doi: 10.1371/journal.ppat.1000791. |
Landrum et al., ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. Jan. 4, 2016;44(D1):D862-8. doi: 10.1093/nar/gkv1222. Epub Nov. 17, 2015. |
Landrum et al., ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. Jan. 2014;42(Database issue):D980-5. doi: 10.1093/nar/gkt1113. Epub Nov. 14, 2013. |
Langer et al., Chemical and Physical Structure of Polymers as Carriers for Controlled Release of Bioactive Agents: A Review. Journal of Macromolecular Science, 2006;23(1):61-126. DOI: 10.1080/07366578308079439. |
Langer et al., New methods of drug delivery. Science. Sep. 28, 1990;249(4976):1527-33. |
Larson et al., CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. Nov. 2013;8(11):2180-96. doi: 10.1038/nprot.2013.132. Epub Oct. 17, 2013. |
Lau et al., Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc Natl Acad Sci U S A. Dec. 5, 2000;97(25):13573-8. |
Lauer et al., Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol. Aug. 2002;184(15):4177-86. doi: 10.1128/jb.184.15.4177-4186.2002. |
Lavergne et al., Defects in type IIA von Willebrand disease: a cysteine 509 to arginine substitution in the mature von Willebrand factor disrupts a disulphide loop involved in the interaction with platelet glycoprotein Ib-IX. Br J Haematol. Sep. 1992;82(1):66-72. |
Lawyer et al., High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5′ to 3′ exonuclease activity. PCR Methods Appl. May 1993;2(4):275-87. doi: 10.1101/gr.2.4.275. |
Lazar et al., Transforming growth factor alpha: mutation of aspartic acid 47 and leucine 48 results in different biological activities. Mol Cell Biol. Mar. 1988;8(3):1247-52. |
Lazarevic et al., Nucleotide sequence of the Bacillus subtilis temperate bacteriophage SPbetac2. Microbiology (Reading). May 1999;145 ( Pt 5):1055-1067. doi: 10.1099/13500872-145-5-1055. |
Le Grice et al., Purification and characterization of recombinant equine infectious anemia virus reverse transcriptase. J Virol. Dec. 1991;65(12):7004-7. doi: 10.1128/JVI.65.12.7004-7007.1991. |
Leaver-Fay et al., ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 2011;487:545-74. doi: 10.1016/B978-0-12-381270-4.00019-6. |
Leconte et al., A population-based experimental model for protein evolution: effects of mutation rate and selection stringency on evolutionary outcomes. Biochemistry. Feb. 26, 2013;52(8):1490-9. doi: 10.1021/bi3016185. Epub Feb. 14, 2013. |
Ledford, Gene-editing hack yields pinpoint precision. Nature, Apr. 20, 2016. http://www.nature.com/news/gene-editing-hack-yields-pinpoint-precision-1.19773. |
Lee et al., A chimeric thyroid hormone receptor constitutively bound to DNA requires retinoid receptor for hormone-dependent transcriptional activation in yeast. Mol Endocrinol. Sep. 1994;8(9):1245-52. |
Lee et al., An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science. Aug. 13, 2010;329(5993):845-8. doi: 10.1126/science.119713. |
Lee et al., An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science. Aug. 13, 2010;329(5993):845-8. doi: 10.1126/science.1190713. |
Lee et al., Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute. Nat Biotechnol. Nov. 28, 2016;35(1):17-18. doi: 10.1038/nbt.3753. |
Lee et al., PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene. Feb. 17, 2005;24(8):1477-80. |
Lee et al., Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochim Biophys Acta. Jan. 31, 1992;1103(2):185-97. |
Lee et al., Ribozyme Mediated gRNA Generation for In Vitro and In Vivo CRISPR/Cas9 Mutagenesis. PLoS One. Nov. 10, 2016;11(11):e0166020. doi: 10.1371/journal.pone.0166020. eCollection 2016. |
Lee et al., Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc Natl Acad Sci U S A. Apr. 15, 1991;88(8):3111-5. doi: 10.1073/pnas.88.8.3111. |
Lee et al., Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering. Elife. May 2, 2017;6:e25312. doi: 10.7554/eLife.25312. |
Lee et al., Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. Jan. 2010 20: 81-89; Published in Advance Dec. 1, 2009, doi:10.1101/gr.099747.109. |
Lee et al., Transcriptional regulation and its misregulation in disease. Cell. Mar. 14, 2013;152(6):1237-51. doi: 10.1016/j.cell.2013.02.014. |
Lei et al., Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A. Oct. 23, 2012;109(43):17484-9. Doi: 10.1073/pnas.1215421109. Epub Oct. 8, 2012. |
Leipold et al., A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet. Nov. 2013;45(11):1399-404. doi: 10.1038/ng.2767. Epub Sep. 15, 2013. |
Lemos et al., CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles. Proc Natl Acad Sci U S A. Feb. 27, 2018;115(9):E2040-E2047. doi: 10.1073/pnas.1716855115. Epub Feb. 13, 2018. |
Lenk et al., Pathogenic mechanism of the FIG4 mutation responsible for Charcot-Marie-Tooth disease CMT4J. PLoS Genet. Jun. 2011;7(6):e1002104. doi: 10.1371/journal.pgen.1002104. Epub Jun. 2, 2011. |
Levy et al., Inhibition of calcification of bioprosthetic heart valves by local controlled-release diphosphonate. Science. Apr. 12, 1985;228(4696):190-2. |
Lew et al., Protein splicing in vitro with a semisynthetic two-component minimal intein. J Biol Chem. Jun. 26, 1998;273(26):15887-90. doi: 10.1074/jbc.273.26.15887. |
Lewis et al., A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc Natl Acad Sci U S A. Apr. 16, 1996;93(8):3176-81. |
Lewis et al., Building the Class 2 CRISPR-Cas Arsenal. Mol Cell 2017;65(3);377-379. |
Lewis et al., Codon 129 polymorphism of the human prion protein influences the kinetics of amyloid formation. J Gen Virol. Aug. 2006;87(Pt 8):2443-9. |
Lewis et al., Cytosine deamination and the precipitous decline of spontaneous mutation during Earth's history. Proc Natl Acad Sci U S A. Jul. 19, 2016;113(29):8194-9. doi: 10.1073/pnas.1607580113. Epub Jul. 5, 2016. |
Lewis Kevin M. and Ailong Ke: Building the class 2 CRISPR-Cas arsenal. Molecular Cell. Elsevier. Amsterdam. NL. vo 1 o 65. No. 3. Feb. 2, 2017 (Feb. 2, 2017). pp. 377-379. XP029906286. ISSN: 1097-2765. DOI: 10.1016/J.MOLCEL.2017.01.024. |
Li et al., A Radioactivity-Based Assay for Screening Human m6A-RNA Methyltransferase, METTL3-METTL14 Complex, and Demethylase ALKBH5. J Biomol Screen. Mar. 2016;21(3):290-7. doi: 10.1177/1087057115623264. Epub Dec. 23, 2015. |
Li et al., Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol. Apr. 2018;36(4):324-327. doi: 10.1038/nbt.4102. Epub Mar. 19, 2018. |
Li et al., Current approaches for engineering proteins with diverse biological properties. Adv Exp Med Biol. 2007;620:18-33. |
Li et al., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. Jul. 15, 2009;25(14):1754-60. doi: 10.1093/bioinformatics/btp324. Epub May 18, 2009. |
Li et al., Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System. Mol Plant. Mar. 6, 2017;10(3):526-529. doi: 10.1016/j.molp.2016.12.001. Epub Dec. 8, 2016. |
Li et al., Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein Cell. Aug. 19, 2017. doi: 10.1007/s13238-017-0458-7. [Epub ahead of print]. |
Li et al., Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J Biol Chem. Sep. 22, 1995;270(38):22109-12. doi: 10.1074/jbc.270.38.22109. |
Li et al., Loss of post-translational modification sites in disease. Pac Symp Biocomput. 2010:337-47. doi: 10.1142/9789814295291_0036. |
Li et al., Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. Aug. 2011;39(14):6315-25. doi: 10.1093/nar/gkr188. Epub Mar. 31, 2011. |
Li et al., Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. Aug. 2013;31(8):688-91. doi: 10.1038/nbt.2654. |
Li et al., Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum Gene Ther. Sep. 2008;19(9):958-64. doi: 10.1089/hum.2008.009. |
Li et al., RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. Aug. 4, 2011;12:323. doi: 10.1186/1471-2105-12-323. |
Li et al., TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. Jan. 2011;39(1):359-72. doi: 10.1093/nar/gkq704. Epub Aug. 10, 2010. |
Li, Mechanisms and functions of DNA mismatch repair. Cell Res. Jan. 2008;18(1):85-98. doi: 10.1038/cr.2007.115. |
Liang et al., Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A. Apr. 28, 1998;95(9):5172-7. doi: 10.1073/pnas.95.9.5172. |
Liang et al., Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Send to; J Biotechnol. Aug. 20, 2015;208:44-53. doi: 10.1016/j.jbiotec.2015.04.024. |
Lieber et al., Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. Sep. 2003;4(9):712-20. |
Lienert et al., Two- and three-input TALE-based AND logic computation in embryonic stem cells. Nucleic Acids Res. Nov. 2013;41(21):9967-75. doi: 10.1093/nar/gkt758. Epub Aug. 27, 2013. |
Lilley, D.M. The Varkud Satellite Ribozyme. RNA. Feb. 2004;10(2):151-8.doi: 10.1261/rna.5217104. |
Lim et al., Crystal structure of the moloney murine leukemia virus RNase H domain. J Virol. Sep. 2006;80(17):8379-89. doi: 10.1128/JVI.00750-06. |
Lim et al., Viral vectors for neurotrophic factor delivery: a gene therapy approach for neurodegenerative diseases of the CNS. Pharmacol Res. Jan. 2010;61(1):14-26. doi: 10.1016/j.phrs.2009.10.002. Epub Oct. 17, 2009. |
Lin et al., Dual Peptide Conjugation Strategy for Improved Cellular Uptake and Mitochondria Targeting. Bioconjugate Chem. Dec. 30, 2015;26(1):71-77. https://doi.org/10.1021/bc500408p. |
Lin et al., Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. Dec. 15, 2014;3:e04766. doi: 10.7554/eLife.04766. |
Lin et al., The human REV1 gene codes for a DNA template-dependent dCMP transferase. Nucleic Acids Res. Nov. 15, 1999;27(22):4468-75. doi: 10.1093/nar/27.22.4468. |
Link et al., Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches. Gene Ther. Oct. 2009; 16(10):1189-201. doi: 10.1038/gt.2009.81. Epub Jul. 9, 2009. Review. |
Liu et al., C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism. Molecular Cell Jan. 2017;65(2):310-22. |
Liu et al., Split dnaE genes encoding multiple novel inteins in Trichodesmium erythraeum. J Biol Chem. Jul. 18, 2003;278(29):26315-8. doi: 10.1074/jbc.C300202200. Epub May 24, 2003. |
Liu et al., A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. Feb. 2014;10(2):93-5. doi: 10.1038/nchembio.1432. Epub Dec. 6, 2013. |
Liu et al., Activity-based protein profiling: the serine; hydrolases. Proc Natl Acad Sci U S A. Dec. 21, 1999;96(26):14694-9. |
Liu et al., Adding new chemistries to the genetic code. Annu Rev Biochem. 2010;79:413-44. doi: 10.1146/annurev.biochem.052308.105824. |
Liu et al., Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. Feb. 2013;9(2):106-18. doi: 10.1038/nrneurol.2012.263. Epub Jan. 8, 2013. |
Liu et al., Balancing AID and DNA repair during somatic hypermutation. Trends Immunol. Apr. 2009;30(4):173-81. doi: 10.1016/j.it.2009.01.007. |
Liu et al., Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. Aug. 23, 1991;66(4):807-15. doi: 10.1016/0092-8674(91)90124-h. |
Liu et al., Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One. Jan. 20, 2010;9(1):e85755. doi: 10.1371/journal.pone.0085755. eCollection 2014. |
Liu et al., Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci U S A. May 27, 1997;94(11):5525-30. |
Liu et al., Distance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions. Nucleic Acids Res. Mar. 31, 2006;34(6):1755-64. Print 2006. |
Liu et al., Editing DNA Methylation in the Mammalian Genome. Cell. Sep. 22, 2016;167(1):233-247.e17. doi: 10.1016/j.cell.2016.08.056. |
Liu et al., Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc Natl Acad Sci U S A. Sep. 16, 1997;94(19):10092-7. |
Liu et al., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem. Dec. 16, 2006;45(1):90-4. DOI: 10.1002/anie.200502589. |
Liu et al., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem. 2006;118(1):96-100. |
Liu et al., Flap endonuclease 1: a central component of DNA metabolism. Annu Rev Biochem. 2004;73:589-615. doi: 10.1146/annurev.biochem.73.012803.092453. |
Liu et al., Functional Nucleic Acid Sensors. Chem Rev. May 2009;109(5):1948-98. doi: 10.1021/cr030183i. |
Liu et al., Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat Methods. Mar. 2007;4(3):239-44. Epub Feb. 25, 2007. |
Liu et al., Highly efficient RNA-guided base editing in rabbit. Nat Commun. Jul. 13, 2018;9(1):2717. doi: 10.1038/s41467-018-05232-2. |
Liu et al., N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. Feb. 26, 2015;518(7540):560-4. doi: 10.1038/nature14234. |
Liu et al., Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA. Dec. 2013;19(12):1848-56. doi: 10.1261/rna.041178.113. Epub Oct. 18, 20138. |
Liu et al., Reverse transcriptase of foamy virus. Purification of the enzymes and immunological identification. Arch Virol. 1977;55(3):187-200. doi: 10.1007/BF01319905. |
Liu et al., Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science. Mar. 15, 2002;295(5562):2091-4. doi: 10.1126/science.1067467. |
Liu et al., Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability. Mol Cell Biol. May 2004;24(9):4049-64. doi: 10.1128/MCB.24.9.4049-4064.2004. |
Liu et al.,( Angew Chem Int. Ed., vol. 45, pp. 90-94. (2006). |
Loessner et al., Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol Microbiol. Jan. 2000;35(2):324-40. doi: 10.1046/j.1365-2958.2000.01720.x. |
Lombardo et al., Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. Nov. 2007;25(11):1298-306. Epub Oct. 28, 2007. |
Long et al., Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. Jan. 22, 2016;351(6271):400-3. doi: 10.1126/science.aad5725. Epub Dec. 31, 2015. |
Lorenz et al., ViennaRNA Package 2.0. Algorithms Mol Biol. Nov. 24, 2011;6:26. doi: 10.1186/1748-7188-6-26. |
Losey et al., Crystal structure of Staphylococcus sureus tRNA adenosine deaminase tadA in complex with RNA. Nature Struct. Mol. Biol. Feb. 2006;13(2):153-9. |
Lu et al., Precise Editing of a Target Base in the Rice Genome Using a Modified CRISPR/Cas9 System. Mol Plant. Mar. 6, 2017;10(3):523-525. doi: 10.1016/j.molp.2016.11.013. Epub Dec. 6, 2016. |
Lu et al., The myeloma drug lenalidomide promotes the cereblon-dependent; destruction of Ikaros proteins. Science. Jan. 17, 2014;343(6168):305-9. doi:; 10.1126/science.1244917. Epub Nov. 29, 2013. |
Luan et al., Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. Feb. 26, 1993;72(4):595-605. doi: 10.1016/0092-8674(93)90078-5. |
Luckow et al., High level expression of nonfused foreign genes with Autographa californica nuclear polyhedrosis virus expression vectors. Virology. May 1989;170(1):31-9. doi: 10.1016/0042-6822(89)90348-6. |
Lukacsovich et al., Repair of a specific double-strand break generated within a mammalian chromosome by yeast endonuclease I-SceI. Nucleic Acids Res. Dec. 25, 1994;22(25):5649-57. doi: 10.1093/nar/22.25.5649. |
Lundberg et al., Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J. Sep. 2007;21(11):2664-71. Epub Apr. 26, 2007. |
Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J Biol Chem. Aug. 22, 1997;272(34):21408-19. |
Lynch, Evolution of the mutation rate. Trends Genet. Aug. 2010;26(8):345-52. doi: 10.1016/j.tig.2010.05.003. Epub Jun. 30, 2010. |
Lyons et al., Efficient recognition of an unpaired lesion by a DNA repair glycosylase. J Am Chem Soc. Dec. 16, 2009;131(49):17742-3. |
Lyons et al., Efficient Recognition of an Unpaired Lesion by a DNA Repair Glycosylase. J. Am. Chem. Soc., 2009;131(49):17742-3. DOI: 10.1021/ja908378y. |
Luke et al., Partial purification and characterization of the reverse transcriptase of the simian immunodeficiency virus TYO-7 isolated from an African green monkey. Biochemistry. Feb. 20, 1990;29(7):1764-9. doi: 10.1021/bi00459a015. |
Ma et al., Identification of pseudo attP sites for phage phiC31 integrase in bovine genome. Biochem Biophys Res Commun. Jul. 7, 2006;345(3):984-8. doi: 10.1016/j.bbrc.2006.04.145. Epub May 3, 2006. |
Ma et al., In vitro protein engineering using synthetic tRNA(Ala) with different anticodons. Biochemistry. Aug. 10, 1993;32(31):7939-45. |
Ma et al., PhiC31 integrase induces efficient site-specific recombination in the Capra hircus genome. DNA Cell Biol. Aug. 2014;33(8):484-91. doi: 10.1089/dna.2013.2124. Epub Apr. 22, 2014. |
Ma et al., Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes. Mol Cell. Nov. 5, 2015;60(3):398-407. doi: 10.1016/j.molcel.2015.10.030. |
Ma et al., Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nature Methods. Oct. 2016;13:1029-35. doi: 10.1038/nmeth.4027 . |
Maas et al., Identification and characterization of a human tRNA-specific adenosine deaminase related to the ADAR family of pre-mRNA editing enzymes. Proc Natl Acad Sci U S A. Aug. 3, 1999;96(16):8895-900. doi: 10.1073/pnas.96.16.8895. |
MacBeth et al., Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science. Sep. 2, 2005;309(5740):1534-9. doi: 10.1126/science.1113150. |
MacRae et al., Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol. Feb. 2007;17(1):138-45. doi: 10.1016/j.sbi.2006.12.002. Epub Dec. 27, 2006. |
Maeder et al., CRISPR RNA-guided activation of endogenous human genes. Nat Methods. Oct. 2013;10(10):977-9. doi: 10.1038/nmeth.2598. Epub Jul. 25, 2013. |
Maeder et al., Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. Jul. 25, 2008;31(2):294-301. doi:10.1016/j.molcel.2008.06.016. |
Maeder et al., Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods. Mar. 2013;10(3):243-5. doi: 10.1038/nmeth.2366. Epub Feb. 10, 2013. |
Mahfouz et al., De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci U S A. Feb. 8, 2011;108(6):2623-8. doi: 10.1073/pnas.1019533108. Epub Jan. 24, 2011. |
Mak et al., The crystal structure of TAL effector PthXo1 bound to its DNA target. Science. Feb. 10, 2012;335(6069):716-9. doi: 10.1126/science.1216211. Epub Jan. 5, 2012. |
Makarova et al., Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biology Direct 2009;4:29. |
Makarova et al., An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. Nov. 2015;13(11):722-36. doi: 10.1038/nrmicro3569. Epub Sep. 28, 2015. |
Makarova et al., Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. Jun. 2011;9(6):467-77. doi: 10.1038/nrmicro2577. Epub May 9, 2011. |
Makarova et al., Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biology Direct 2009;4:29. doi: 10.1186/1745-6150-4-29. |
Makeyev et al., Evolutionary potential of an RNA virus. J Virol. Feb. 2004;78(4):2114-20. |
Malashkevich et al., Crystal structure of tRNA adenosine deaminase TadA from Escherichia coli. Deposited: Mar. 10, 2005 Released: Feb. 21, 2006 doi:10.2210/pdb1z3a/pdb (2006). |
Mali et al., Cas9 as a versatile tool for engineering biology. Nat Methods. Oct. 2013;10(10):957-63. doi: 10.1038/nmeth.2649. |
Mali et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. Sep. 2013;31(9):833-8. doi: 10.1038/nbt.2675. Epub Aug. 1, 2013. |
Mali et al., RNA-guided human genome engineering via Cas9. Science. Feb. 15, 2013;339(6121):823-6. doi: 10.1126/science.1232033. Epub Jan. 3, 2013. |
Malito et al., Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc Natl Acad Sci U S A. Apr. 3, 2012;109(14):5229-34. doi: 10.1073/pnas.1201964109. Epub Mar. 19, 2012. |
Mandal et al., A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science. Oct. 8, 2004;306(5694):275-9. |
Mandal et al., Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol. Jan. 2004;11(1):29-35. Epub Dec. 29, 2003. |
Mandal et al., Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell. Nov. 6, 2014;15(5):643-52. doi: 10.1016/j.stem.2014.10.004. Epub Nov. 6, 2014. |
Mandal et al., Riboswitches Control Fundamental Biochemical Pathways in Bacillus Subtilis and Other Bacteria. Cell. May 30, 2003;113(5):577-86. doi: 10.1016/s0092-8674(03)00391-x. |
Mani et al., Design, engineering, and characterization of zinc finger nucleases. Biochem Biophys Res Commun. Sep. 23, 2005;335(2):447-57. |
Marceau, Functions of single-strand DNA-binding proteins in DNA replication, recombination, and repair. Methods Mol Biol. 2012;922:1-21. doi: 10.1007/978-1-62703-032-8_1. |
Maresca et al., Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res. Mar. 2013;23(3):539-46. Doi: 10.1101/gr.145441.112. Epub Nov. 14, 2012. |
Marioni et al., DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. Jan. 30, 2015;16:25. doi: 10.1186/s13059-015-0584-6. |
Marraffini et al., CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. Dec. 19, 2008;322(5909):1843-5. doi: 10.1126/science.1165771. |
Martinez et al., Hypermutagenesis of RNA using human immunodeficiency virus type 1 reverse transcriptase and biased dNTP concentrations. Proc Natl Acad Sci U S A. Dec. 6, 1994;91(25):11787-91. doi: 10.1073/pnas.91.25.11787. |
Martsolf et al., Complete trisomy 17p a relatively new syndrome. Ann Genet. 1988;31(3):172-4. |
Maruyama et al., Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. May 2015;33(5):538-42. doi: 10.1038/nbt.3190. Epub Mar. 23, 2015. |
Mascola et al., HIV-1 neutralizing antibodies: understanding nature's pathways. Immunol Rev. Jul. 2013;254(1):225-44. doi: 10.1111/imr.12075. |
Mathys et al., Characterization of a self-splicing mini-intein and its conversion into autocatalytic N- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene. Apr. 29, 1999;231(1-2):1-13. doi: 10.1016/s0378-1119(99)00103-1. |
Matsuura et al., A gene essential for the site-specific excision of actinophage r4 prophage genome from the chromosome of a lysogen. J Gen Appl Microbiol. 1995;41(1):53-61. |
Matthews, Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nat Struct Mol Biol. May 2016;23(5):426-33. doi: 10.1038/nsmb.3203. Epub Apr. 11, 2016. |
McCarroll et al., Copy-number variation and association studies of human disease. Nat Genet. Jul. 2007;39(7 Suppl):S37-42. doi: 10.1038/ng2080. |
McDonald et al., Characterization of mutations at the mouse phenylalanine hydroxylase locus. Genomics. Feb. 1, 1997;39(3):402-5. doi: 10.1006/geno.1996.4508. |
Mcinerney et al., Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase. Mol Biol Int. 2014;2014:287430. doi: 10.1155/2014/287430. Epub Aug. 17, 2014. |
McKenna et al., Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science. Jul. 29, 2016;353(6298):aaf7907. doi: 10.1126/science.aaf7907. Epub May 26, 2016. |
McVey et al., MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. Nov. 2008;24(11):529-38. doi: 10.1016/j.tig.2008.08.007. Epub Sep. 21, 2008. |
Mead et al., A novel protective prion protein variant that colocalizes with kuru exposure. N Engl J Med. Nov. 19, 2009;361(21):2056-65. doi: 10.1056/NEJMoa0809716. |
Meckler et al., Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Res. Apr. 2013;41(7):4118-28. doi: 10.1093/nar/gkt085. Epub Feb. 13, 2013. |
Mei et al., Recent Progress in CRISPR/Cas9 Technology. J Genet Genomics. Feb. 20, 2016;43(2):63-75. doi: 10.1016/j.jgg.2016.01.001. Epub Jan. 18, 2016. |
Meinke et al., Cre Recombinase and Other Tyrosine Recombinases. Chem Rev. Oct. 26, 2016;116(20):12785-12820. doi: 10.1021/acs.chemrev.6b00077. Epub May 10, 2016. |
Meng et al., Profiling the DNA-binding specificities of engineered Cys2His2 zinc finger domains using a rapid cell-based method. Nucleic Acids Res. 2007;35(11):e81. Epub May 30, 2007. |
Meng et al., Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol. Jun. 2008;26(6):695-701. doi: 10.1038/nbt1398. Epub May 25, 2008. |
Menéndez-Arias, Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses. Dec. 2009;1(3):1137-65. doi: 10.3390/v1031137. Epub Dec. 4, 2009. |
Mercer et al., Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res. Nov. 2012;40(21):11163-72. doi: 10.1093/nar/gks875. Epub Sep. 26, 2012. |
Mertens et al., Site-specific recombination in bacteriophage Mu: characterization of binding sites for the DNA invertase Gin. Embo J. Apr. 1988;7(4):1219-27. |
Meyer et al., Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. Jun. 22, 2012;149(7):1635-46. doi: 10.1016/j.cell.2012.05.003. Epub May 17, 2012. |
Meyer et al., Confirmation of a second natuarl preQ1 aptamer class in Streptococcacae bacterial. RNA. 2008 Apri; 14(4):685-95. doi: 10.1261/rna.937308. Epub Feb. 27, 2008. |
Meyer et al., Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria. RNA. Apr. 2008;14(4):685-95. doi: 10.1261/rna.937308. Epub Feb. 27, 2008. |
Meyer et al., Library generation by gene shuffling. Curr Protoc Mol Biol. Jan. 6, 2014;105: Unit 15.12. doi: 10.1002/0471142727.mb1512s105. |
Meyer et al., The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. May 2014;15(5):313-26. doi: 10.1038/nrm3785. Epub Apr. 9, 2014. |
Michel et al., Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature. Aug. 15-21, 1985;316(6029):641-3. doi: 10.1038/316641a0. |
Mihai et al., PTEN inhibition improves wound healing in lung epithelia through changes in cellular mechanics that enhance migration. Am J Physiol Lung Cell Mol Physiol. 2012;302(3):L287-L299. |
Mijakovic et al., Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res. Mar. 20, 2006;34(5):1588-96. doi: 10.1093/nar/gkj514. |
Miller et al., A Tale nuclease architecture for efficient genome editing. Nat Biotechnol. Feb. 2011;29(2):143-8. doi:10.1038/nbt.1755. Epub Dec. 22, 2010. |
Miller et al., An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. Jul. 2007;25(7):778-85. Epub Jul. 1, 2007. |
Miller, Human gene therapy comes of age. Nature. Jun. 11, 1992;357(6378):455-60. doi: 10.1038/357455a0. |
Mills et al., Protein splicing in trans by purified N- and C-terminal fragments of the Mycobacterium tuberculosis RecA intein. Proc Natl Acad Sci U S A. Mar. 31, 1998;95(7):3543-8. doi: 10.1073/pnas.95.7.3543. |
Minoche et al., Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. Nov. 8, 2011;12(11):R112. doi: 10.1186/GB-2011-12-11-r112. |
Minoretti et al., A W148R mutation in the human FOXD4 gene segregating with dilated cardiomyopathy, obsessive-compulsive disorder, and suicidality. Int J Mol Med. Mar. 2007;19(3):369-72. |
Mir et al., Two Active Site Divalent Ions in the Crystal Structure of the Hammerhead Ribozyme Bound to a Transition State Analogue. Biochemistry. Feb. 2, 2016;55(4):633-6. doi: 10.1021/acs.biochem.5b01139. Epub Jan. 19, 2016. |
Mishina et al., Conditional gene targeting on the pure C57BL/6 genetic background. Neurosci Res. Jun. 2007;58(2):105-12. doi: 10.1016/j.neures.2007.01.004. Epub Jan. 18, 2007. |
Mitton-Fry et al., Poly(A) tail recognition by a viral RNA element through assembly of a triple helix. Science. Nov. 26, 2010;330(6008):1244-7. doi: 10.1126/science.1195858. |
Miyaoka et al., Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep. Mar. 31, 2016;6:23549. doi: 10.1038/srep23549. |
Moede et al., Identification of a nuclear localization signal, RRMKWKK, in the homeodomain transcription factor PDX-1. FEBS Lett. Nov. 19, 1999;461(3):229-34. doi: 10.1016/s0014-5793(99)01446-5. |
Mohr et al., Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. RNA. Jul. 2013;19(7):958-70. doi: 10.1261/rna.039743.113. Epub May 22, 2013. |
Mojica et al., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. Feb. 2005;60(2):174-82. |
Mol et al., Crystal structure and mutational analysis of human uracil-DNA glycosylase: structural basis for specificity and catalysis. Cell. Mar. 24, 1995;80(6):869-78. doi: 10.1016/0092-8674(95)90290-2. |
Mol et al., Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell. Sep. 8, 1995;82(5):701-8. |
Monahan et al., Site-specific incorporation of unnatural amino acids into receptors expressed in Mammalian cells. Chem Biol. Jun. 2003;10(6):573-80. |
Monot et al., The specificity and flexibility of 11 reverse transcription priming at imperfect T-tracts. PLoS Genet. May 2013;9(5):e1003499. doi: 10.1371/journal.pgen.1003499. Epub May 9, 2013. |
Montage et al., Structure of the S-adenosylemethionine riboswitch regulatory mRNA element. Nature. Jun. 29, 2006;441(7079):1172-5. |
Montange et al., Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature. Jun. 29, 2006;441(7097):1172-5. |
Moore et al., Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PLoS One. 2012;7(5):e37877. Doi: 10.1371/journal.pone.0037877. Epub May 24, 2012. |
Mootz et al. Conditional proten splicing; a new tool to control protein structure and fuction in vitro and invivo. J. Am Chem Soc. Sep. 3, 2003:125(35):10560-9. |
Mootz et al., Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc. Sep. 3, 2003;125(35):10561-9. |
Mootz et al., Protein splicing triggered by a small molecule. J Am Chem Soc. Aug. 7, 2002;124(31):9044-5. |
Mootz et al., Protein splicing triggered by a small molecute. J Am Chem Soc. Aug. 7, 2002;124(31):9044-5. |
Morbitzer et al., Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res. Jul. 2011;39(13):5790-9. doi: 10.1093/nar/gkr151. Epub Mar. 18, 2011. |
Moreno-Mateos et al., CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods. Oct. 2015;12(10):982-8. doi: 10.1038/nmeth.3543. Epub Aug. 31, 2015. |
Morita et al., The site-specific recombination system of actinophage TG1. FEMS Microbiol Lett. Aug. 2009;297(2):234-40. doi: 10.1111/j.1574-6968.2009.01683.x. |
Morris et al., A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol. Dec. 2001;19(12):1173-6. |
Moscou et al., A simple cipher governs DNA recognition by TAL effectors. Science. Dec. 11, 2009;326(5959):1501. doi: 10.1126/science.1178817. |
Muir et al., Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A. Jun. 9, 1998;95(12):6705-10. doi: 10.1073/pnas.95.12.6705. |
Muller et al., Nucleotide exchange and excision technology (NExT) DNA shuffling: a robust method for DNA fragmentation and directed evolution. Nucleic Acids Res. Aug. 1, 2005;33(13):e117. doi: 10.1093/nar/gni116. PMID: 16061932; PMCID: PMC1182171. |
Mullins et al., Transgenesis in nonmurine species. Hypertension. Oct. 1993;22(4):630-3. |
Mumtsidu et al., Structural features of the single-stranded DNA-binding protein of Epstein-Barr virus. J Struct Biol. Feb. 2008;161(2):172-87. doi: 10.1016/j.jsb.2007.10.014. Epub Nov. 1, 2007. |
Murphy, Phage recombinases and their applications. Adv Virus Res. 2012;83:367-414. doi: 10.1016/B978-0-12-394438-2.00008-6. Review. |
Mussolino et al., A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. Nov. 2011;39(21):9283-93. Doi: 10.1093/nar/gkr597. Epub Aug. 3, 2011. |
Mussolino et al., TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol. Oct. 2012;23(5):644-50. doi: 10.1016/j.copbio.2012.01.013. Epub Feb. 17, 2012. |
Muzyczka et al., Adeno-associated virus (AAV) vectors: will they work? J Clin Invest. Oct. 1994;94(4):1351. doi: 10.1172/JCI117468. |
Myerowitz et al., The major defect in Ashkenazi Jews with Tay-Sachs disease is an insertion in the gene for the alpha-chain of beta-hexosaminidase. J Biol Chem. Dec. 15, 1988;263(35):18587-9. |
Myers et al., Insulin signal transduction and the IRS proteins. Annu Rev Pharmacol Toxicol. 1996;36:615-58. doi: 10.1146/annurev.pa.36.040196.003151. |
Nabel et al., Direct gene transfer for immunotherapy and immunization. Trends Biotechnol. May 1993;11(5):211-5. doi: 10.1016/0167-7799(93)90117-R. |
Nahvi et al., Coenzyme B12 riboswitchen are widespread genetic control elements in proaryotes. Nucleic Acids Res. Jan. 2, 2004;32(1):143-50. |
Nahvi et al., Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res. Jan. 2, 2004;32(1):143-50. |
Nakade et al., Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun. Nov. 20, 2014;5:5560. doi: 10.1038/ncomms6560. |
Nakamura et al., Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. Jan. 1, 2000;28(1):292. doi: 10.1093/nar/28.1.292. |
Narayanan et al., Clamping down on weak terminal base pairs: oligonucleotides with molecular caps as fidelity-enhancing elements at the 5′- and 3′-terminal residues. Nucleic Acids Res. May 20, 2004;32(9):2901-11. Print 2004. |
Navaratnam et al., An overview of cytidine deaminases. Int J Hematol. Apr. 2006;83(3):195-200. |
NCBI Reference Sequence: NM_002427.3. Wu et al., May 3, 2014. 5 pages. |
Neel et al., Riboswitches: classification, functionan d in silico approach, International Journal of Pharma Sciencs and Research. 2010;1(9);409-420. |
Neel et al., Riboswitches: Classification, function and in silico approach, International Journal of Pharma Sciences and Research. 2010;1(9):409-420. |
Nelson et al., Filamentous phage DNA cloning vectors: a noninfective mutant with a nonpolar deletion in gene III. Virology. 1981; 108(2): 338-50. |
Nelson FK, Friedman SM, Smith GP. Filamentous phage DNA cloning vectors: a noninfective mutant with a nonpolar deletion in gene III. Virology. 1981; 108(2): 338-50 |
Nern et al., Multiple new site-specific recombinases for use in manipulating animal genomes. Proc Natl Acad Sci U S A. Aug. 23, 2011;108(34):14198-203. doi: 10.1073/pnas.1111704108. Epub Aug. 9, 2011. |
Nguyen et al., IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. Jan. 2015;32(1):268-74. doi: 10.1093/molbev/msu300. Epub Nov. 3, 2014. |
Ni et al., A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J Lipid Res. 2011;52:76-86. |
Ni et al., Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem. 2011;18(27):4206-14. Review. |
Ni et al., Nucleic acid aptamers; clinical applications and promising new horizongs. Curr Med Chem. 2011;18(27);4206-14 Review. |
Nickitenko et al., A resolution structure of DppA, a periplasmic dipeptide transport/chemosensory receptor. Biochemistry. Dec. 26, 1995;34(51):16585-95. |
Nishida et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. Sep. 16, 2016;353(6305). pii: aaf8729. doi: 10.1126/science.aaf8729. Epub Aug. 4, 2016. |
Nishida et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. Sep. 16, 2016;353(6305):1248. pii: aaf8729. doi: 10.1126/science.aaf8729. Epub Aug. 4, 2016. |
Nishikura, Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010;79:321-349. doi:10.1146/annurev-biochem-060208-105251. |
Nishimasu et al., Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. Feb. 27, 2014;156(5):935-49. doi: 10.1016/j.cell.2014.02.001. Epub Feb. 13, 2014. |
Nishimasu et al., Crystal Structure of Staphylococcus aureus Cas9. Cell. Aug. 27, 2015;162(5):1113-26. doi: 10.1016/j.cell.2015.08.007. |
Nishimura et al., An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat Methods. Dec. 2009;6(12):917-22. doi: 10.1038/nmeth.1401. Epub Nov. 15, 2009. |
Nomura et al., Controlling Mammalian Gene Expression by Allosteric Hepatitis Delta Virus Ribozymes. ACS Synth Biol. Dec. 20, 2013;2(12):684-9. doi: 10.1021/sb400037a. Epub May 22, 2013. |
Nomura et al., Synthetic mammalian riboswitches based on guanine aptazyme. Chem Commun (Camb). Jul. 21, 2012;48(57):7215-7. doi: 10.1039/c2cc33140c. Epub Jun. 13, 2012. |
Noris et al., A phenylalanine-55 to serine amino-acid substitution in the human glycoprotein IX leucine-rich repeat is associated with Bernard-Soulier syndrome. Br J Haematol. May 1997;97(2):312-20. |
Nottingham et al., RNA-seq of human reference RNA samples using a thermostable group intron II reverse transcriptase. RNA. Apr. 2016;22(4):597-613. doi: 10.1261/rna.055558.115. Epub Jan. 29, 2016. |
Nowak et al., Characterization of single-stranded DNA-binding proteins from the psychrophilic bacteria Desulfotalea psychrophila, Flavobacterium psychrophilum, Psychrobacter arcticus, Psychrobacter cryohalolentis, Psychromonas ingrahamii, Psychroflexus torquis, and Photobacterium profundum. BMC Microbiol. Apr. 14, 2014;14:91. doi: 10.1186/1471-2180-14-91. |
Nowak et al., Guide RNA Engineering for Versatile Cas9 Functionality. Nucleic Acids Res. Nov. 16, 2016;44(20):9555-9564. doi: 10.1093/nar/gkw908. Epub Oct. 12, 2016. |
Nowak et al., Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid. Nucleic Acids Res. Apr. 1, 2013;41(6):3874-87. doi: 10.1093/nar/gkt053. Epub Feb. 4, 2013. |
Numrych et al., A comparison of the effects of single-base and triple-base changes in the integrase arm-type binding sites on the site-specific recombination of bacteriophage lambda. Nucleic Acids Res. Jul. 11, 1990;18(13):3953-9. doi: 10.1093/nar/18.13.3953. |
Nyerges et al., A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc Natl Acad Sci U S A. Mar. 1, 2016;113(9):2502-7. doi: 10.1073/pnas.1520040113. Epub Feb. 16, 2016. |
O'Connell et al., Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature. Dec. 11, 2014;516(7530):263-6. doi: 10.1038/nature13769. Epub Sep. 28, 2014. |
O'Maille et al., Structure-based combinatorial protein engineering (SCOPE). J Mol Biol. Aug. 23, 2002;321(4):677-91. |
Oakes et al., CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification. Cell. Jan. 10, 2019;176(1-2):254-267.e16. doi: 10.1016/j.cell.2018.11.052. |
Oakes et al., Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nat Biotechnol. Jun. 2016;34(6):646-51. doi: 10.1038/nbt.3528. Epub May 2, 2016. |
Oakes et al., Protein engineering of Cas9 for enhanced function. Methods Enzymol. 2014;546:491-511. |
Odsbu et al., Specific N-terminal interactions of the Escherichia coli SeqA protein are required to form multimers that restrain negative supercoils and form foci. Genes Cells. Nov. 2005;10(11): 1039-49. |
Oeemig et al., Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Lett. May 6, 2009;583(9):1451-6. |
Office Action, mailed Apr. 9, 2015, in connection with U.S. Appl. No. 14/326,303. |
Office Action, mailed Feb. 26, 2015, in connection with U.S. Appl. No. 14/326,318. |
Office Action, mailed Feb. 7, 2017, in connection with U.S. Appl. No. 14/326,318. |
Office Action, mailed Jun. 15, 2015, in connection with U.S. Appl. No. 14/326,318. |
Office Action, mailed Jun. 27, 2016, in connection with U.S. Appl. No. 14/326,318. |
Office Action, mailed Mar. 18, 2016, in connection with U.S. Appl. No. 14/326,303. |
Office Action, mailed Oct. 5, 2016, in connection with U.S. Appl. No. 14/326,303. |
Office Action, mailed Sep. 11, 2015, in connection with U.S. Appl. No. 14/326,303. |
Office Action and Applicant Initiated Interview Summary, mailed May 6, 2019, in connection with U.S. Appl. No. 14/325,815. |
Office Action, mailed Apr. 24, 2015, in connection with U.S. Appl. No. 14/326,109. |
Office Action, mailed Feb. 10, 2015, in connection with U.S. Appl. No. 14/326,140. |
Office Action, mailed Feb. 11, 2015, in connection with U.S. Appl. No. 14/325,815. |
Office Action, mailed Feb. 16, 2017, in connection with U.S. Appl. No. 14/326,109. |
Office Action, mailed Jan. 12, 2017, in connection with U.S. Appl. No. 14/325,815. |
Office Action, mailed Jan. 16, 2018, in connection with U.S. Appl. No. 14/326,290. |
Office Action, mailed Jan. 17, 2018, in connection with U.S. Appl. No. 14/325,815. |
Office Action, mailed Jan. 5, 2016, in connection with U.S. Appl. No. 14/325,815. |
Office Action, mailed Jul. 11, 2016, in connection with U.S. Appl. No. 14/326,109. |
Office Action, mailed Jun. 1, 2015, in connection with U.S. Appl. No. 14/326,140. |
Office Action, mailed Jun. 1, 2017, in connection with U.S. Appl. No. 14/326,290. |
Office Action, mailed Jun. 4, 2015, in connection with U.S. Appl. No. 14/325,815. |
Office Action, mailed Jun. 7, 2016, in connection with U.S. Appl. No. 14/325,815. |
Office Action, mailed Mar. 10, 2016, in connection with U.S. Appl. No. 14/326,290. |
Office Action, mailed Mar. 29, 2018, in connection with U.S. Appl. No. 15/103,608. |
Office Action, mailed May 1, 2015, in connection with U.S. Appl. No. 14/326,290. |
Office Action, mailed May 5, 2016, in connection with U.S. Appl. No. 14/326,140. |
Office Action, mailed Nov. 13, 2015, in connection with U.S. Appl. No. 14/326,109. |
Office Action, mailed Nov. 21, 2014, in connection with U.S. Appl. No. 14/326,269. |
Office Action, mailed Nov. 6, 2018, in connection with U.S. Appl. No. 15/103,608. |
Office Action, mailed Oct. 11, 2017, in connection with U.S. Appl. No. 14/326,318. |
Office Action, mailed Oct. 16, 2015, in connection with U.S. Appl. No. 14/326,290. |
Office Action, mailed Oct. 26, 2018, in connection with U.S. Appl. No. 14/326,318. |
Office Action, mailed Sep. 22, 2016, in connection with U.S. Appl. No. 14/326,290. |
Office Action, mailed Sep. 27, 2017, in connection with U.S. Appl. No. 14/325,815. |
Office Action, mailed Sep. 6, 2018, in connection with U.S. Appl. No. 14/325,815. |
Office Action, mailed Sep. 7, 2016, in connection with U.S. Appl. No. 14/326,140. |
Offord, Advances in Genome Editing. The Scientist, Apr. 20, 2016. http://www.the-scientist.com/?articles.view/articleNo/45903/title/Advances-in-Genome-Editing/. |
Oh et al., Positional cloning of a gene for Hermansky-Pudlak syndrome, a disorder of cytoplasmic organelles. Nat Genet. Nov. 1996;14(3):300-6. doi: 10.1038/ng1196-300. |
Ohe et al., Purification and properties of xanthine dehydrogenase from Streptomyces cyanogenus. J Biochem. Jul. 1979;86(1):45-53. |
Olivares et al., Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol. Nov. 2002;20(11):1124-8. doi: 10.1038/nbt753. Epub Oct. 15, 2002. |
Olorunniji et al., Site-specific recombinases: molecular machines for the Genetic Revolution. Biochem J. Mar. 15, 2016;473(6):673-84. doi: 10.1042/BJ20151112. |
Olorunniji et al., Synapsis and catalysis by activated Tn3 resolvase mutants. Nucleic Acids Res. Dec. 2008;36(22):7181-91. doi: 10.1093/nar/gkn885. Epub Nov. 10, 2008. |
Orlando et al., Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res. Aug. 2010;38(15):e152. doi: 10.1093/nar/gkq512. Epub Jun. 8, 2010. |
Orthwein et al., A mechanism for the suppression of homologous recombination in G1 cells. Nature. Dec. 17, 2015;528(7582):422-6. doi: 10.1038/nature16142. Epub Dec. 9, 2015. |
Ortiz-Urda et al., Stable nonviral genetic correction of inherited human skin disease. Nat Med. Oct. 2002;8(10):1166-70. doi: 10.1038/nm766. Epub Sep. 16, 2002. Erratum in: Nat Med. Feb. 2003;9(2):237. |
Osborn et al., TALEN-based gene correction for epidermolysis bullosa. Mol Ther. Jun. 2013;21(6):1151-9. doi: 10.1038/mt.2013.56. Epub Apr. 2, 2013. |
Ostermeier et al., A combinatorial approach to hybrid enzymes independent of DNA homology. Nat Biotechnol. Dec. 1999;17(12):1205-9. |
Ostertag et al., Biology of mammalian L1 retrotransposons. Annu Rev Genet. 2001;35:501-38. doi: 10.1146/annurev.genet.35.102401.091032. |
Otomo et al., Improved segmental isotope labeling of proteins and application to a larger protein. J Biomol NMR. Jun. 1999;14(2):105-14. doi: 10.1023/a:1008308128050. |
Otomo et al., NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry. Dec. 7, 1999;38(49):16040-4. doi: 10.1021/bi991902j. |
Otto et al., The probability of fixation in populations of changing size. Genetics. Jun. 1997;146(2):723-33. |
Pabo et al., Design and selection of novel Cys2His2 zinc finger proteins. Annu Rev Biochem. 2001;70:313-40. |
Packer et al., Methods for the directed evolution of proteins. Nat Rev Genet. Jul. 2015;16(7):379-94. doi: 10.1038/nrg3927. Epub Jun. 9, 2015. |
Paige et al., RNA mimics of green fluorescent protein. Science. Jul. 29, 2011;333(6042):642-6. doi:10.1126/science.1207339. |
Pan et al., Biological and biomedical applications of engineered nucleases. Mol Biotechnol. Sep. 2013;55(1):54-62. doi: 10.1007/s12033-012-9613-9. |
Paquet et al., Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. May 5, 2016;533(7601): 125-9. doi: 10.1038/nature17664. Epub Apr. 27, 2016. |
Park et al., Digenome-seq web tool for profiling CRISPR specificity. Nat Methods. May 30, 2017;14(6):548-549. doi: 10.1038/nmeth.4262. |
Park et al., Sendai virus, an RNA virus with No. risk of genomic integration, delivers CRISPR/Cas9 for efficient gene editing. Mol Ther Methods Clin Dev. Aug. 24, 2016;3:16057. doi: 10.1038/mtm.2016.57. |
Parker et al., Admixture mapping identifies a quantitative trait locus associated with FEV1/FVC in the COPDGene Study. Genet Epidemiol. Nov. 2014;38(7):652-9. doi: 10.1002/gepi.21847. Epub Aug. 11, 2014. |
Partial European Search Report for Application No. EP 19187331.4, mailed Dec. 19, 2019. |
Partial Supplementary European Search Report for Application No. EP 12845790.0, mailed Mar. 18, 2015. |
Patel et al., Flap endonucleases pass 5′-flaps through a flexible arch using a disorder-thread-order mechanism to confer specificity for free 5′-ends. Nucleic Acids Res. May 2012;40(10):4507-19. doi: 10.1093/nar/gks051. Epub Feb. 8, 2012. |
Pattanayak et al., Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol. 2014;546:47-78. doi: 10.1016/B978-0-12-801185-0.00003-9. |
Pattanayak et al., High-throughput profiling of off-target DNA cleavage reveals RNA- programmed Cas9 nuclease specificity. Nat Biotechnol. Sep. 2013;31(9):839-43. doi: 10.1038/nbt.2673. Epub Aug. 11, 2013. |
Pattanayak et al., Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. Aug. 7, 2011;8(9):765-70. doi: 10.1038/nmeth.1670. |
Pavletich et al., Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. May 10, 1991;252(5007):809-17. |
Pawson et al., Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci. Jun. 2005;30(6):286-90. doi: 10.1016/j.tibs.2005.04.013. |
Payne et al., Plant Cell and Tissue Culture in Liquid Systems. John Wiley & Sons. NY. |
Pearl et al., Structure and function in the uracil-DNA glycosylase superfamily. Mutat Res. Aug. 30, 2000;460(3-4):165-81. |
Peck et al., Directed evolution of a small-molecule-triggered intein with improved splicing properties in mammalian cells. Chem Biol. May 27, 2011;18(5):619-30. doi: 10.1016/j.chembiol.2011.02.014. |
Peck et al., Directed evolution of a small-molecute-griggered intein with improved splicing properties in mammalian cells. Chem Bio. May 27, 2011;18(5):619-30. doi; 10.1016/j.chembiol.2011.02.014. |
Pelletier, CRISPR-Cas systems for the study of the immune function. Nov. 15, 2016. https://doi.org/10.1002/9780470015902.a0026896. |
Pennisi et al., The CRISPR craze. Science. Aug. 23, 2013;341(6148):833-6. doi: 10.1126/science.341.6148.833. |
Pennisi et al., The tale of the TALEs. Science. Dec. 14, 2012;338(6113):1408-11. doi: 10.1126/science.338.6113.1408. |
Perach et al., Catalytic features of the recombinant reverse transcriptase of bovine leukemia virus expressed in bacteria. Virology. Jun. 20, 1999;259(1):176-89. doi: 10.1006/viro.1999.9761. |
Perez et al., Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc- finger nucleases. Nat Biotechnol. Jul. 2008;26(7):808-16. Doi: 10.1038/nbt1410. Epub Jun. 29, 2008. |
Perez-Pinera et al., Advances in targeted genome editing. Curr Opin Chem Biol. Aug. 2012;16(3-4):268-77. doi: 10.1016/j.cbpa.2012.06.007. Epub Jul. 20, 2012. |
Perez-Pinera et al., RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. Oct. 2013;10(10):973-6. doi: 10.1038/nmeth.2600. Epub Jul. 25, 2013. |
Perler et al., Protein splicing and autoproteolysis mechanisms. Curr Opin Chem Biol. Oct. 1997;1(3):292-9. doi: 10.1016/s1367-5931(97)80065-8. |
Perler et al., Protein splicing elements: inteins and exteins—a definition of terms and recommended nomenclature. Nucleic Acids Res. Apr. 11, 1994;22(7):1125-7. doi: 10.1093/nar/22.7.1125. |
Perler, InBase, the New England Biolabs Intein Database. Nucleic Acids Res. Jan. 1, 1999;27(1):346-7. doi: 10.1093/nar/27.1.346. |
Perler, Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution. Cell. Jan. 9, 1998;92(1):1-4. doi: 10.1016/s0092-8674(00)80892-2. |
Petek et al., Frequent endonuclease cleavage at off-target locations in vivo. Mol Ther. May 2010;18(5):983-6. Doi: 10.1038/mt.2010.35. Epub Mar. 9, 2010. |
Petersen-Mahrt et al., AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature. Jul. 4, 2002;418(6893):99-103. |
Petolino et al., Editing Plant Genomes: a new era of crop improvement. Plant Biotechnol J. Feb. 2016;14(2):435-6. doi: 10.1111/pbi.12542. |
Peyrottes et al., Oligodeoxynucleoside phosphoramidates (P-NH2): synthesis and thermal stability of duplexes with DNA and RNA targets. Nucleic Acids Res. May 15, 1996;24(10):1841-8. |
Pfeiffer et al., Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis. Jul. 2000;15(4):289-302. doi: 10.1093/mutage/15.4.289. |
Pham et al., Reward versus risk: DNA cytidine deaminases triggering immunity and disease. Biochemistry. Mar. 1, 2005;44(8):2703-15. |
Phillips, The challenge of gene therapy and DNA delivery. J Pharm Pharmacol. Sep. 2001;53(9):1169-74. |
Pickart et al., Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta. Nov. 29, 2004;1695(1-3):55-72. doi: 10.1016/j.bbamcr.2004.09.019. |
Pinkert et al., An albumin enhancer located 10 kb upstream functions along with its promoter to direct efficient, liver-specific expression in transgenic mice. Genes Dev. May 1987;1(3):268-76. doi: 10.1101/gad.1.3.268. |
Pirakitikulr et al., PCRless library mutagenesis via oligonucleotide recombination in yeast. Protein Sci. Dec. 2010;19(12):2336-46. doi: 10.1002/pro.513. |
Plasterk et al., DNA inversions in the chromosome of Escherichia coli and in bacteriophage Mu: relationship to other site-specific recombination systems. Proc Natl Acad Sci U S A. Sep. 1983;80(17):5355-8. |
Plosky Brian S.: CRISPR-mediated base editing without DNA double-strand breaks Molecular Cell. vol. 62. no. 4. May 19, 2016 (May 19, 2016). pp. 477-478. XP029552452. ISSN: 1097-2765. DOI: 10.1016/J.MOLCEL.2016.05.006. |
Plosky et al., CRISPR-Mediated Base Editing without DNA Double-Strand Breaks. Mol Cell. May 19, 2016;62(4):477-8. doi: 10.1016/j.molcel.2016.05.006. |
Pluciennik et al., PCNA function in the activation and strand direction of MutLαendonuclease in mismatch repair. Proc Natl Acad Sci U S A. Sep. 14, 2010;107(37):16066-71. doi: 10.1073/pnas.1010662107. Epub Aug. 16, 2010. |
Poller et al., A leucine-to-proline substitution causes a defective alpha 1-antichymotrypsin allele associated with familial obstructive lung disease. Genomics. Sep. 1993;17(3):740-3. |
Porteus, Design and testing of zinc finger nucleases for use in mammalian cells. Methods Mol Biol. 2008;435:47-61. doi: 10.1007/978-1-59745-232-8_4. |
Posnick et al., Imbalanced base excision repair increases spontaneous mutation and alkylation sensitivity in Escherichia coli. J Bacteriol. Nov. 1999;181(21):6763-71. |
Pospísilová et al., Hydrolytic cleavage of N6-substituted adenine derivatives by eukaryotic adenine and adenosine deaminases. Biosci Rep. 2008;28(6):335-347. doi:10.1042/BSR20080081. |
Pourcel et al., CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. Mar. 2005;151(Pt 3):653-63. |
Prasad et al., Rev1 is a base excision repair enzyme with 5′-deoxyribose phosphate lyase activity. Nucleic Acids Res. Dec. 15, 2016;44(22):10824-10833. doi: 10.1093/nar/gkw869. Epub Sep. 28, 2016. |
Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology 2013;31(9):833-8. |
Prorocic et al., Zinc-finger recombinase activities in vitro. Nucleic Acids Res. Nov. 2011;39(21):9316-28. doi: 10.1093/nar/gkr652. Epub Aug. 17, 2011. |
Proudfoot et al., Zinc finger recombinases with adaptable DNA sequence specificity. PLoS One. Apr. 29, 2011;6(4):e19537. doi: 10.1371/journal.pone.0019537. |
Pruschy et al., Mechanistic studies of a signaling pathway activated by the organic dimerizer FK1012. Chem Biol. Nov. 1994;1(3):163-72. doi: 10.1016/1074-5521(94)90006-x. |
Prykhozhij et al., CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One. Mar. 5, 2015;10(3):e0119372. doi: 10.1371/journal.pone.0119372. eCollection 2015. |
Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J Mol Biol. Mar. 26, 1999;287(2):331-46. |
Putney et al., Improving protein therapeutics with sustained-release formulations. Nat Biotechnol. Feb. 1998;16(2):153-7. |
Qi et al., Engineering naturally occuring trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Res. Jul. 2012;40(12):5775-86. doi: 10.1093/nar/gks168. Epub Mar. 1, 2012. |
Qi et al., Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Res. Jul. 2012;40(12):5775-86. doi: 10.1093/nar/gks168. Epub Mar. 1, 2012. |
Qi et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. Feb. 28, 2013;152(5):1173-83. doi: 10.1016/j.cell.2013.02.022. |
Queen et al., Immunoglobulin gene transcription is activated by downstream sequence elements. Cell. Jul. 1983;33(3):741-8. doi: 10.1016/0092-8674(83)90016-8. |
Radany et al., Increased spontaneous mutation frequency in human cells expressing the phage PBS2-encoded inhibitor of uracil-DNA glycosylase. Mutat Res. Sep. 15, 2000;461(1):41-58. doi: 10.1016/s0921-8777(00)00040-9. |
Raina et al., PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci U S A. Jun. 28, 2016;113(26):7124-9. doi: 10.1073/pnas.1521738113. Epub Jun. 6, 2016. |
Rakonjac et al., Roles of PIII in filamentous phage assembly. J Mol Biol. 1998; 282(1)25-41. |
Rakonjac J, Model P. Roles of PIII in filamentous phage assembly. J Mol Biol. 1998; 282(1)25- 41. |
Ramakrishna et al., Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. Jun. 2014;24(6):1020-7. doi: 10.1101/gr.171264.113. Epub Apr. 2, 2014. |
Ramirez et al., Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res. Jul. 2012;40(12):5560-8. doi: 10.1093/nar/gks179. Epub Feb. 28, 2012. |
Ramirez et al., Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods. May 2008;5(5):374-5. Doi: 10.1038/nmeth0508-374. |
Ran et al., Double nicking by RNA-guided CRISPR (Cas9 for enhanced genome editing specificity. Cell. Sep. 12, 2013;154(6):1380-1389. doi: 10.1016/j.cell.2013.08.021. Epub Aug. 29, 2013. |
Ran et al., Double Nicking by RNA-guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell. Sep. 12, 2013;154(6):1380-9. doi: 10.1016/j.cell.2013.08.021. Epub Aug. 29, 2013. |
Ran et al., Genome engineering using the CRISPR-Cas9 system. Nat Protoc. Nov. 2013;8(11):2281-308. doi: 10.1038/nprot.2013.143. Epub Oct. 24, 2013. |
Ran et al., In vivo genome editing using Staphylococcus aureus Cas9. Nature. Apr. 9, 2015;520(7546):186-91. doi: 10.1038/nature14299. Epub Apr. 1, 2015. |
Ranzau et al., Genome, Epigenome, and Transcriptome Editing via Chemical Modification of Nucleobases in Living Cells. Biochemistry. Feb. 5, 2019;58(5):330-335. doi: 10.1021/acs.biochem.8b00958. Epub Dec. 12, 2018. |
Rashel et al., A novel site-specific recombination system derived from bacteriophage phiMR11. Biochem Biophys Res Commun. Apr. 4, 2008;368(2):192-8. doi: 10.1016/j.bbrc.2008.01.045. Epub Jan. 22, 2008. |
Rasila et al., Critical evaluation of random mutagenesis by error-prone polymerase chain reaction protocols, Escherichia coli mutator strain, and hydroxylamine treatment. Anal Biochem. May 1, 2009;388(1):71-80. doi: 10.1016/j.ab.2009.02.008. Epub Feb. 10, 2009. |
Raskin et al., Substitution of a single bacteriophage T3 residue in bacteriophage T7 RNA polymerase at position 748 results in a switch in promoter specificity. J Mol Biol. Nov. 20, 1992;228(2):506-15. |
Raskin et al., T7 RNA polymerase mutants with altered promoter specificities. Proc Natl Acad Sci U S A. Apr. 15, 1993;90(8):3147-51. |
Rath et al., Fidelity of end joining in mammalian episomes and the impact of Metnase on joint processing. BMC Mol Biol. Mar. 22, 2014;15:6. doi: 10.1186/1471-2199-15-6. |
Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nuclei Acids Res. 26 (21): 4880-4887 (1998). |
Ray et al., A compendium of RNA-binding motifs for decoding gene regulation. Nature. Jul. 11, 2013;499(7457):172-7. doi: 10.1038/nature12311. |
Ray et al., Homologous recombination: ends as the means. Trends Plant Sci. Oct. 2002;7(10):435-40. |
Rebar et al., Phage display methods for selecting zinc finger proteins with novel DNA-binding specificities. Methods Enzymol. 1996;267:129-49. |
Rebuzzini et al., New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining. DNA Repair (Amst). May 2, 2005;4(5):546-55. |
Rees et al., Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci Adv. May 8, 2019;5(5):eaax5717. doi: 10.1126/sciadv.aax5717. |
Rees et al., Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. Dec. 2018;19(12):770-788. doi: 10.1038/s41576-018-0059-1. |
Rees et al., Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun. Jun. 6, 2017;8:15790. doi: 10.1038/ncomms15790. |
Relph et al., Recent developments and current status of gene therapy using viral vectors in the United Kingdom. BMJ. 2004;329(7470):839-842. doi:10.1136/bmj.329.7470.839. |
Remy et al., Gene transfer with a series of lipophilic DNA-binding molecules. Bioconjug Chem. Nov.-Dec. 1994;5(6):647-54. doi: 10.1021/bc00030a021. |
Ren et al., In-line Alignment and Mg2? Coordination at the Cleavage Site of the env22 Twister Ribozyme. Nat Commun. Nov. 20, 2014;5:5534. doi: 10.1038/ncomms6534. |
Ren et al., Pistol Ribozyme Adopts a Pseudoknot Fold Facilitating Site-Specific In-Line Cleavage. Nat Chem Biol. Sep. 2016;12(9):702-8. doi: 10.1038/nchembio.2125. Epub Jul. 2016. |
Requirement for Restriction/Election, mailed Jan. 20, 2016, in connection with U.S. Appl. No. 14/326,140. |
Requirement for Restriction/Election, mailed Jan. 22, 2016, in connection with U.S. Appl. No. 14/326,318. |
Requirement for Restriction/Election, mailed Nov. 13, 2014, in connection with U.S. Appl. No. 14/326,109. |
Requirement for Restriction/Election, mailed Nov. 24, 2014, in connection with U.S. Appl. No. 14/325,815. |
Requirement for Restriction/Election, mailed Nov. 24, 2014, in connection with U.S. Appl. No. 14/326,318. |
Requirement for Restriction/Election, mailed Nov. 25, 2014, in connection with U.S. Appl. No. 14/326,140. |
Requirement for Restriction/Election, mailed Nov. 25, 2014, in connection with U.S. Appl. No. 14/326,303. |
Requirement for Restriction/Election, mailed Nov. 26, 2014, in connection with U.S. Appl. No. 14/326,269. |
Reynaud et al., What role for AID: mutator, or assembler of the immunoglobulin mutasome? Nat Immunol. Jul. 2003;4(7):631-8. |
Reyon et al., FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol. May 2012;30(5):460-5. doi: 10.1038/nbt.2170. |
Ribeiro et al., Protein Engineering Strategies to Expand CRISPR-Cas9 Applications. Int J Genomics. Aug. 2, 2018;2018:1652567. doi: 10.1155/2018/1652567. |
Richardson et al., Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. Mar. 2016;34(3):339-44. doi: 10.1038/nbt.3481. Epub Jan. 20, 2016. |
Richter et al., Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR associated (Cas) systems. Viruses. Oct. 19, 2012;4(10):2291-311. doi: 10.3390/v4102291. |
Riechmann et al.,. The C-terminal domain of To1A is the coreceptor for filamentous phage infection of E. coli. Cell. 1997; 90(2):351-60. PMID:9244308. |
Riechmann L, Holliger P. The C-terminal domain of To1A is the coreceptor for filamentous phage infection of E. coli. Cell. 1997; 90(2):351-60. PMID:9244308. |
Ringrose et al., The Kw recombinase, an integrase from Kluyveromyces waltii. Eur J Biochem. Sep. 15, 1997;248(3):903-12. doi: 10.1111/j.1432-1033.1997.00903.x. |
Risso et al., Hyperstability and substrate promiscuity in laboratory resurrections of Precambrian ?- lactamases. J Am Chem Soc. Feb. 27, 2013;135(8):2899-902. doi: 10.1021/ja311630a. Epub Feb. 14, 2013. |
Ritchie et al., limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. Apr. 20, 2015;43(7):e47. doi: 10.1093/nar/gkv007. Epub Jan. 20, 2015. |
Rizk et al., An engineered substance P variant for receptor-mediated delivery of synthetic antibodies into tumor cells. Proc Natl Acad Sci U S A. Jul. 7, 2009;106(27):11011-5. doi: 10.1073/pnas.0904907106. Epub Jun. 22, 2009. |
Roberts et al., A Bead-Based Proximity Assay for BRD4 Ligand; Discovery. Curr Protoc Chem Biol. Dec. 2, 2015;7(4):263-278. doi:; 10.1002/9780470559277.ch150024.;. |
Roberts et al., Generation of an antibody with enhanced affinity and specificity for its antigen by protein engineering. Nature. Aug. 20-26, 1987;328(6132):731-4. |
Robertson et al.,DNA repair in mammalian cells: Base excision repair: the long and short of it. Cell Mol Life Sci. Mar. 2009;66(6):981-93. doi: 10.1007/s00018-009-8736-z. |
Robinson et al., The protein tyrosine kinase family of the human genome. Oncogene. Nov. 20, 2000;19(49):5548-57. doi: 10.1038/sj.onc.1203957. |
Rogozin et al., Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase. Nat Immunol. Jun. 2007;8(6):647-56. doi: 10.1038/ni1463. Epub Apr. 29, 2007. |
Rong et al., Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein Cell. Apr. 2014;5(4):258-60. doi: 10.1007/s13238-014-0032-5. |
Rongrong et al., Effect of deletion mutation on the recombination activity of Cre recombinase. Acta Biochim Pol. 2005;52(2):541-4. Epub May 15, 2005. |
Roth et al., A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain. Nat Struct Mol Biol. Apr. 2007;14(4):308-17. Epub Mar. 25, 2007. |
Roth et al., A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat Chem Biol. Jan. 2014;10(1):56-60. doi: 10.1038/nchembio.1386. Epub Nov. 17, 2013. |
Roth et al., Purification and characterization of murine retroviral reverse transcriptase expressed in Escherichia coli. J Biol Chem. Aug. 5, 1985;260(16):9326-35. |
Rouet et al., Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A. Jun. 21, 1994;91(13):6064-8. doi: 10.1073/pnas.91.13.6064. |
Rouet et al., Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. Dec. 1994;14(12):8096-106. doi: 10.1128/mcb.14.12.8096. |
Rowland et al., Regulatory mutations in Sin recombinase support a structure-based model of the synaptosome. Mol Microbiol. Oct. 2009;74(2):282-98. doi: 10.1111/j.1365-2958.2009.06756.x. Epub Jun. 8, 2009. |
Rowland et al., Sin recombinase from Staphylococcus aureus: synaptic complex architecture and transposon targeting. Mol Microbiol. May 2002;44(3):607-19. doi: 10.1046/j.1365-2958.2002.02897.x. |
Rowley, Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer. Dec. 2001;1(3):245-50. doi: 10.1038/35106108. |
Rubio et al., An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA. Proc Natl Acad Sci U S A. May 8, 2007;104(19):7821-6. doi: 10.1073/pnas.0702394104. Epub May 1, 2007. PMID: 17483465; PMCID: PMC1876531. |
Rubio et al., Transfer RNA travels from the cytoplasm to organelles. Wiley Interdiscip Rev RNA. Nov.-Dec. 2011;2(6):802-17. doi: 10.1002/wrna.93. Epub Jul. 11, 2011. |
Rudolph et al., Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor. Microbiology. Jul. 2013;159(Pt 7):1416-22. doi: 10.1099/mic.0.067322-0. Epub May 15, 2013. |
Rutherford et al., Attachment site recognition and regulation of directionality by the serine integrases. Nucleic Acids Res. Sep. 2013;41(17):8341-56. doi: 10.1093/nar/gkt580. Epub Jul. 2, 2013. |
Rüfer et al., Non-contact positions impose site selectivity on Cre recombinase. Nucleic Acids Res. Jul. 1, 2002;30(13):2764-71. doi: 10.1093/nar/gkf399. |
Sadelain et al., Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer. Dec. 1, 2011;12(1):51-8. doi: 10.1038/nrc3179. |
Sage et al., Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein. Science. Feb. 18, 2005;307(5712):1114-8. Epub Jan. 13, 2005. |
Sakuma et al., MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc. Jan. 2016;11(1):118-33. doi: 10.1038/nprot.2015.140. Epub Dec. 17, 2015. |
Sale et al., Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat Rev Mol Cell Biol. Feb. 23, 2012;13(3):141-52. doi: 10.1038/nrm3289. |
Saleh-Gohari et al., Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. Jul. 13, 2004;32(12):3683-8. Print 2004. |
Saleh-Gohari N, Helleday T. Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. 2004; 32(12): 3683-8. pmID: 15252152. |
Samal et al., Cationic polymers and their therapeutic potential. Chem Soc Rev. Nov. 7, 2012;41(21):7147-94. doi: 10.1039/c2cs35094g. Epub Aug. 10, 2012. |
Samulski et al., Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol. Sep. 1989;63(9):3822-8. doi: 10.1128/JVI.63.9.3822-3828.1989. |
Sander et al., CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. Apr. 2014;32(4):347-55. doi: 10.1038/nbt.2842. Epub Mar. 2, 2014. |
Sander et al., In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res. Oct. 2013;41(19):e181. doi: 10.1093/nar/gkt716. Epub Aug. 14, 2013. |
Sander et al., Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):697-8. doi: 10.1038/nbt.1934. |
Sang et al., A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily. Nucleic Acids Res. Sep. 30, 2015;43(17):8452-63. doi: 10.1093/nar/gkv854. Epub Aug. 24, 2015. |
Sang, Prospects for transgenesis in the chick. Mech Dev. Sep. 2004;121(9):1179-86. |
Sanjana et al., A transcription activator-like effector toolbox for genome engineering. Nat Protoc. Jan. 5, 2012;7(1):171-92. doi: 10.1038/nprot.2011.431. |
Santiago et al., Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A. Apr. 15, 2008;105(15):5809-14. doi: 10.1073/pnas.0800940105. Epub Mar. 21, 2008. |
Santoro et al., Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci U S A. Apr. 2, 2002;99(7):4185-90. Epub Mar. 19, 2002. |
Saparbaev et al., Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases. Proc Natl Acad Sci U S A. Jun. 21, 1994;91(13):5873-7. doi: 10.1073/pnas.91.13.5873. |
Sapranauskas et al., The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. Nov. 2011;39(21):9275-82. doi: 10.1093/nar/gkr606. Epub Aug. 3, 2011. |
Sapunar et al., Dorsal root ganglion—a potential new therapeutic target for neuropathic pain. J Pain Res. 2012;5:31-8. doi: 10.2147/JPR.S26603. Epub Feb. 16, 2012. |
Saraconi et al., The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas. Genome Biol. Jul. 31, 2014;15(7):417. doi: 10.1186/s13059-014-0417-z. |
Sarkar et al., HIV-1 proviral DNA excision using an evolved recombinase. Science. Jun. 29, 2007;316(5833):1912-5. doi: 10.1126/science.1141453. |
Sashital et al., Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell. Jun. 8, 2012;46(5):606-15. doi: 10.1016/j.molcel.2012.03.020. Epub Apr. 19, 2012. |
Sasidharan et al., The selection of acceptable protein mutations. PNAS; Jun. 12, 2007;104(24):10080-5. www.pnas.org/cgi/doi/10.1073.pnas.0703737104. |
Satomura et al., Precise genome-wide base editing by the CRISPR Nickase system in yeast. Sci Rep. May 18, 2017;7(1):2095. doi: 10.1038/s41598-017-02013-7. Erratum in: Sci Rep. Sep. 27, 2017;7(1):12354. |
Saudek et al., A preliminary trial of the programmable implantable medication system for insulin delivery. N Engl J Med. Aug. 31, 1989;321(9):574-9. |
Sauer et al., DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res. Nov. 18, 2004;32(20):6086-95. doi: 10.1093/nar/gkh941. |
Saville et al., A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell. May 18, 1990;61(4):685-96. doi: 10.1016/0092-8674(90)90480-3. |
Savva et al., The structural basis of specific base-excision repair by uracil-DNA glycosylase. Nature. Feb. 9, 1995;373(6514):487-93. doi: 10.1038/373487a0. |
Schaaper et al., Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem. Nov. 15, 1993;268(32):23762-5. |
Schaaper et al., Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc Natl Acad Sci U S A. Sep. 1987;84(17):6220-4. |
Schechner et al., Multiplexable, locus-specific targeting of long RNAs with CRISPR- Display. Nat Methods. Jul. 2015;12(7):664-70. doi: 10.1038/nmeth.3433. Epub Jun. 1, 2015. Author manuscript entitled CRISPR Display: A modular method for locus-specific targeting of long noncoding RNAs and synthetic RNA devices in vivo. |
Schek et al., Definition of the upstream efficiency element of the simian virus 40 late polyadenylation signal by using in vitro analyses. Mol Cell Biol. Dec. 1992;12(12):5386-93. doi: 10.1128/mcb.12.12.5386. |
Schenk et al., MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If. J Clin Invest. Dec. 2001;108(11):1687-95. doi: 10.1172/JCI13419. |
Schmitz et al., Behavioral abnormalities in prion protein knockout mice and the potential relevance of PrP(C) for the cytoskeleton. Prion. 2014;8(6):381-6. doi: 10.4161/19336896.2014.983746. |
Schneider et al., Functional Purification of a Bacterial ATP-Binding Cassette Transporter Protein (MalK) from the Cytoplasmic Fraction of an Overproducing Strain. Feb. 1995;6(1):10. https://doi.org/10.1006/prep.1995.1002. |
Schriefer et al., Low pressure DNA shearing: a method for random DNA sequence analysis. Nucleic Acids Res. Dec. 25, 1990;18(24):7455-6. |
Schultz et al., Expression and secretion in yeast of a 400-kDa envelope glycoprotein derived from Epstein-Barr virus. Gene. 1987;54(1):113-23. doi: 10.1016/0378-1119(87)90353-2. |
Schultz et al., Oligo-2′-fluoro-2′-deoxynucleotide N3′-->P5′ phosphoramidates: synthesis and properties. Nucleic Acids Res. Aug. 1, 1996;24(15):2966-73. |
Schwank et al., Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. Dec. 5, 2013;13(6):653-8. doi:10.1016/j.stem.2013.11.002. |
Schwarze et al., In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. Sep. 3, 1999;285(5433):1569-72. |
Sclimenti et al., Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res. Dec. 15, 2001;29(24):5044-51. |
Scott et al., Production of cyclic peptides and proteins in vivo. Proc Natl Acad Sci U S A. Nov. 23, 1999;96(24):13638-43. doi: 10.1073/pnas.96.24.13638. |
Seed, An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2. Nature. Oct. 29-Nov. 4, 1987;329(6142):840-2. doi: 10.1038/329840a0. |
Sefton et al., Implantable pumps. Crit Rev Biomed Eng. 1987;14(3):201-40. |
Segal et al., Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci U S A. Mar. 16, 1999;96(6):2758-63. |
Sells et al., Delivery of protein into cells using polycationic liposomes. Biotechniques. Jul. 1995;19(1):72-6, 78. |
Semenova et al., Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A. Jun. 21, 2011;108(25):10098-103. doi: 10.1073/pnas.1104144108. Epub Jun. 6, 2011. |
Serganov et al., Structural basis for discriminative regulation of gene expression by adenine and guanine-sensing mRNAs. Chem biol. Dec. 2004; 11(12):1729-41. |
Serganov et al., Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature. Mar. 12, 2009;458(7235):233-7. doi: 10.1038/nature07642. Epub Jan. 25, 2009. |
Serganov et al., Coenzyme recognition and gene regulationby a flavin monucleotide riboswitch. Nature. Mar. 12, 2009;458(7235):233-7.doi: 10.1038/nature07642. Epub Jan. 25, 2009. |
Serganov et al., Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. Jun. 29, 20069;441(7097):1167-71. Epub May 21, 2006. |
Serganov et al., Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. Jun. 29, 2006;441(7097):1167-71. Epub Dec. 12, 2013. |
Seripa et al., The missing ApoE allele. Ann Hum Genet. Jul. 2007;71(Pt 4):496-500. Epub Jan. 23, 2007. |
Serrano-Heras et al., Protein p56 from the Bacillus subtilis phage phi29 inhibits DNA-binding ability of uracil-DNA glycosylase. Nucleic Acids Res. 2007;35(16):5393-401. Epub Aug. 13, 2007. |
Severinov et al., Expressed protein ligation, a novel method for studying protein-protein interactions in transcription. J Biol Chem. Jun. 26, 1998;273(26):16205-9. doi: 10.1074/jbc.273.26.16205. |
Shah et al., Inteins: nature's gift to protein chemists. Chem Sci. 2014;5(1):446-461. |
Shah et al., Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angew Chem Int Ed Engl. Jul. 11, 2011;50(29):6511-5. doi: 10.1002/anie.201102909. Epub Jun. 8, 2011. |
Shah et al., Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol. May 2013;10(5):891-9. doi: 10.4161/rna.23764. Epub Feb. 12, 2013. |
Shah et al., Target-specific variants of Flp recombinase mediate genome engineering reactions in mammalian cells. Febs J. Sep. 2015;282(17):3323-33. doi: 10.1111/febs.13345. Epub Jul. 1, 2015. |
Shaikh et al., Chimeras of the Flp and Cre recombinases: tests of the mode of cleavage by Flp and Cre. J Mol Biol. Sep. 8, 2000;302(1):27-48. |
Shalem et al., High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. May 2015;16(5):299-311. doi: 10.1038/nrg3899. Epub Apr. 9, 2015. |
Shalem et al., Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. Jan. 3, 2014;343(6166):84-7. doi: 10.1126/science.1247005. Epub Dec. 12, 2013. |
Shaley et al., When Proteins Start to Make Sense: Fine-tuning Aminoglycosides for PTC Suppression Therapy. Medchemcomm. Aug. 1, 2014;5(8):1092-1105. |
Sharbeen et al., Ectopic restriction of DNA repair reveals that UNG2 excises AID-induced uracils predominantly or exclusively during G1 phase. J Exp Med. May 7, 2012;209(5):965-74. doi: 10.1084/jem.20112379. Epub Apr. 23, 2012. |
Sharer et al., The ARF-like 2 (ARL2)-binding protein, BART. Purification, cloning, and initial characterization. J Biol Chem. Sep. 24, 1999;274(39):27553-61. doi: 10.1074/jbc.274.39.27553. |
Sharma et al., Efficient introduction of aryl bromide functionality into proteins in vivo. FEBS Lett. Feb. 4, 2000;467(1):37-40. |
Sharon et al., Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing. Cell. Oct. 4, 2018;175(2):544-557.e16. doi: 10.1016/j.cell.2018.08.057. Epub Sep. 20, 2018. |
Shaw et al., Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease. Hum Mol Genet. Apr. 1, 2004;13 Spec No. 1:R57-64. doi: 10.1093/hmg/ddh073. Epub Feb. 5, 2004. |
Shcherbakova et al., Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods. Aug. 2013;10(8):751-4. doi: 10.1038/nmeth.2521. Epub Jun. 16, 2013. |
Shee et al., Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. Elife. Oct. 29, 2013;2:e01222. doi: 10.7554/eLife.01222. |
Shen et al., Herpes simplex virus 1 (HSV-1) for cancer treatment. Cancer Gene Ther. Nov. 2006;13(11):975-92. doi: 10.1038/sj.cgt.7700946. Epub Apr. 7, 2006. |
Shen et al., Predictable and precise template-free CRISPR editing of pathogenic variants. Nature. Nov. 2018;563(7733):646-651. doi: 10.1038/s41586-018-0686-x. Epub Nov. 7, 2018. Erratum in: Nature. Mar. 2019;567(7746):E1-E2. |
Sheridan, First CRISPR-Cas patent opens race to stake out intellectual property. Nat Biotechnol. 2014;32(7):599-601. |
Sheridan, Gene therapy finds its niche. Nat Biotechnol. Feb. 2011;29(2):121-8. doi: 10.1038/nbt.1769. |
Sherwood et al., Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat Biotechnol. Feb. 2014;32(2):171-178. doi: 10.1038/nbt.2798. Epub Jan. 19, 2014. |
Shimantani et al., Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol. May 2017;35(5):441-443. doi: 10.1038/nbt.3833. Epub Mar. 27, 2017. |
Shimizu et al., Adding fingers to an engineered zinc finger nuclease can reduce activity. Biochemistry. Jun. 7, 2011;50(22):5033-41. doi: 10.1021/bi200393g. Epub May 11, 2011. |
Shimojima et al., Spinocerebellar ataxias type 27 derived from a disruption of the fibroblast growth factor 14 gene with mimicking phenotype of paroxysmal non-kinesigenic dyskinesia. Brain Dev. Mar. 2012;34(3):230-3. doi: 10.1016/j.braindev.2011.04.014. Epub May 19, 2011. |
Shin et al., CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat Commun. May 31, 2017;8:15464. doi: 10.1038/ncomms15464. |
Shindo et al., A Comparison of Two Single-Stranded DNA Binding Models by Mutational Analysis of APOBEC3G. Biology (Basel). Aug. 2, 2012;1(2):260-76. doi: 10.3390/biology1020260. |
Shingledecker et al., Molecular dissection of the Mycobacterium tuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments. Gene. Jan. 30, 1998;207(2):187-95. doi: 10.1016/s0378-1119(97)00624-0. |
Shmakov et al., Discovery and Functional Characterization of Diverse Class 2 CRISPR Cas Systems. Molecular Cell Nov. 2015;60(3):385-97. |
Shmakov et al.: Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Molecular Cell. vo1 o 60. No. 3. Nov. 1, 2015 (Nov. 1, 2015). pp. 385- 397. XP055482679. Amsterdam. N L ISSN: 1097-2765. DOI: 10.1016jj.molcel.2015.10.008. |
Shultz et al., A genome-wide analysis of FRT-like sequences in the human genome. PLoS One. Mar. 23, 2011;6(3):e18077. doi: 10.1371/journal.pone.0018077. |
Siebert et al., An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. Mar. 25, 1995;23(6):1087-8. |
Silas et al., Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science. Feb. 26, 2016;351(6276):aad4234. doi: 10.1126/science.aad4234. |
Silva et al., Selective disruption of the DNA polymerase III α-β complex by the umuD gene products. Nucleic Acids Res. Jul. 2012;40(12):5511-22. doi: 10.1093/nar/gks229. Epub Mar. 9, 2012. |
Simonelli et al., Base excision repair intermediates are mutagenic in mammalian cells. Nucleic Acids Res. Aug. 2, 2005;33(14):4404-11. Print 2005. |
Singh et al., Cross-talk between diverse serine integrases. J Mol Biol. Jan. 23, 2014;426(2):318-31. doi: 10.1016/j.jmb.2013.10.013. Epub Oct. 22, 2013. |
Singh et al., Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat Commun. Sep. 14, 2016;7:12778. doi: 10.1038/ncomms12778. |
Sirk et al., Expanding the zinc-finger recombinase repertoire: directed evolution and mutational analysis of serine recombinase specificity determinants. Nucleic Acids Res. Apr. 2014;42(7):4755-66. doi: 10.1093/nar/gkt1389. Epub Jan. 21, 2014. |
Sivalingam et al., Biosafety assessment of site-directed transgene integration in human umbilical cord-lining cells. Mol Ther. Jul. 2010;18(7):1346-56. doi: 10.1038/mt.2010.61. Epub Apr. 27, 2010. |
Sjoblom et al., The consensus coding sequences of human breast and colorectal cancers. Science. Oct. 13, 2006;314(5797):268-74. Epub Sep. 7, 2006. |
Skretas et al., Regulation of protein activity with small-molecule-controlled inteins. Protein Sci. Feb. 2005;14(2):523-32. Epub Jan. 4, 2005. |
Slaymaker et al., Rationally engineered Cas9 nucleases with improved specificity. Science. Jan. 1, 2016;351(6268):84-8. doi: 10.1126/science.aad5227. Epub Dec. 1, 2015. |
Sledz et al., Structural insights into the molecular mechanism of the m(6)A writer complex. Elife. Sep. 14, 2016;5:e18434. doi: 10.7554/eLife.18434. |
Slupphaug et al., A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature. Nov. 7, 1996;384(6604):87-92. doi: 10.1038/384087a0. |
Smith et al., Diversity in the serine recombinases. Mol Microbiol. Apr. 2002;44(2):299-307. Review. |
Smith et al., Expression of a dominant negative retinoic acid receptor γin Xenopus embryos leads to partial resistance to retinoic acid. Roux Arch Dev Biol. Mar. 1994;203(5):254-265. doi: 10.1007/BF00360521. |
Smith et al., Herpesvirus transport to the nervous system and back again. Annu Rev Microbiol. 2012;66:153-76. doi: 10.1146/annurev-micro-092611-150051. Epub Jun. 15, 2012. |
Smith et al., Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol. Dec. 1983;3(12):2156-65. doi: 10.1128/mcb.3.12.2156. |
Smith et al., Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. Jul. 15, 1988;67(1):31-40. doi: 10.1016/0378-1119(88)90005-4. |
Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985; 228 (4705): 1315-7. PMID: 4001944. |
Smith, Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. Jun. 14, 1985;228(4705):1315-7. |
Smith, Phage-encoded Serine Integrases and Other Large Serine Recombinases. Microbiol Spectr. Aug. 2015;3(4). doi: 10.1128/microbiolspec.MDNA3-0059-2014. |
Sommerfelt et al., Receptor interference groups of 20 retroviruses plating on human cells. Virology. May 1990;176(1):58-69. doi: 10.1016/0042-6822(90)90230-o. |
Song et al., Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol. Jun. 2005;23(6):709-17. Epub May 22, 2005. |
Southworth et al., Control of protein splicing by intein fragment reassembly. Embo J. Feb. 16, 1998;17(4):918-26. doi: 10.1093/emboj/17.4.918. |
Southworth et al., Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques. Jul. 1999;27(1):110-4, 116, 118-20. doi: 10.2144/99271st04. |
Spencer et al., A general strategy for producing conditional alleles of Src-like tyrosine kinases. Proc Natl Acad Sci U S A. Oct. 10, 1995;92(21):9805-9. doi: 10.1073/pnas.92.21.9805. |
Spencer et al., Controlling signal transduction with synthetic ligands. Science. Nov. 12, 1993;262(5136):1019-24. doi: 10.1126/science.7694365. |
Spencer et al., Functional analysis of Fas signaling in vivo using synthetic inducers of dimerization. Curr Biol. Jul. 1, 1996;6(7):839-47. doi: 10.1016/s0960-9822(02)00607-3. |
Srivastava et al., An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell. Dec. 21, 2012;151(7):1474-87. doi: 10.1016/j.cell.2012.11.054. |
Stadtman, Selenocysteine. Annu Rev Biochem. 1996;65:83-100. |
Steele et al., The prion protein knockout mouse: a phenotype under challenge. Prion. Apr.-Jun. 2007;1(2):83-93. doi: 10.4161/pri.1.2.4346. Epub Apr. 25, 2007. |
Steiner et al., The neurotropic herpes viruses: herpes simplex and varicella-zoster. Lancet Neurol. Nov. 2007;6(11):1015-28. doi: 10.1016/S1474-4422(07)70267-3. |
Stenglein et al., APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat Struct Mol Biol. Feb. 2010; 17(2):222-9. doi: 10.1038/nsmb.1744. Epub Jan. 10, 2010. |
Stephens et al., The landscape of cancer genes and mutational processes in breast cancer. Nature Jun. 2012;486:400-404. doi: 10.1038/nature11017. |
Sternberg et al., Conformational control of DNA target cleavage by CRISPR-Cas9. Nature. Nov. 5, 2015;527(7576):110-3. doi: 10.1038/nature15544. Epub Oct. 28, 2015. |
Sternberg et al., DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature.Mar. 6, 2014;507(7490):62-7. doi: 10.1038/nature13011. Epub Jan. 29, 2014. |
Sterne-Weiler et al., Exon identity crisis: disease-causing mutations that disrupt the splicing code. Genome Biol. Jan. 23, 2014;15(1):201. doi: 10.1186/gb4150. |
Stevens et al., Design of a Split Intein with Exceptional Protein-Splicing Activity. J Am Chem Soc. Feb. 24, 2016;138(7):2162-5. doi: 10.1021/jacs.5b13528. Epub Feb. 8, 2016. |
Stockwell et al., Probing the role of homomeric and heteromeric receptor interactions in TGF-beta signaling using small molecule dimerizers. Curr Biol. Jun. 18, 1998;8(13):761-70. doi: 10.1016/s0960-9822(98)70299-4. |
Strecker et al., RNA-guided DNA insertion with CRISPR-associated transposases. Science. Jul. 5, 2019;365(6448):48-53. doi: 10.1126/science.aax9181. Epub Jun. 6, 2019. |
Strutt et al., RNA-dependent RNA targeting by CRISPR-Cas9. Elife. Jan. 5, 2018;7:e32724. doi: 10.7554/eLife.32724. |
Su et al., Human DNA polymerase ? has reverse transcriptase activity in cellular environments. J Biol Chem. Apr. 12, 2019;294(15):6073-6081. doi: 10.1074/jbc.RA119.007925. Epub Mar. 6, 2019. |
Sudarsan et al., An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev. Nov. 1, 2003;17(21):2688-97. |
Sudarsan et al., An mRNA structure in bacterial that controls gene expression by bminding lysine. Genes Dev. Nov. 1, 2003; 17(21):2688-97. |
Sudarsan et al., Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science. Jul. 18, 2008;321(5887):411-3. doi: 10.1126/science.1159519. |
Sudarsan et al., Riboswitches in eubacterial sense the second mesenger cyclic di-GTMP. Science. Jul. 18, 2008;321(5887):411-3. doi:10.1126/sciense.1159519. |
Suess et al., A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Re. Mar. 5, 2004;32(40);1620-4. |
Suess et al., A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res. Mar. 5, 2004;32(4):1610-4. |
Sun et al., Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol Biosyst. Apr. 2012;8(4):1255-63. doi: 10.1039/c2mb05461b. Epub Feb. 3, 2012. |
Sun et al., The CRISPR/Cas9 system for gene editing and its potential application in pain research. Transl Periop & Pain Med. Aug. 3, 2016;1(3):22-33. |
Supplementary European Search Report for Application No. EP 12845790.0, mailed Oct. 12, 2015. |
Surun et al., High Efficiency Gene Correction in Hematopoietic Cells by Donor-Template-Free CRISPR/Cas9 Genome Editing. Mol Ther Nucleic Acids. Mar. 2, 2018;10:1-8. doi: 10.1016/j.omtn.2017.11.001. Epub Nov. 10, 2017. |
Suzuki et al., In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. Dec. 1, 2016;540(7631):144-149. doi: 10.1038/nature20565. Epub Nov. 16, 2016. |
Suzuki et al., VCre/VloxP and SCre/SloxP: new site-specific recombination systems for genome engineering. Nucleic Acids Res. Apr. 2011;39(8):e49. doi: 10.1093/nar/gkq1280. Epub Feb. 1, 2011. |
Swarts et al., Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res. May 26, 2015;43(10):5120-9. doi: 10.1093/nar/gkv415. Epub Apr. 29, 2015. |
Swarts et al., DNA-guided DNA interference by a prokaryotic Argonaute. Nature. Mar. 13, 2014;507(7491):258-61. doi: 10.1038/nature12971. Epub Feb. 16, 2014. |
Swarts et al., The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol. Sep. 2014;21(9):743-53. doi: 10.1038/nsmb.2879. |
Szczepek et al., Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol. Jul. 2007;25(7):786-93. Epub Jul. 1, 2007. |
Tabebordbar et al., In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. Jan. 22, 2016;351(6271):407-411. doi: 10.1126/science.aad5177. Epub Dec. 31, 2015. |
Tagalakis et al., Lack of RNA-DNA oligonucleotide (chimeraplast) mutagenic activity in mouse embryos. Mol Reprod Dev. Jun. 2005;71(2):140-4. |
Tahara et al., Potent and Selective Inhibitors of 8-Oxoguanine DNA Glycosylase. J Am Chem Soc. Feb. 14, 2018;140(6):2105-2114. doi: 10.1021/jacs.7b09316. Epub Feb. 5, 2018. |
Tajiri et al., Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat Res. May 1995;336(3):257-67. doi: 10.1016/0921-8777(94)00062-b. |
Takimoto et al., Stereochemical basis for engineered pyrrolysyl-tRNA synthetase and the efficient in vivo incorporation of structurally divergent non-native amino acids. ACS Chem Biol. Jul. 15, 2011;6(7):733-43. doi: 10.1021/cb200057a. Epub May 5, 2011. |
Tambunan et al., Vaccine Design for H5N1 Based on B- and T-cell Epitope Predictions. Bioinform Biol Insights. Apr. 28, 2016;10:27-35. doi: 10.4137/BBI.S38378. |
Tanenbaum et al., A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. Oct. 23, 2014;159(3):635-46. doi: 10.1016/j.cell.2014.09.039. Epub Oct. 9, 2014. |
Tanese et al., Expression of enzymatically active reverse transcriptase in Escherichia coli. Proc Natl Acad Sci U S A. Aug. 1985;82(15):4944-8. doi: 10.1073/pnas.82.15.4944. |
Tang et al., Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat Commun. Jun. 28, 2017;8:15939. doi: 10.1038/ncomms15939. |
Tang et al., Evaluation of Bioinformatic Programmes for the Analysis of Variants within Splice Site Consensus Regions. Adv Bioinformatics. 2016;2016:5614058. doi: 10.1155/2016/5614058. Epub May 24, 2016. |
Tassabehji, Williams-Beuren syndrome: a challenge for genotype-phenotype correlations. Hum Mol Genet. Oct. 15, 2003;12 Spec No. 2:R229-37. doi: 10.1093/hmg/ddg299. Epub Sep. 2, 2003. |
Taube et al., Reverse transcriptase of mouse mammary tumour virus: expression in bacteria, purification and biochemical characterization. Biochem J. Feb. 1, 1998;329 ( Pt 3)(Pt 3):579-87. doi: 10.1042/bj3290579. Erratum in: Biochem J Jun. 15, 1998;332(Pt 3):808. |
Tebas et al., Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. Mar. 6, 2014;370(10):901-10. doi: 10.1056/NEJMoa1300662. |
Tee et al., Polishing the craft of genetic diversity creation in directed evolution. Biotechnol Adv. Dec. 2013;31(8):1707-21. doi: 10.1016/j.biotechadv.2013.08.021. Epub Sep. 6, 2013. |
Telenti et al., The Mycobacterium xenopi GyrA protein splicing element: characterization of a minimal intein. J Bacteriol. Oct. 1997;179(20):6378-82. doi: 10.1128/jb.179.20.6378-6382.1997. |
Telesnitsky et al., RNase H domain mutations affect the interaction between Moloney murine leukemia virus reverse transcriptase and its primer-template. Proc Natl Acad Sci U S A. Feb. 15, 1993;90(4):1276-80. doi: 10.1073/pnas.90.4.1276. |
Tessarollo et al., Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons. Proc Natl Acad Sci U S A. Dec. 6, 1994;91(25):11844-8. |
Tesson et al., Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):695-6. doi: 10.1038/nbt.1940. |
Thompson et al., Engineering and identifying supercharged proteins for macromolecule delivery into mammalian cells. Methods Enzymol. 2012;503:293-319. doi: 10.1016/B978-0-12-396962-0.00012-4. |
Thorpe et al., Functional correction of episomal mutations with short DNA fragments and RNA-DNA oligonucleotides. J Gene Med. Mar.-Apr. 2002;4(2):195-204. |
Thyagarajan et al., Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells. Jan. 2008;26(1):119-26. doi: 10.1634/stemcells.2007-0283. Epub Oct. 25, 2007. |
Thyagarajan et al., Mammalian genomes contain active recombinase recognition sites. Gene. Feb. 22, 2000;244(1-2):47-54. |
Thyagarajan et al., Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol. Jun. 2001;21(12):3926-34. |
Tinland et al., The T-DNA-linked VirD2 protein contains two distinct functional nuclear localization signals. Proc Natl Acad Sci U S A. Aug. 15, 1992;89(16):7442-6. doi: 10.1073/pnas.89.16.7442. |
Tirumalai et al., Recognition of core-type DNA sites by lambda integrase. J Mol Biol. Jun. 12, 1998;279(3):513-27. |
Tom et al., Mechanism whereby proliferating cell nuclear antigen stimulates flap endonuclease 1. J Biol Chem. Apr. 7, 2000;275(14):10498-505. doi: 10.1074/jbc.275.14.10498. |
Tone et al., Single-stranded DNA binding protein Gp5 of Bacillus subtilis phage ?29 is required for viral DNA replication in growth-temperature dependent fashion. Biosci Biotechnol Biochem. 2012;76(12):2351-3. doi: 10.1271/bbb.120587. Epub Dec. 7, 2012. |
Toor et al., Crystal structure of a self-spliced group II intron. Science. Apr. 4, 2008;320(5872):77-82. doi: 10.1126/science.1153803. |
Torres et al., Non-integrative lentivirus drives high-frequency cre-mediated cassette exchange in human cells. PLoS One. 2011;6(5):e19794. doi: 10.1371/journal.pone.0019794. Epub May 23, 2011. |
Tourdot et al., A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur J Immunol. |
Tourdot et al., A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur J Immunol. Dec. 2000;30(12):3411-21. |
Tourdot et al., A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur J Immunol. Dec. 2000;30(12):3411-3421. |
Townsend et al., Role of HFE in iron metabolism, hereditary haemochromatosis, anaemia of chronic disease, and secondary iron overload. Lancet. Mar. 2, 2002;359(9308):786-90. doi: 10.1016/S0140-6736(02)07885-6. |
Tracewell et al., Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr Opin Chem Biol. Feb. 2009;13(1):3-9. doi: 10.1016/j.cbpa.2009.01.017. Epub Feb. 25, 2009. |
Tratschin et al., A human parvovirus, adeno-associated virus, as a eucaryotic vector: transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase. Mol Cell Biol. Oct. 1984;4(10):2072-81. doi: 10.1128/mcb.4.10.2072. |
Tratschin et al., Adeno-associated virus vector for high-frequency integration, expression, and rescue of genes in mammalian cells. Mol Cell Biol. Nov. 1985;5(11):3251-60. doi: 10.1128/mcb.5.11.3251. |
Trausch et al., The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure. Oct. 12, 2011;19(10):1413-23. doi: 10.1016/j.str.2011.06.019. Epub Sep. 8, 2011. |
Trausch et al., The structure of tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure. Oct. 12, 2011;19(10):1413-23. doi:10.106/j.str.2011.06.019. Epub Sep. 8, 2011. |
Traxler et al., A genome-editing strategy to treat ?-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med. Sep. 2016;22(9):987-90. doi: 10.1038/nm.4170. Epub Aug. 15, 2016. |
Trudeau et al., On the Potential Origins of the High Stability of Reconstructed Ancestral Proteins. Mol Biol Evol. Oct. 2016;33(10):2633-41. doi: 10.1093/molbev/msw138. Epub Jul. 12, 2016. |
Truong et al., Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. Jul. 27, 2015;43(13):6450-8. doi: 10.1093/nar/gkv601. Epub Jun. 16, 2015. |
Truong et al., Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. Jul. 27, 2015;43(13):6450-8. doi: 10.1093/nar/gkv601. Epub Jun. 16, 2015. With Supplementary Data. |
Tsai et al., GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. Feb. 2015;33(2):187-197. doi: 10.1038/nbt.3117. Epub Dec. 16, 2014. |
Tsai et al., Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. Jun. 2014;32(6):569-76. doi: 10.1038/nbt.2908. Epub Apr. 25, 2014. |
Tsai et al., GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. Feb. 2015;33(2):187-97. doi: 10.1038/nbt.3117. Epub Dec. 16, 2014. |
Tsang et al., Specialization of the DNA-cleaving activity of a group I ribozyme through in vitro evolution. J Mol Biol. Sep. 13, 1996;262(1):31-42. doi: 10.1006/jmbi.1996.0496. |
Tsutakawa et al., Human flap endonuclease structures, DNA double-base flipping, and a unified understanding of the FEN1 superfamily. Cell. Apr. 15, 2011;145(2):198-211. doi: 10.1016/j.cell.2011.03.004. |
Turan et al., Recombinase-mediated cassette exchange (RMCE)—a rapidly-expanding toolbox for targeted genomic modifications. Gene. Feb. 15, 2013;515(1):1-27. doi: 10.1016/j.gene.2012.11.016. Epub Nov. 29, 2012. |
Turan et al., Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol. Mar. 25, 2011;407(2):193-221. doi: 10.1016/j.jmb.2011.01.004. Epub Jan. 15, 2011. |
Turan et al., Site-specific recombinases: from tag-and-target-to tag-and-exchange-based genomic modifications. Faseb J. Dec. 2011;25(12):4088-107. doi: 10.1096/fj.11-186940. Epub Sep. 2, 2011. Review. |
Tyszkiewicz et al., Activation of protein splicing with light in yeast. Nat Methods. Apr. 2008;5(4):303-5. doi: 10.1038/nmeth.1189. Epub Feb. 13, 2008. |
UNIPROT Submission; UniProt, Accession No. P01011. Last modified Jun. 11, 2014, version 2. 15 pages. |
UNIPROT Submission; UniProt, Accession No. P01011. Last modified Sep. 18, 2013, version 2. 15 pages. |
UNIPROT Submission; UniProt, Accession No. P04264. Last modified Jun. 11, 2014, version 6. 15 pages. |
UNIPROT Submission; UniProt, Accession No. P04275. Last modified Jul. 9, 2014, version 107. 29 pages. |
UNIPROTKB Submission; Accession No. F0NH53. May 3, 2011. 4 pages. |
UNIPROTKB Submission; Accession No. F0NN87. May 3, 2011. 4 pages. |
UNIPROTKB Submission; Accession No. P0DOC6. No Author Listed., Oct. 5, 2016. 5 pages. |
UNIPROTKB Submission; Accession No. T0D7A2. Oct. 16, 2013. 10 pages. |
Urasaki et al., Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics. Oct. 2006;174(2):639-49. doi: 10.1534/genetics.106.060244. Epub Sep. 7, 2006. |
Urnov et al., Genome editing with engineered zinc finger nucleases. Nat Rev Genet. Sep. 2010;11(9):636-46. doi: 10.1038/nrg2842. |
Urnov et al., Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. Jun. 2, 2005;435(7042):646-51. Epub Apr. 3, 2005. |
Vagner et al., Efficiency of homologous DNA recombination varies along the Bacillus subtilis chromosome. J Bacteriol. Sep. 1988;170(9):3978-82. |
Van Brunt et al., Genetically Encoded Azide Containing Amino Acid in Mammalian Cells Enables Site-Specific Antibody-Drug Conjugates Using Click Cycloaddition Chemistry. Bioconjug Chem. Nov. 18, 2015;26(11):2249-60. doi: 10.1021/acs.bioconjchem.5b00359. Epub Sep. 11, 2015. |
Van Brunt et al., Molecular Farming: Transgenic Animals as Bioreactors. Biotechnology (NY). 1988;6(10):1149-1154. doi: 10.1038/nbt1088-1149. |
Van Overbeek et al., DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks. Mol Cell. Aug. 18, 2016;63(4):633-646. doi: 10.1016/j.molcel.2016.06.037. Epub Aug. 4, 2016. |
Van Swieten et al., A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am J Hum Genet. Jan. 2003;72(1):191-9. Epub Dec. 13, 2002. |
Van Wijk et al., Identification of 51 novel exons of the Usher syndrome type 2A (USH2A) gene that encode multiple conserved functional domains and that are mutated in patients with Usher syndrome type II. Am J Hum Genet. Apr. 2004;74(4):738-44. doi: 10.1086/383096. Epub Mar. 10, 2004. |
Vanamee et al., FokI requires two specific DNA sites for cleavage. J Mol Biol. May 25, 2001;309(1):69-78. |
Varga et al., Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. Feb. 28, 2006;103(9):3250-5. doi: 10.1073/pnas.0600012103. Epub Feb. 21, 2006. |
Vasey et al., Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents-drug-polymer conjugates. Cancer Research Campaign Phase I/II Committee. |
Vellore et al., A group II intron-type open reading frame from the thermophile Bacillus (Geobacillus) stearothermophilus encodes a heat-stable reverse transcriptase. Appl Environ Microbiol. Dec. 2004;70(12):7140-7. doi: 10.1128/AEM.70.12.7140-7147.2004. |
Venken et al., Genome-wide manipulations of Drosophila melanogaster with transposons, Flp recombinase, and ΦC31 integrase. Methods Mol Biol. 2012;859:203-28. doi: 10.1007/978-1-61779-603-6_12. |
Verma, The reverse transcriptase. Biochim Biophys Acta. Mar. 21, 1977;473(1):1-38. doi: 10.1016/0304-419x(77)90005-1. |
Vigne et al., Third-generation adenovectors for gene therapy. Restor Neurol Neurosci. Jan. 1, 1995;8(1):35-6. doi: 10.3233/RNN-1995-81208. |
Vik et al., Endonuclease V cleaves at inosines in RNA. Nat Commun. 2013;4:2271. doi: 10.1038/ncomms3271. |
Vilenchik et al., Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci U S A. Oct. 28, 2003;100(22):12871-6. doi: 10.1073/pnas.2135498100. Epub Oct. 17, 2003. |
Wacey et al., Disentangling the perturbational effects of amino acid substitutions in the DNA-binding domain of p53. Hum Genet. Jan. 1999;104(1):15-22. |
Wadia et al., Modulation of cellular function by TAT mediated transduction of full length proteins. Curr Protein Pept Sci. Apr. 2003;4(2):97-104. |
Wadia et al., Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med. Mar. 2004;10(3):310-5. Epub Feb. 8, 2004. |
Wah et al., Structure of FokI has implications for DNA cleavage. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10564-9. |
Wals et al., Unnatural amino acid incorporation in E. coli: current and future applications in the design of therapeutic proteins. Front Chem. Apr. 1, 2014;2:15. doi: 10.3389/fchem.2014.00015. eCollection 2014. |
Wang et al. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae. Appl Environ Microbiol. 2018;84(23):e01834-18. Published Nov. 15, 2018. doi:10.1128/AEM.01834-18. |
Wang et al., AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity. Nat Struct Mol Biol. Jul. 2009;16(7):769-76. doi: 10.1038/nsmb.1623. Epub Jun. 21, 2009. |
Wang et al., Construction of cell penetrating peptide vectors with N-terminal stearylated nuclear localization signal for targeted delivery of DNA into the cell nuclei. J Controll Rel. Oct. 10, 2011;155(1):26-33. |
Wang et al., CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report. Arterioscler Thromb Vasc Biol. May 2016;36(5):783-6. doi: 10.1161/ATVBAHA.116.307227. Epub Mar. 3, 2016. |
Wang et al., Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci U S A. Feb. 29, 2016. pii: 201520244. [Epub ahead of print]. |
Wang et al., Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Res. Oct. 2017;27(1):1289-92. doi: 10.1038/cr.2017.111. Epub Aug. 29, 2017. |
Wang et al., Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci U S A. Nov. 30, 2004;101(48):16745-9. Epub Nov. 19, 2004. |
Wang et al., Expanding the genetic code. Annu Rev Biophys Biomol Struct. 2006;35:225-49. Review. |
Wang et al., Genetic screens in human cells using the CRISPR-Cas9 system. Science. Jan. 3, 2014;343(6166):80-4. doi: 10.1126/science.1246981. Epub Dec. 12, 2013. |
Wang et al., Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. Biotechniques. 2015:59,201-2;204;206-8. |
Wang et al., N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. Jun. 4, 2015;161(6):1388-99. doi: 10.1016/j.cell.2015.05.014. |
Wang et al., N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. Jan. 2, 2014;505(7481):117-20. doi: 10.1038/nature12730. Epub Nov. 27, 2013. |
Wang et al., Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature. Oct. 8, 2009;461(7265):754-61. doi: 10.1038/nature08434. |
Wang et al., One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. May 9, 2013;153(4):910-8. doi: 10.1016/j.cell.2013.04.025. Epub May 2, 2013. |
Wang et al., Programming cells by multiplex genome engineering and accelerated evolution. Nature. Aug. 13, 2009;460(7257):894-8. Epub Jul. 26, 2009. |
Wang et al., Reading RNA methylation codes through methyl-specific binding proteins. RNA Biol. 2014;11(6):669-72. doi: 10.4161/rna.28829. Epub Apr. 24, 2014. |
Wang et al., Recombinase technology: applications and possibilities. Plant Cell Rep. Mar. 2011;30(3):267-85. doi: 10.1007/s00299-010-0938-1. Epub Oct. 24, 2010. |
Wang et al., Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell. Mar. 28, 2008;29(6):691-702. doi: 10.1016/j.molcel.2008.01.012. |
Wang et al., Staphylococcus aureus protein SAUGI acts as a uracil-DNA glycosylase inhibitor. Nucleic Acids Res. Jan. 2014;42(2):1354-64. doi: 10.1093/nar/gkt964. Epub Oct. 22, 2013. |
Wang et al., Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. Jun. 23, 2016;534(7608):575-8. doi: 10.1038/nature18298. Epub May 25, 2016. |
Wang et al., Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res. Jul. 2012;22(7):1316-26. doi: 10.1101/gr.122879.111. Epub Mar. 20, 2012. |
Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J Biol Chem. Jan. 15, 1989;264(2):1163-71. |
Warren et al., A chimeric Cre recombinase with regulated directionality. Proc Natl Acad Sci USA. Nov. 25, 2008;105(47):18278-83. doi: 10.1073/pnas.0809949105. Epub Nov. 14, 2008. |
Warren et al., Mutations in the amino-terminal domain of lambda-integrase have differential effects on integrative and excisive recombination. Mol Microbiol. Feb. 2005;55(4):1104-12. |
Watowich, The erythropoietin receptor: molecular structure and hematopoietic signaling pathways. J Investig Med. Oct. 2011;59(7):1067-72. doi: 10.2310/JIM.0b013e31820fb28c. |
Waxman et al., Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci. Feb. 2014;17(2):153-63. doi: 10.1038/nn.3602. Epub Jan. 28, 2014. |
Weber et al., Assembly of designer TAL effectors by Golden Gate cloning. PLoS One. 2011;6(5):e19722. doi: 10.1371/journal.pone.0019722. Epub May 19, 2011. |
Weill et al., DNA polymerases in adaptive immunity. Nat Rev Immunol. Apr. 2008;8(4):302- 12. doi: 10.1038/nri2281. Epub Mar. 14, 2008. |
Weinberg et al., New Classes of Self-Cleaving Ribozymes Revealed by Comparative Genomics Analysis. Nat Chem Biol. Aug. 2015;11(8):606-10. doi: 10.1038/nchembio.1846. Epub Jul. 13, 2015. |
Weinberg et al., The aptamer core of SAM-IV riboswitchees mimics the ligand-binding site of SAM-I riboswitches. RNA. May 2008: 14(5):822-8. doi: 10.1261/rna.988608. Epub Mar. 27, 2008. |
Weinberg et al., The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. RNA. May 2008;14(5):822-8. doi: 10.1261/rna.988608. Epub Mar. 27, 2008. |
Weinberger et al., Disease-causing mutations C277R and C277Y modify gating of human CIC-1 chloride channels in myotonia congenita. J Physiol. Aug. 1, 2012;590(Pt 15):3449-64. doi: 0.1113/jphysiol.2012.232785. Epub May 28, 2012. |
Weiss et al., Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature. Apr. 14, 2011;472(7342):186-90. doi: 10.1038/nature09975. Epub Mar. 23, 2011. |
Wen et al., Inclusion of a universal tetanus toxoid CD4(+) T cell epitope P2 significantly enhanced the immunogenicity of recombinant rotavirus ?VP8* subunit parenteral vaccines. Vaccine. Jul. 31, 2014;32(35):4420-4427. doi: 10.1016/j.vaccine.2014.06.060. Epub Jun. 21, 2014. |
West et al., Gene expression in adeno-associated virus vectors: the effects of chimeric mRNA structure, helper virus, and adenovirus VA1 RNA. Virology. Sep. 1987;160(1):38-47. doi: 10.1016/0042-6822(87)90041-9. |
Wharton et al., A new-specificity mutant of 434 repressor that defines an amino acid-base pair contact. Nature. Apr. 30-May 6, 1987;326(6116):888-91. |
Wharton et al., Changing the binding specificity of a repressor by redesigning an alpha- helix. Nature. Aug. 15-21, 1985;316(6029):601-5. |
Wheeler et al., The thermostability and specificity of ancient proteins. Curr Opin Struct Biol. Jun. 2016;38:37-43. doi: 10.1016/j.sbi.2016.05.015. Epub Jun. 9, 2016. |
Wiedenheft et al., RNA-guided genetic silencing systems in bacteria and archaea. Nature. Feb. 15, 2012;482(7385):331-8. doi: 10.1038/nature10886. Review. |
Wienert et al., KLF1 drives the expression of fetal hemoglobin in British HPFH. Blood. Aug. 10, 2017;130(6):803-807. doi: 10.1182/blood-2017-02-767400. Epub Jun. 28, 2017. |
Wijesinghe et al., Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res. Oct. 2012;40(18):9206-17. doi: 10.1093/nar/gks685. Epub Jul. 13, 2012. |
Wijnker et al., Managing meiotic recombination in plant breeding. Trends Plant Sci. Dec. 2008;13(12):640-6. doi: 10.1016/j.tplants.2008.09.004. Epub Oct. 22, 2008. |
Williams et al., Assessing the accuracy of ancestral protein reconstruction methods. PLoS Comput Biol. Jun. 23, 2006;2(6):e69. doi: 10.1371/journal.pcbi.0020069. Epub Jun. 23, 2006. |
Wilson et al., Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores. J Mol Biol 2000;297:233-49. |
Wilson et al., Formation of infectious hybrid virions with gibbon ape leukemia virus and human T-cell leukemia virus retroviral envelope glycoproteins and the gag and pol proteins of Moloney murine leukemia virus. J Virol. May 1989;63(5):2374-8. doi: 10.1128/JVI.63.5.2374-2378.1989. |
Wilson et al., In Vitro Selection of Functional Nucleic Acids. Annu Rev Biochem. 1999;68:611-47. doi: 10.1146/annurev.biochem.68.1.611. |
Wilson et al., Kinase dynamics. Using ancient protein kinases to unravel a modern cancer drug's mechanism. Science. Feb. 20, 2015;347(6224):882-6. doi: 10.1126/science.aaa1823. |
Winkler et al., An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A. Dec. 10, 2002;99(25):15908-13. Epub Nov. 27, 2002. |
Winkler et al., An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Biol.Sep. 2003;10(9):701-7. Epub Aug. 10, 2003. |
Winkler et al., An mRNA structure that controls gene expression by bmding FMN. Pro Natl Acad Sci USA. Dec. 10, 2003:99(25):159808—13.Epub Nov. 27, 2002. |
Winkler et al., Control of gene expression by a natural metabolite-responsive ribozyem. Nature Mar. 18, 2004;428(6980):281-6. |
Winkler et al., Control of gene expression by a natural metabolite-responsive ribozyme. Nature. Mar. 18, 2004;428(6980):281-6. |
Winkler et al., Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature. Oct. 31, 2002;419(6910):952-6. Epub Oct. 16, 2002. |
Winkler et al., Thiamine derivatives bmind messenger RNAs directly to regulate baceterial gene expression. Nature. Oct. 31, 2002;419(6919):952-6. epub 2002 Oc 16. |
Winoto et al., A novel, inducible and T cell-specific enhancer located at the 3′ end of the T cell receptor alpha locus. Embo J. Mar. 1989;8(3):729-33. |
Winter et al., Drug Development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science. Jun. 19, 2015;348(6241):1376-81. doi:; 10.1126/science.aab1433. Epub May 21, 2015.;. |
Wold, Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem. 1997;66:61-92. doi: 10.1146/annurev.biochem.66.1.61. |
Wolf et al., tadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. Embo J. Jul. 15, 2002;21(14):3841-51. |
Wolfe et al., Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. J Mol Biol. Feb. 5, 1999;285(5):1917-34. |
Wong et al., A statistical analysis of random mutagenesis methods used for directed protein evolution. J Mol Biol. Jan. 27, 2006;355(4):858-71. Epub Nov. 17, 2005. |
Wong et al., The Diversity Challenge in Directed Protein Evolution. Comb Chem High Throughput Screen. May 2006;9(4):271-88. |
Wood et al., A genetic system yields self-cleaving inteins for bioseparations. Nat Biotechnol. Sep. 1999;17(9):889-92. doi: 10.1038/12879. |
Wood et al., Targeted genome editing across species using ZFNs and TALENs. Science. Jul. 15, 2011;333(6040):307. doi: 10.1126/science.1207773. Epub Jun. 23, 2011. |
Woods et al., The phenotype of congenital insensitivity to pain due to the NaV1.9 variant p.L811P. Eur J Hum Genet. May 2015;23(5):561-3. doi: 10.1038/ejhg.2014.166. Epub Aug. 13, 2014. |
Wright et al., Continuous in vitro evolution of catalytic function. Science. Apr. 25, 1997;276(5312):614-7. |
Wright et al., Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci U S A. Mar. 10, 2015;112(10):2984-9. doi: 10.1073/pnas.1501698112. Epub Feb. 23, 2015. |
Wu et al., Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. Dec. 5, 2013;13(6):659-62. doi: 10.1016/j.stem.2013.10.016. |
Wu et al., Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol. Jul. 2014;32(7):670-6. doi: 10.1038/nbt.2889. Epub Apr. 20, 2014. |
Wu et al., Human single-stranded DNA binding proteins: guardians of genome stability. Acta Biochim Biophys Sin (Shanghai). Jul. 2016;48(7):671-7. doi: 10.1093/abbs/gmw044. Epub May 23, 2016. |
Wu et al., Protein trans-splicing and functional mini-inteins of a cyanobacterial dnaB intein. Biochim Biophys Acta. Sep. 8, 1998;1387(1-2):422-32. doi: 10.1016/s0167-4838(98)00157-5. |
Wu et al., Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A. Aug. 4, 1998;95(16):9226-31. doi: 10.1073/pnas.95.16.9226. |
Xiang et al., RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. Mar. 23, 2017;543(7646):573-576. doi: 10.1038/nature21671. Epub Mar. 15, 2017. |
Xiao et al., Genetic incorporation of multiple unnatural amino acids into proteins in mammalian cells. Angew Chem Int Ed Engl. Dec. 23, 2013;52(52):14080-3. doi: 10.1002/anie.201308137. Epub Nov. 8, 2013. |
Xiao et al., Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol Cell. Feb. 18, 2016;61(4):507-519. doi: 10.1016/j.molcel.2016.01.012. Epub Feb. 11, 2016. |
Xie et al., Adjusting the attB site in donor plasmid improves the efficiency of ?C31 integrase system. DNA Cell Biol. Jul. 2012;31(7):1335-40. doi: 10.1089/dna.2011.1590. Epub Apr. 10, 2012. |
Xiong et al., Origin and evolution of retroelements based upon their reverse transcriptase sequences. Embo J. Oct. 1990;9(10):3353-62. |
Xu et al., Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc Natl Acad Sci U S A. Jan. 19, 1999;96(2):388-93. doi: 10.1073/pnas.96.2.388. |
Xu et al., Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotechnol. Oct. 20, 2013;13:87. doi: 10.1186/1472-6750-13-87. |
Xu et al., Protein splicing: an analysis of the branched intermediate and its resolution by succinimide formation. Embo J. Dec. 1, 1994;13(23):5517-22. |
Xu et al., Sequence determinants of improved CRISPR sgRNA design. Genome Res. Aug. 2015;25(8):1147-57. doi: 10.1101/gr.191452.115. Epub Jun. 10, 2015. |
Xu et al., Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. J Biol Chem. Jun. 20, 2014;289(25):17299-311. doi: 10.1074/jbc.M114.550350. Epub Apr. 28, 2014. |
Xu et al., The mechanism of protein splicing and its modulation by mutation. Embo J. Oct. 1, 1996;15(19):5146-53. |
Yahata et al., Unified, Efficient, and Scalable Synthesis of Halichondrins: Zirconium/Nickel-Mediated One-Pot Ketone Synthesis as the Final Coupling Reaction. Angew Chem Int Ed Engl. Aug. 28, 2017;56(36):10796-10800. doi: 10.1002/anie.201705523. Epub Jul. 28, 2017. |
Yamamoto et al., The ons and offs of inducible transgenic technology: a review. Neurobiol Dis. Dec. 2001;8(6):923-32. |
Yamamoto et al., Virological and immunological bases for HIV-1 vaccine design. Uirusu 2007;57(2):133-139. https://doi.org/10.2222/jsv.57.133. |
Yamano et al., Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell May 2016;165(4)949-62. |
Yamano et al., Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell. May 5, 2016;165(4):949-62 and Supplemental Info. doi: 10.1016/j.cell.2016.04.003. Epub Apr. 21, 2016. |
Yamazaki et al., Segmental Isotope Labeling for Protein NMR Using Peptide Splicing. J. Am. Chem. Soc. May 22, 1998; 120(22):5591-2. https://doi.org/10.1021/ja9807760. |
Yang et al., APOBEC: From mutator to editor. J Genet Genomics. Sep. 20, 2017;44(9):423-437. doi: 10.1016/j.jgg.2017.04.009. Epub Aug. 7, 2017. |
Yang et al., Construction of an integration-proficient vector based on the site-specific recombination mechanism of enterococcal temperate phage phiFC1. J Bacteriol. Apr. 2002;184(7):1859-64. doi: 10.1128/jb.184.7.1859-1864.2002. |
Yang et al., Engineering and optimising deaminase fusions for genome editing. Nat Commun. Nov. 2, 2016;7:13330. |
Yang et al., Engineering and optimising deaminase fusions for genome editing. Nat Commun. Nov. 2, 2016;7:13330. doi: 10.1038/ncomms13330. |
Yang et al., Genome editing with targeted deaminases. BioRxiv. Preprint. First posted online Jul. 28, 2016. |
Yang et al., Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell. Sep. 2018;9(9):814-819. doi: 10.1007/s13238-018-0568-x. Erratum in: Protein Cell. May 13, 2019. |
Yang et al., Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet. Mar. 2004;41(3):171-4. doi: 10.1136/jmg.2003.012153. |
Yang et al., New CRISPR-Cas systems discovered. Cell Res. Mar. 2017;27(3):313-314. doi: 10.1038/cr.2017.21. Epub Feb. 21, 2017. |
Yang et al., One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. Sep. 12, 2013;154(6):1370-9. doi: 10.1016/j.cell.2013.08.022. Epub Aug. 29, 2013. |
Yang et al., PAM-dependent Target DNA Recognition and Cleavage by C2C1 CRISPR-Cas endonuclease. Cell Dec. 2016;167(7):1814-28. |
Yang et al., Permanent genetic memory with >1-byte capacity. Nat Methods. Dec. 2014;11(12):1261-6. doi: 10.1038/nmeth.3147. Epub Oct. 26, 2014. |
Yang et al., Preparation of RNA-directed DNA polymerase from spleens of Balb-c mice infected with Rauscher leukemia virus. Biochem Biophys Res Commun. Apr. 28, 1972;47(2):505-11. doi: 10.1016/0006-291x(72)90743-7. |
Yang et al., Small-molecule control of insulin and PDGF receptor signaling and the role of membrane attachment. Curr Biol. Jan. 1, 1998;8(1):11-8. doi: 10.1016/s0960-9822(98)70015-6. |
Yang, Development of Human Genome Editing Tools for the Study of Genetic Variations and Gene Therapies. Doctoral Dissertation. Harvard University. 2013. Accessible via nrs.harvard.edu/urn-3:HUL.InstRepos:11181072. 277 pages. |
Yang, PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. Aug. 2007;24(8):1586-91. doi: 10.1093/molbev/msm088. Epub May 4, 2007. |
Yanover et al., Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers. Nucleic Acids Res. Jun. 2011;39(11):4564-76. doi: 10.1093/nar/gkr048. Epub Feb. 22, 2011. |
Yasui et al., Miscoding Properties of 2′-Deoxyinosine, a Nitric Oxide-Derived DNA Adduct, during Translesion Synthesis Catalyzed by Human DNA Polymerases. J Molec Biol. Apr. 4, 2008;377(4):1015-23. |
Yasui, Alternative excision repair pathways. Cold Spring Harb Perspect Biol. Jun. 1, 2013;5(6):a012617. doi: 10.1101/cshperspect.a012617. |
Yasukawa et al., Characterization of Moloney murine leukaemia virus/avian myeloblastosis virus chimeric reverse transcriptases. J Biochem. Mar. 2009;145(3):315-24. doi: 10.1093/jb/mvn166. Epub Dec. 6, 2008. |
Yazaki et al., Hereditary systemic amyloidosis associated with a new apolipoprotein AII stop codon mutation Stop78Arg. Kidney Int. Jul. 2003;64(1):11-6. |
Yin et al., Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. Jun. 2014;32(6):551-3. doi: 10.1038/nbt.2884. Epub Mar. 30, 2014. |
Yokoe et al., Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nat Biotechnol. Oct. 1996;14(10):1252-6. doi: 10.1038/nbt1096-1252. |
Young et al., Beyond the canonical 20 amino acids: expanding the genetic lexicon. J Biol Chem. Apr. 9, 2010;285(15):11039-44. doi: 10.1074/jbc.R109.091306. Epub Feb. 10, 2010. |
Yu et al., Circular permutation: a different way to engineer enzyme structure and function. Trends Biotechnol. Jan. 2011;29(1):18-25. doi: 10.1016/j.tibtech.2010.10.004. Epub Nov. 17, 2010. |
Yu et al., Liposome-mediated in vivo E1A gene transfer suppressed dissemination of ovarian cancer cells that overexpress HER-2/neu. Oncogene. Oct. 5, 1995;11(7):1383-8. |
Yu et al., Progress towards gene therapy for HIV infection. Gene Ther. Jan. 1994;1(1):13-26. |
Yu et al., Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. Feb. 5, 2015;16(2):142-7. doi: 10.1016/j.stem.2015.01.003. |
Yu et al., Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res. Sep. 2010;38(17):5706-17. doi: 10.1093/nar/gkq379. Epub May 11, 2010. |
Yuan et al., Laboratory-directed protein evolution. Microbiol Mol Biol Rev. 2005; 69(3):373-92. PMID: 16148303. |
Yuan et al., Tetrameric structure of a serine integrase catalytic domain. Structure. Aug. 6, 2008;16(8):1275-86. doi: 10.1016/j.str.2008.04.018. |
Yuan L, Kurek I, English J. Keenan R. Laboratory-directed protein evolution. Microbiol Mol Biol Rev. 2005; 69(3):373-92. PMID: 16148303. |
Yuen et al., Control of transcription factor activity and osteoblast differentiation in mammalian cells using an evolved small-molecule-dependent intein. J Am Chem Soc. Jul. 12, 2006;128(27):8939-46. |
Zakas et al., Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction. Nat Biotechnol. Jan. 2017;35(1):35-37. doi: 10.1038/nbt.3677. Epub Sep. 26, 2016. |
Zalatan et al., Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell. Jan. 15, 2015;160(1-2):339-50. doi: 10.1016/j.cell.2014.11.052. Epub Dec. 18, 2014. |
Zetsche et al., A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol. Feb. 2015;33(2):139-42. doi: 10.1038/nbt.3149. |
Zetsche et al., Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. Oct. 22, 2015;163(3):759-71 and Supplemental Info. doi: 10.1016/j.cell.2015.09.038. Epub Sep. 25, 2015. |
Zetsche et al., Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. Oct. 22, 2015;163(3):759-71. doi: 10.1016/j.cell.2015.09.038. Epub Sep. 25, 2015. |
Zettler et al., The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett. Mar. 4, 2009;583(5):909-14. doi: 10.1016/j.febslet.2009.02.003. Epub Feb. 10, 2009. |
Zhang et al., II-Clamp-mediated cysteine conjugation. Nat Chem. Feb. 2016;8(2):120-8. doi: 10.1038/nchem.2413. Epub Dec. 21, 2015. |
Zhang et al., A new strategy for the site-specific modification of proteins in vivo. Biochemistry. Jun. 10, 2003;42(22):6735-46. |
Zhang et al., Circular intronic long noncoding RNAs. Mol Cell. Sep. 26, 2013;51(6):792-806. doi: 10.1016/j.molcel.2013.08.017. Epub Sep. 12, 2013. |
Zhang et al., Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells. Sci Rep. Jun. 2014;4:5405. |
Zhang et al., Conditional gene manipulation: Cre-ating a new biological era. J Zhejiang Univ Sci B. Jul. 2012;13(7):511-24. doi: 10.1631/jzus.B1200042. Review. |
Zhang et al., Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10:451-81. doi: 10.1146/annurev.genom.9.081307.164217. |
Zhang et al., CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. Sep. 15, 2014;23(R1):R40-6. doi: 10.1093/hmg/ddu125. Epub Mar. 20, 2014. |
Zhang et al., Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. Feb. 2011;29(2):149-53. doi: 10.1038/nbt.1775. Epub Jan. 19, 2011. |
Zhang et al., Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat Commun. Jul. 25, 2017;8(1):118. doi: 10.1038/s41467-017-00175-6. |
Zhang et al., Ribozymes and Riboswitches: Modulation of RNA Function by Small Molecules. Biochemistry. Nov. 2, 2010;49(43):9123-31. doi: 10.1021/bi1012645. |
Zhang et al., Stabilized plasmid-lipid particles for regional gene therapy: formulation and transfection properties. Gene Ther. Aug. 1999;6(8):1438-47. |
Zhao et al., Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution. Nat Struct Mol Biol. Jun. 2016;23(6):558-65. doi: 10.1038/nsmb.3224. Epub May 2, 2016. |
Zhao et al., Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. Jan. 2017;18(1):31-42. doi: 10.1038/nrm.2016.132. Epub Nov. 3, 2016. |
Zheng et al., ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. Jan. 10, 2013;49(1):18-29. doi: 10.1016/j.molcel.2012.10.015. Epub Nov. 21, 2012. |
Zheng et al., DNA editing in DNA/RNA hybrids by adenosine deaminases that act on RNA. Nucleic Acids Res. Apr. 7, 2017;45(6):3369-3377. doi: 10.1093/nar/gkx050. |
Zhong et al., Rational Design of Aptazyme Riboswitches for Efficient Control of Gene Expression in Mammalian Cells. Elife. Nov. 2, 2016;5:e18858. doi: 10.7554/eLife.18858. |
Zhou et al., Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature. Oct. 22, 2015;526(7574):591-4. doi: 10.1038/nature15377. Epub Oct. 12, 2015. |
Zhou et al., Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. May 8, 2009;4(5):381-4. doi: 10.1016/j.stem.2009.04.005. Epub Apr. 23, 2009. |
Zhou et al., Protective V127 prion variant prevents prion disease by interrupting the formation of dimer and fibril from molecular dynamics simulations. Sci Rep. Feb. 24, 2016;6:21804. doi: 10.1038/srep21804. |
Zielenski, Genotype and phenotype in cystic fibrosis. Respiration. 2000;67(2):117-33. doi: 10.1159/000029497. |
Zimmerly et al., An Unexplored Diversity of Reverse Transcriptases in Bacteria. Microbiol Spectr. Apr. 2015;3(2):MDNA3-0058-2014. doi: 10.1128/microbiolspec.MDNA3-0058-2014. |
Zimmerly et al., Group II intron mobility occurs by target DNA-primed reverse transcription. Cell. Aug. 25, 1995;82(4):545-54. doi: 10.1016/0092-8674(95)90027-6. |
Zimmerman et al., Molecular interactions and metal binding in the tehophylline-bidning core of an RNA aptamer. RNA. May 2000:6(5):659-67. |
Zimmermann et al., Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA. May 2000;6(5):659-67. |
Zong et al., Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol. May 2017;35(5):438-440. doi: 10.1038/nbt.3811. Epub Feb. 27, 2017. |
Zou et al., Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell. Jul. 2, 2009;5(1):97-110. doi: 10.1016/j.stem.2009.05.023. Epub Jun. 18, 2009. |
Zufferey et al., Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol. Apr. 1999;73(4):2886-92. doi: 10.1128/JVI.73.4.2886-2892.1999. |
Zuker et al., Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. Jan. 10, 1981;9(1):133-48. doi: 10.1093/nar/9.1.133. |
Zuris et al., Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33:73-80. |
[No. Author Listed], “Lambda DNA” from Catalog & Technical Reference. New England Biolabs Inc. 2002/2003. pp. 133 and 270-273. |
[No Author Listed], Mus musculus (Mouse). UniProtKB Accession No. P51908 (ABEC1_MOUSE). Oct. 1, 1996. 10 pages. |
Ai et al., C-terminal Loop Mutations Determine Folding and Secretion Properties of PCSK9. iMedPub J: Biochem Mol Biol J. Nov. 5, 2016;2(3):17. doi: 10.21767/2471-8084.100026. 12 pages. |
Asokan et al., The AAV vector toolkit: poised at the clinical crossroads. Mol Ther. Apr. 2012;20(4):699-708. doi: 10.1038/mt.2011.287. Epub Jan. 24, 2012. |
Auricchio et al., Exchange of surface proteins impacts on viral vector cellular specificity and transduction characteristics: the retina as a model. Hum Mol Genet. Dec. 15, 2001;10(26):3075-81. doi: 10.1093/hmg/10.26.3075. |
Baba et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006;2:2006.0008. doi: 10.1038/msb4100050. Epub Feb. 21, 2006. |
Bae et al., Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. May 15, 2014;30(10):1473-5. doi: 10.1093/bioinformatics/btu048. Epub Jan. 24, 2014. |
Bagal et al., Recent progress in sodium channel modulators for pain. Bioorg Med Chem Lett. Aug. 15, 2014;24(16):3690-9. doi: 10.1016/j.bmcl.2014.06.038. Epub Jun. 21, 2014. |
Barmania et al., C-C chemokine receptor type five (CCR5): An emerging target for the control of HIV infection. Appl Transl Genom. May 26, 2013;2:3-16. doi: 10.1016/j.atg.2013.05.004. |
Bass, B.L., RNA editing by adenosine deaminases that act on RNA. Annu Rev Biochem. 2002;71:817-46. doi: 10.1146/annurev.biochem.71.110601.135501. Epub Nov. 9, 2001. |
Beaudry et al., Directed evolution of an RNA enzyme. Science. Jul. 31, 1992;257(5070):635-41. doi: 10.1126/science.1496376. |
Bell et al., Ribozyme-catalyzed excision of targeted sequences from within RNAs. Biochemistry. Dec. 24, 2002;41(51):15327-33. doi: 10.1021/bi0267386. |
Bentin, T., A ribozyme transcribed by a ribozyme. Artif DNA PNA XNA. Apr. 2011;2(2):40-42. doi: 10.4161/adna.2.2.16852. |
Bertsimas et al., Simulated annealing. Statistical Science. Feb. 1993;8(1):10-15. doi: 10.1214/ss/1177011077. |
Bibikova et al., Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. Jul. 2002;161(3):1169-75. doi: 10.1093/genetics/161.3.1169. |
Blauw et al., SMN1 gene duplications are associated with sporadic ALS. Neurology. Mar. 13, 2012;78(11):776-80. doi: 10.1212/WNL.0b013e318249f697. Epub Feb. 8, 2012. |
Brierley et al., Viral RNA pseudoknots: versatile motifs in gene expression and replication. Nat Rev Microbiol. Aug. 2007;5(8):598-610. doi: 10.1038/nrmicro1704. |
Brutlag et al., Improved sensitivity of biological sequence database searches. Comput Appl Biosci. Jul. 1990;6(3):237-45. doi: 10.1093/bioinformatics/6.3.237. |
Cao et al., Rapamycin reverses cellular phenotypes and enhances mutant protein clearance in Hutchinson-Gilford progeria syndrome cells. Sci Transl Med. Jun. 29, 2011;3(89):89ra58. doi: 10.1126/scitranslmed.3002346. |
Carlier et al., Genome Sequence of Burkholderia cenocepacia H111, a Cystic Fibrosis Airway Isolate. Genome Announc. Apr. 10, 2014;2(2):e00298-14. doi: 10.1128/genomeA.00298-14. |
Cartegni et al., Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Am J Hum Genet. Jan. 2006;78(1):63-77. doi: 10.1086/498853. Epub Nov. 16, 2005. |
Chang et al., Degradation of survival motor neuron (SMN) protein is mediated via the ubiquitin/proteasome pathway. Neurochem Int. Dec. 2004;45(7):1107-12. doi: 10.1016/j.neuint.2004.04.005. |
Chawla et al., An atlas of RNA base pairs involving modified nucleobases with optimal geometries and accurate energies. Nucleic Acids Res. Aug. 18, 2015;43(14):6714-29. doi: 10.1093/nar/gkv606. Epub Jun. 27, 2015. |
Chen et al., Alterations in PMS2, MSH2 and MLH1 expression in human prostate cancer. Int J Oncol. May 2003;22(5):1033-43. |
Chen et al., Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. Dec. 19, 2013;155(7):1479-91. doi: 10.1016/j.cell.2013.12.001. Erratum in: Cell. Jan. 16, 2014;156(1-2):373. |
Cheng et al., Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. Oct. 2013;23(10):1163-71. doi: 10.1038/cr.2013.122. Epub Aug. 27, 2013. |
Chester et al., The apolipoprotein B mRNA editing complex performs a multifunctional cycle and suppresses nonsense-mediated decay. Embo J. Aug. 1, 2003;22(15):3971-82. doi: 10.1093/emboj/cdg369. |
Cho et al., A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev. Mar. 1, 2010;24(5):438-42. doi: 10.1101/gad.1884910. |
Choudhury et al., CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget. Jul. 19, 2016;7(29):46545-46556. doi: 10.18632/oncotarget.10234. |
Corcia et al., The importance of the SMN genes in the genetics of sporadic ALS. Amyotroph Lateral Scler. Oct.-Dec. 2009;10(5-6):436-40. doi: 10.3109/17482960902759162. |
Corti et al., Genetic correction of human induced pluripotent stem cells from patients with spinal muscular atrophy. Sci Transl Med. Dec. 19, 2012;4(165): 165ra162. doi: 10.1126/scitranslmed.3004108. |
Cucchiarini et al., Enhanced expression of the central survival of motor neuron (SMN) protein during the pathogenesis of osteoarthritis. J Cell Mol Med. Jan. 2014;18(1):115-24. doi: 10.1111/jcmm.12170. Epub Nov. 17, 2013. |
D'Ydewalle et al., The Antisense Transcript SMN-AS1 Regulates SMN Expression and Is a Novel Therapeutic Target for Spinal Muscular Atrophy. Neuron. Jan. 4, 2017;93(1):66-79 and Supplemental Information. doi: 10.1016/j.neuron.2016.11.033. Epub Dec. 22, 2016. |
Davis et al., Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc Natl Acad Sci U S A. Mar. 11, 2014;111(10):E924-32. doi: 10.1073/pnas.1400236111. Epub Feb. 20, 2014. |
Davis et al., Two Distinct Pathways Support Gene Correction by Single-Stranded Donors at DNA Nicks. Cell Rep. Nov. 8, 2016;17(7):1872-1881. doi: 10.1016/j.celrep.2016.10.049. |
De Sandre-Giovannoli et al., Lamin a truncation in Hutchinson-Gilford progeria. Science. Jun. 27, 2003;300(5628):2055. doi: 10.1126/science.1084125. Epub Apr. 17, 2003. |
Dickinson et al., A system for the continuous directed evolution of proteases rapidly reveals drug-resistance mutations. Nat Commun. Oct. 30, 2014;5:5352. doi: 10.1038/ncomms6352. |
Dolan et al., Trans-splicing with the group I intron ribozyme from Azoarcus. RNA. Feb. 2014;20(2):202-13. doi: 10.1261/rna.041012.113. Epub Dec. 166, 2013. |
Drenth et al., Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders. J Clin Invest. Dec. 2007;117(12):3603-9. doi: 10.1172/JCI33297. |
Drost et al., Inactivation of DNA mismatch repair by variants of uncertain significance in the PMS2 gene. Hum Mutat. Nov. 2013;34(11):1477-80. doi: 10.1002/humu.22426. Epub Sep. 11, 2013. |
Duan et al., Enhancement of muscle gene delivery with pseudotyped adeno-associated virus type 5 correlates with myoblast differentiation. J Virol. Aug. 2001;75(16):7662-71. doi: 10.1128/JVI.75.16.7662-7671.2001. |
Ekstrand et al., Frequent alterations of the PI3K/AKT/mTOR pathways in hereditary nonpolyposis colorectal cancer. Fam Cancer. Jun. 2010;9(2):125-9. doi: 10.1007/s10689-009-9293-1. |
Entin-Meer et al., The role of phenylalanine-119 of the reverse transcriptase of mouse mammary tumour virus in DNA synthesis, ribose selection and drug resistance. Biochem J. Oct. 15, 2002;367(Pt 2):381-91. doi: 10.1042/BJ20020712. |
Estacion et al., A sodium channel gene SCN9A polymorphism that increases nociceptor excitability. Ann Neurol. Dec. 2009;66(6):862-6. doi: 10.1002/ana.21895. |
Fang et al., The Menu of Features that Define Primary MicroRNAs and Enable De Novo Design of MicroRNA Genes. Mol Cell. Oct. 1, 2015;60(1):131-45. doi: 10.1016/j.molcel.2015.08.015. Epub Sep. 24, 2015. |
Feng et al., Efficient genome editing in plants using a CRISPR/Cas system. Cell Res. Oct. 2013;23(10):1229-32. doi: 10.1038/cr.2013.114. Epub Aug. 20, 2013. |
Friedman, J. H., Greedy function approximation: A gradient boosting machine. Ann. Statist. Oct. 2001;29(5):1189-232. doi: 10.1214/aos/1013203451. |
Geisberg et al., Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast. Cell. Feb. 13, 2014;156(4):812-24. doi: 10.1016/j.cell.2013.12.026. |
GENBANK Submission; NIH/NCBI Accession No. 4UN5_B. Anders et al., Jul. 23, 2014. 5 pages. |
GENBANK Submission; NIH/NCBI, Accession No. AIT42264.1. Hyun et al., Oct. 15, 2014. 2 pages. |
GENBANK Submission; NIH/NCBI, Accession No. AKA60242.1. Tong et al., Apr. 5, 2015. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. AKQ21048.1. Gilles et al., Jul. 19, 2015. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. AKS40380.1. Nodvig et al., Aug. 2, 2015. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. NC_000001.11. Gregory et al., Jun. 6, 2016. 3 pages. |
GENBANK Submission; NIH/NCBI, Accession No. WP_002989955.1. No Author Listed, May 6, 2013. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_010922251.1. No Author Listed, May 15, 2013. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_011054416.1. No Author Listed, May 15, 2013. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_011284745.1. No Author Listed, May 16, 2013. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_011285506.1. No Author Listed, May 16, 2013. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_011527619.1. No Author Listed, May 16, 2013. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_012560673.1. No Author Listed, May 17, 2013. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_014407541.1. No Author Listed, May 18, 2013. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_020905136.1. No Author Listed, Jul. 25, 2013. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_023080005.1. No Author Listed, Oct. 27, 2013. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_023610282.1. No Author Listed, Nov. 27, 2013. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_030125963.1. No Author Listed, Jul. 9, 2014. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_030126706.1. No Author Listed, Jul. 9, 2014. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_031488318.1. No Author Listed., Aug. 5, 2014. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_032460140.1. No Author Listed, Oct. 4, 2014. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_032461047.1. No Author Listed, Oct. 4, 2014. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_032462016.1. Haft et al., Oct. 4, 2014. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_032462936.1. No Author Listed, Oct. 4, 2014. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_032464890.1. No Author Listed, Oct. 4, 2014. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_038431314.1. No Author Listed, Dec. 26, 2014. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_038432938.1. No Author Listed, Dec. 26, 2014. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_038434062.1. No Author Listed, Dec. 26, 2014. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_048327215.1. No Author Listed, Jun. 26, 2015. 1 page. |
GENBANK Submission; NIH/NCBI, Accession No. WP_049519324.1. No Author Listed, Jul. 20, 2015. 1 page. |
Grati et al., Localization of PDZD7 to the stereocilia ankle-link associates this scaffolding protein with the Usher syndrome protein network. J Neurosci. Oct. 10, 2012;32(41):14288-93. doi: 10.1523/JNEUROSCI.3071-12.2012. |
Green et al., Characterization of the mechanical unfolding of RNA pseudoknots. J Mol Biol. Jan. 11, 2008;375(2):511-28. doi: 10.1016/j.jmb.2007.05.058. Epub May 26, 2007. |
Gruber et al., The Vienna RNA websuite. Nucleic Acids Res. Jul. 1, 2008;36(Web Server issue):W70-4. doi: 10.1093/nar/gkn188. Epub Apr. 19, 2008. |
Guedon et al., Current gene therapy using viral vectors for chronic pain. Mol Pain. May 13, 2015;11:27. doi: 10.1186/s12990-015-0018-1. |
Guo et al., Evolution of Tetrahymena ribozyme mutants with increased structural stability. Nat Struct Biol. Nov. 2002;9(11):855-61. doi: 10.1038/nsb850. |
Gutschner et al., Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair. Cell Rep. Feb. 16, 2016;14(6):1555-1566. doi: 10.1016/j.celrep.2016.01.019. Epub Feb. 4, 2016. |
Mahoney et al., The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in Melanoma. Clin Ther. Apr. 1, 2015;37(4):764-82. doi: 10.1016/j.clinthera.2015.02.018. Epub Mar. 29, 2015. |
Halbert et al., Repeat transduction in the mouse lung by using adeno-associated virus vectors with different serotypes. J Virol. Feb. 2000;74(3): 1524-32. doi: 10.1128/jvi.74.3.1524-1532.2000. |
Hardt et al.,Missense variants in hMLH1 identified in patients from the German HNPCC consortium and functional studies. Fam Cancer. Jun. 2011;10(2):273-84. doi: 10.1007/s10689-011-9431-4. |
Hart et al., High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-Specific Cancer Liabilities. Cell. Dec. 3, 2015;163(6):1515-26. doi: 10.1016/j.cell.2015.11.015. Epub Nov. 25, 2015. |
Hawley-Nelson et al., Transfection of Cultured Eukaryotic Cells Using Cationic Lipid Reagents. Curr Prot Mol Biol. Jan. 2008;9.4.1-9.4.17. doi: 10.102/0471142727.mb0904s81. 17 pages. |
Hendel et al., Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol. Sep. 2015;33(9):985-989. doi: 10.1038/nbt.3290. Epub Jun. 29, 2015. Author Manuscript. 14 pages. |
Heyer et al., Regulation of homologous recombination in eukaryotes. Annu Rev Genet. 2010;44:113-39. doi: 10.1146/annurev-genet-051710-150955. Author Manuscript. 33 pages. |
Hilbers et al., New developments in structure determination of pseudoknots. Biopolymers. 1998;48(2-3):137-53. doi: 10.1002/(SICI)1097-0282(1998)48:2<137::AID-BIP4>3.0.CO;2-H. |
Houck-Loomis et al., An equilibrium-dependent retroviral mRNA switch regulates translational recoding. Nature. Nov. 27, 2011;480(7378):561-4. doi: 10.1038/nature10657. |
Houseley et al., The many pathways of RNA degradation. Cell. Feb. 20, 2009;136(4):763-76. doi: 10.1016/j.cell.2009.01.019. |
Huang et al., Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy. Brain. Jun. 2014;137(Pt 6):1627-42. doi: 10.1093/brain/awu079. Epub Apr. 27, 2014. |
Ibrahim et al., RNA recognition by 3′-to-5′ exonucleases: the substrate perspective. Biochim Biophys Acta. Apr. 2008;1779(4):256-65. doi: 10.1016/j.bbagrm.2007.11.004. Epub Dec. 3, 2007. |
Isaacs et al., Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol. Jul. 2004;22(7):841-7. doi: 10.1038/nbt986. Epub Jun. 20, 2004. |
Iyama et al., DNA repair mechanisms in dividing and non-dividing cells. DNA Repair (Amst). Aug. 2013;12(8):620-36. doi: 10.1016/j.dnarep.2013.04.015. Epub May 16, 2013. |
Johnson et al., Trans insertion-splicing: ribozyme-catalyzed insertion of targeted sequences into RNAs. Biochemistry. Aug. 9, 2005;44(31):10702-10. doi: 10.1021/bi0504815. |
Kim et al., In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Methods. Feb. 2017;14(2):153-159. doi: 10.1038/nmeth.4104. Epub Dec. 19, 2016. |
Kim et al., RAD51 mutants cause replication defects and chromosomal instability. Mol Cell Biol. Sep. 2012;32(18):3663-80. doi: 10.1128/MCB.00406-12. Epub Jul. 9, 2012. |
King et al., No gain, No. pain: NaV1.7 as an analgesic target. ACS Chem Neurosci. Sep. 17, 2014;5(9):749-51. doi: 10.1021/cn500171p. Epub Aug. 11, 2014. |
Kleinstiver et al., Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. Jul. 23, 2015;523(7561):481-5 and Supplementary Materials. doi: 10.1038/nature14592. Epub Jun. 22, 2015. 27 pages. |
Konishi et al., Amino acid substitutions away from the RNase H catalytic site increase the thermal stability of Moloney murine leukemia virus reverse transcriptase through RNase H inactivation. Biochem Biophys Res Commun. Nov. 14, 2014;454(2):269-74. doi: 10.1016/j.bbrc.2014.10.044. Epub Oct. 17, 2014. |
Ku et al., Nucleic Acid Aptamers: An Emerging Tool for Biotechnology and Biomedical Sensing. Sensors (Basel). Jul. 6, 2015;15(7):16281-313. doi: 10.3390/s150716281. |
Kumar et al., Gene therapy for chronic neuropathic pain: how does it work and where do we stand today? Pain Med. May 2011;12(5):808-22. doi: 10.1111/j.1526-4637.2011.01120.x. |
Langer et al., Chemical and Physical Structure of Polymers as Carriers for Controlled Release of Bioactive Agents: A Review. J Macromol Sci, Part C, 1983;23(1):61-126. doi: 10.1080/07366578308079439. |
Le et al., SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet. Mar. 15, 2005;14(6):845-57. doi: 10.1093/hmg/ddi078. Epub Feb. 9, 2005. |
Lee et al., A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief. Cell. Jun. 5, 2014;157(6):1393-1404. doi: 10.1016/j.cell.2014.03.064. Epub May 22, 2014. Retraction in: Cell. Jun. 25, 2020;181(7):1695. |
Lefebvre et al., Identification and characterization of a spinal muscular atrophy-determining gene. Cell. Jan. 13, 1995;80(1):155-65. doi: 10.1016/0092-8674(95)90460-3. |
Lesinski et al., The potential for targeting the STAT3 pathway as a novel therapy for melanoma. Future Oncol. Jul. 2013;9(7):925-7. doi: 10.2217/fon.13.83. Author Manuscript. 4 pages. |
Liefke et al., The oxidative demethylase ALKBH3 marks hyperactive gene promoters in human cancer cells. Genome Med. Jun. 30, 2015;7(1):66. doi: 10.1186/s13073-015-0180-0. |
Lin et al., [Construction and evaluation of DnaB split intein high expression vector and a six amino acids cyclic peptide library]. Sheng Wu Gong Cheng Xue Bao. Nov. 2008;24(11):1924-30. Chinese. |
Lindahl, T., Instability and decay of the primary structure of DNA. Nature. Apr. 22, 1993;362(6422):709-15. doi: 10.1038/362709a0. |
Liu et al., Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nat Struct Mol Biol. Oct. 2010;17(10):1260-2. doi: 10.1038/nsmb.1904. Epub Aug. 22, 2010. |
Liu et al., Usherin is required for maintenance of retinal photoreceptors and normal development of cochlear hair cells. Proc Natl Acad Sci U S A. Mar. 13, 2007;104(11):4413-8. doi: 10.1073/pnas.0610950104. Epub Mar. 5, 2007. |
Lorson et al., A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A. May 25, 1999;96(11):6307-11. doi: 10.1073/pnas.96.11.6307. |
Lutz et al., Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. J Clin Invest. Aug. 2011;121(8):3029-41. doi: 10.1172/JCI57291. Epub Jul. 25, 2011. |
Madura et al., Structural basis for ineffective T-cell responses to MHC anchor residue-improved “heteroclitic” peptides. Eur J Immunol. Feb. 2015;45(2):584-91. doi: 10.1002/eji.201445114. Epub Dec. 28, 2014. |
Maerker et al., A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells. Hum Mol Genet. Jan. 1, 2008;17(1):71-86. doi: 10.1093/hmg/ddm285. Epub Sep. 28, 2007. |
Mali et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. Sep. 2013;31(9):833-8, Supplemental Info. doi: 10.1038/nbt.2675. Epub Aug. 1, 2013. |
Marcovitz et al., Frustration in protein-DNA binding influences conformational switching and target search kinetics. Proc Natl Acad Sci U S A. Nov. 1, 2011;108(44):17957-62. doi: 10.1073/pnas.1109594108. Epub Oct. 14, 2011. |
Marsden et al., The Tumor-Associated Variant RAD51 G151D Induces a Hyper- Recombination Phenotype. PLoS Genet. Aug. 11, 2016;12(8):e1006208. doi: 10.1371/journal.pgen.1006208. |
Martz, L., Nav-i-gating antibodies for pain. Science-Business eXchange. Jun. 12, 2014;7(662):1-2. doi: 10.1038/scibx.2014.662. |
Meyer et al., Ribosome biogenesis factor Tsr3 is the aminocarboxypropyl transferase responsible for 18S rRNA hypermodification in yeast and humans. Nucleic Acids Res. May 19, 2016;44(9):4304-16. doi: 10.1093/nar/gkw244. Epub Apr. 15, 2016. |
Micozzi et al., Human cytidine deaminase: a biochemical characterization of its naturally occurring variants. Int J Biol Macromol. Feb. 2014;63:64-74. doi: 10.1016/j.ijbiomac.2013.10.029. Epub Oct. 29, 2013. Erratum in: Int J Biol Macromol. Feb. 2014;63:262. |
Millevoi et al., G-quadruplexes in RNA biology. Wiley Interdiscip Rev RNA. Jul.-Aug. 2012;3(4):495-507. doi: 10.1002/wrna. 1113. Epub Apr. 4, 2012. |
Monani et al., A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet. Jul. 1999;8(7):1177-83. doi: 10.1093/hmg/8.7.1177. |
Mootz et al., Protein splicing triggered by a small molecule. J Am Chem Soc. Aug. 7, 2002;124(31):9044-5 and Supporting Information. doi: 10.1021/ja0267690. 4 pages. |
Murray et al., Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Hum Mol Genet. Apr. 1, 2008;17(7):949-62. doi: 10.1093/hmg/ddm367. Epub Dec. 8, 2007. |
Nelson et al., In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. Jan. 22, 2016;351(6271):403-7. doi: 10.1126/science.aad5143. Epub Dec. 31, 2015. |
Nelson et al., The unstable repeats—three evolving faces of neurological disease. Neuron. Mar. 6, 2013;77(5):825-43. doi: 10.1016/j.neuron.2013.02.022. |
Nguyen et al., Evolutionary drivers of thermoadaptation in enzyme catalysis. Science. Jan. 20, 2017;355(6322):289-294. doi: 10.1126/science.aah3717. Epub Dec. 22, 2016. |
Ousterout et al., Multiplex CRISPR/Cas9-based genome editing for correction of dystrophin mutations that cause Duchenne muscular dystrophy. Nat Commun. Feb. 18, 2015;6:6244. doi: 10.1038/ncomms7244. |
Pandey et al., Effect of loops and G-quartets on the stability of RNA G-quadruplexes. J Phys Chem B. Jun. 13, 2013;117(23):6896-905. doi: 10.1021/jp401739m. Epub May 29, 2013. Supplementary Information, 21 pages. |
Passini et al., Antisense oligonucleotides delivered to the mouse CNS ameliorate symptoms of severe spinal muscular atrophy. Sci Transl Med. Mar. 2, 2011;3(72):72ra18. doi: 10.1126/scitranslmed.3001777. |
Pellegrini et al., Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature. Nov. 21, 2002;420(6913):287-93. doi: 10.1038/nature01230. Epub Nov. 10, 2002. |
Perreault et al., Mixed deoxyribo- and ribo-oligonucleotides with catalytic activity. Nature. Apr. 5, 1990;344(6266):565-7. doi: 10.1038/344565a0. |
Petit et al., Powerful mutators lurking in the genome. Philos Trans R Soc Lond B Biol Sci. Mar. 12, 2009;364(1517):705-15. doi: 10.1098/rstb.2008.0272. |
Pieken et al., Kinetic characterization of ribonuclease-resistant 2′-modified hammerhead ribozymes. Science. Jul. 19, 1991;253(5017):314-7. doi: 10.1126/science.1857967. |
Piotukh et al., Directed evolution of sortase A mutants with altered substrate selectivity profiles. J Am Chem Soc. Nov. 9, 2011;133(44):17536-9. doi: 10.1021/ja205630g. Epub Oct. 13, 2011. |
Porensky et al., A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum Mol Genet. Apr. 1, 2012;21(7):1625-38. doi: 10.1093/hmg/ddr600. Epub Dec. 20, 2011. |
Prasad et al., Visualizing the assembly of human Rad51 filaments on double-stranded DNA. J Mol Biol. Oct. 27, 2006;363(3):713-28. doi: 10.1016/j.jmb.2006.08.046. Epub Aug. 22, 2006. |
Raghavan et al., Abstract 27: Therapeutic Targeting of Human Lipid Genes with in vivo CRISPR-Cas9 Genome Editing. Oral Abstract Presentations: Lipoprotein Metabolism and Therapeutic Targets. Arterioscler THromb Vasc Biol. 2015;35(Suppl. 1):Abstract 27. 5 pages. |
Raillard et al., Targeting sites within HIV-1 cDNA with a DNA-cleaving ribozyme. Biochemistry. Sep. 10, 1996;35(36):11693-701. doi: 10.1021/bi960845g. |
Rajagopal et al., High-throughput mapping of regulatory DNA. Nat Biotechnol. Feb. 2016;34(2):167-74. doi: 10.1038/nbt.3468. Epub Jan. 25, 2016. |
Reiners et al., Scaffold protein harmonin (USH1C) provides molecular links between Usher syndrome type 1 and type 2. Hum Mol Genet. Dec. 15, 2005;14(24):3933-43. doi: 10.1093/hmg/ddi417. Epub Nov. 21, 2005. |
Richardson et al., Frequent chromosomal translocations induced by DNA double-strand breaks. Nature. Jun. 8, 2000;405(6787):697-700. doi: 10.1038/35015097. |
Robertson et al., Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature. Mar. 29, 1990;344(6265):467-8. doi: 10.1038/344467a0. |
Saayman et al., The therapeutic application of CRISPR/Cas9 technologies for HIV. Expert Opin Biol Ther. Jun. 2015;15(6):819-30. doi: 10.1517/14712598.2015.1036736. Epub Apr. 12, 2015. |
Sadowski, The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol. 1995;51:53-91. |
San Filippo et al., Mechanism of eukaryotic homologous recombination. Annu Rev Biochem. 2008;77:229-57. doi: 10.1146/annurev.biochem.77.061306.125255. |
Schlacher et al., Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell. May 13, 2011;145(4):529-42. doi: 10.1016/j.cell.2011.03.041. Erratum in: Cell. Jun. 10, 2011;145(6):993. |
Schrank et al., Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc Natl Acad Sci USA. Sep. 2, 1997;94(18):9920-5. doi: 10.1073/pnas.94.18.9920. |
SCORE Results for Luetticken et al., Complete genome sequence of a Streptococcus dysgalactiae subsp. RT equisimilis strain possessing Lancefield's group A antigen. RL Submitted to the EMBL/GenBank/DDBJ databases. May 2012. 3 pages. |
SCORE Results for Okumura et al., Evolutionary paths of streptococcal and staphylococcal superantigens. RL Bmc Genomics. 2012;13:404-404. 3 pages. |
SCORE Results for Shimomura et al., Complete Genome Sequencing and Analysis of a Lancefield Group G RT Streptococcus Dysagalactiae Subsp. Equisimilis Strain Causing Streptococcal RT Toxic Shock Syndrome (STSS). RL BMC Genomics. 2011;12:17-17. 3 pages. |
Sharma et al., Identification of novel methyltransferases, Bmt5 and Bmt6, responsible for the m3U methylations of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res. Mar. 2014;42(5):3246-60. doi: 10.1093/nar/gkt1281. Epub Dec. 11, 2013. |
Shechner et al., Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods. Jul. 2015;12(7):664-70. doi: 10.1038/nmeth.3433. Epub Jun. 1, 2015. |
Shen et al., Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects. Nat Methods. Apr. 2014; 11(4):399-402. doi: 10.1038/nmeth.2857. Epub Mar. 2, 2014. |
Shi et al., Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nat Struct Mol Biol. Feb. 2017;24(2): 131-139. doi: 10.1038/nsmb.3344. Epub Dec. 19, 2016. |
Singh et al., Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol. Feb. 2006;26(4):1333-46. doi: 10.1128/MCB.26.4.1333-1346.2006. |
Somanathan et al., AAV vectors expressing LDLR gain-of-function variants demonstrate increased efficacy in mouse models of familial hypercholesterolemia. Circ Res. Aug. 29, 2014;115(6):591-9. doi: 10.1161/CIRCRESAHA.115.304008. Epub Jul. 14, 2014. |
Song et al., RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency. Nat Commun. Jan. 28, 2016;7:10548. doi: 10.1038/ncomms10548. |
Stark et al., ATP hydrolysis by mammalian RAD51 has a key role during homology-directed DNA repair. J Biol Chem. Jun. 7, 2002;277(23):20185-94. doi: 10.1074/jbc.M112132200. Epub Mar. 28, 2002. |
Sullenger et al., Ribozyme-mediated repair of defective mRNA by targeted, trans-splicing. Nature. Oct. 13, 1994;371(6498):619-22. doi: 10.1038/371619a0. |
Talbot et al., Spinal muscular atrophy. Semin Neurol. Jun. 2001;21(2):189-97. doi: 10.1055/s-2001-15264. |
Teng et al., Mutational analysis of apolipoprotein B mRNA editing enzyme (APOBEC1). structure-function relationships of RNA editing and dimerization. J Lipid Res. Apr. 1999;40(4):623-35. |
Trojan et al., Functional analysis of hMLH1 variants and HNPCC-related mutations using a human expression system. Gastroenterology. Jan. 2002;122(1):211-9. doi: 10.1053/gast.2002.30296. |
Usman et al., Exploiting the chemical synthesis of RNA. Trends Biochem Sci. Sep. 1992;17(9):334-9. doi: 10.1016/0968-0004(92)90306-t. |
Van Den Oord et al., Pixel Recurrent Neural Networks. Proceedings of the 33rd International Conference on Machine Learning. Journal of Machine Learning Research. Aug. 19, 2016. Volume 48. 11 pages. |
Vidal et al., Yeast forward and reverse ‘n’-hybrid systems. Nucleic Acids Res. Feb. 15, 1999;27(4):919-29. doi: 10.1093/nar/27.4.919. |
Vriend et al., Nick-initiated homologous recombination: Protecting the genome, one strand at a time. DNA Repair (Amst). Feb. 2017;50:1-13. doi: 10.1016/j.dnarep.2016.12.005. Epub Dec. 29, 2016. |
Wills et al., Pseudoknot-dependent read-through of retroviral gag termination codons: importance of sequences in the spacer and loop 2. EMBO J. Sep. 1, 1994;13(17):4137-44. doi: 10.1002/j.1460-2075.1994.tb06731.x. |
Wirth et al., Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum Genet. May 2006;119(4):422-8. doi: 10.1007/s00439-006-0156-7. Epub Mar. 1, 2006. |
Wu et al., A novel SCN9A mutation responsible for primary erythromelalgia and is resistant to the treatment of sodium channel blockers. PLoS One. 2013;8(1):e55212. doi: 10.1371/journal.pone.0055212. Epub Jan. 31, 2013. 15 pages. |
Wu et al., MLV based viral-like-particles for delivery of toxic proteins and nuclear transcription factors. Biomaterials. Sep. 2014;35(29):8416-26. doi: 10.1016/j.biomaterials.2014.06.006. Epub Jul. 3, 2014. |
Yamane et al., Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat Immunol. Jan. 2011;12(1):62-9. doi: 10.1038/ni.1964. Epub Nov. 28, 2010. |
Yang et al., BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science. Sep. 13, 2002;297(5588):1837-48. doi: 10.1126/science.297.5588.1837. |
Yang et al., Genome-wide inactivation of porcine endogenous retroviruses (PERVs). Science. Nov. 27, 2015;350(6264):1101-4. doi: 10.1126/science.aad1191. Epub Oct. 11, 2015. |
Yang et al., The BRCA2 homologue Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA junction. Nature. Feb. 10, 2005;433(7026):653-7. doi: 10.1038/nature03234. |
Yi et al., Engineering of TEV protease variants by yeast ER sequestration screening (YESS) of combinatorial libraries. Proc Natl Acad Sci U S A. Apr. 30, 2013;110(18):7229-34. doi: 10.1073/pnas.1215994110. Epub Apr. 15, 2013. |
Yu et al., Dynamic control of Rad51 recombinase by self-association and interaction with BRCA2. Mol Cell. Oct. 2003;12(4):1029-41. doi: 10.1016/s1097-2765(03)00394-0. |
Zhang et al., Global analysis of small RNA and mRNA targets of Hfq. Mol Microbiol. Nov. 2003;50(4):1111-24. doi: 10.1046/j.1365-2958.2003.03734.x. |
Zhang et al., Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9. PLoS One. Mar. 24, 2015;10(3):e0120396. doi: 10.1371/journal.pone.0120396. 14 pages. |
Zhou et al., GISSD: Group I Intron Sequence and Structure Database. Nucleic Acids Res. Jan. 2008;36(Database issue):D31-7. doi: 10.1093/nar/gkm766. Epub Oct. 16, 2007. |
Zolotukhin et al., Production and purification of serotype 1, 2, and 5 recombinant adeno-associated viral vectors. Methods. Oct. 2002;28(2):158-67. doi: 10.1016/s1046-2023(02)00220-7. |
Number | Date | Country | |
---|---|---|---|
20220119785 A1 | Apr 2022 | US |
Number | Date | Country | |
---|---|---|---|
61980333 | Apr 2014 | US | |
61915386 | Dec 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16374634 | Apr 2019 | US |
Child | 17408306 | US | |
Parent | 15103608 | US | |
Child | 16374634 | US | |
Parent | 14325815 | Jul 2014 | US |
Child | 15103608 | US | |
Parent | 14326109 | Jul 2014 | US |
Child | 15103608 | US | |
Parent | 14326140 | Jul 2014 | US |
Child | 15103608 | US | |
Parent | 14326269 | Jul 2014 | US |
Child | 15103608 | US | |
Parent | 14326290 | Jul 2014 | US |
Child | 14325815 | US | |
Parent | 14326318 | Jul 2014 | US |
Child | 14325815 | US | |
Parent | 14326303 | Jul 2014 | US |
Child | 14325815 | US | |
Parent | 14325815 | Jul 2014 | US |
Child | 15103608 | Jun 2016 | US |
Parent | 14326109 | Jul 2014 | US |
Child | 14325815 | US | |
Parent | 14326140 | Jul 2014 | US |
Child | 14325815 | US | |
Parent | 14326290 | Jul 2014 | US |
Child | 14325815 | US | |
Parent | 14326318 | Jul 2014 | US |
Child | 14325815 | US | |
Parent | 14326303 | Jul 2014 | US |
Child | 14326109 | US | |
Parent | 14326269 | Jul 2014 | US |
Child | 15103608 | Jun 2016 | US |