Cell circuit and layout with linear finfet structures

Abstract
A cell circuit and corresponding layout is disclosed to include linear-shaped diffusion fins defined to extend over a substrate in a first direction so as to extend parallel to each other. Each of the linear-shaped diffusion fins is defined to project upward from the substrate along their extent in the first direction. A number of gate level structures are defined to extend in a conformal manner over some of the number of linear-shaped diffusion fins. Portions of each gate level structure that extend over any of the linear-shaped diffusion fins extend in a second direction that is substantially perpendicular to the first direction. Portions of each gate level structure that extend over any of the linear-shaped diffusion fins form gate electrodes of a corresponding transistor. The diffusion fins and gate level structures can be placed in accordance with a diffusion fin virtual grate and a gate level virtual grate, respectively.
Description
BACKGROUND

It is known that optical lithography has reached the end of its capability at the 193 nm light wavelength and 1.35 numerical aperture (NA) immersion system. The minimum straight line resolution capability of this equipment is approximately 40 nm with an approximate 80 nm feature-to-feature pitch. A feature-to-feature pitch requirement lower than about 80 nm would require multiple patterning steps for a given structure type within a given chip level. Also, line end resolution becomes more challenging as lithography is pushed toward its resolution limits. One solution to line end shortening is to add a subsequent patterning step to cut features so as to form the line ends. Such line end cutting allows two line ends to be placed in closer proximity, and therefore may improve overall feature placement density, but at the cost of an additional patterning step. It should be understood that the added lithography steps for multiple patterning and/or line end cutting increases manufacturing cost, possibly to the point where any improvement in feature placement density is financially negated.


In semiconductor device layout, a typical metal line pitch at the 32 nm critical dimension is approximately 100 nm. In order to achieve the cost benefit of feature scaling, a scaling factor of 0.7 to 0.75 is desirable. The scaling factor of about 0.75 to reach the 22 nm critical dimension would require a metal line pitch of about 75 nm, which is below the capability of current single exposure lithography systems and technology.


SUMMARY

In one embodiment, a cell circuit of a semiconductor device is disclosed. The cell circuit includes a substrate, and a number of linear-shaped diffusion fins defined to extend over the substrate in a first direction so as to extend parallel to each other. Each of the number of linear-shaped diffusion fins is defined to project upward from the substrate along their extent in the first direction. The cell circuit also includes a number of gate level structures defined to extend in a conformal manner over some of the number of linear-shaped diffusion fins. Portions of each gate level structure that extend over any of the number of linear-shaped diffusion fins extend in a second direction that is substantially perpendicular to the first direction. Portions of each gate level structure that extend over any of the number of linear-shaped diffusion fins form gate electrodes of a corresponding transistor.


In one embodiment, a semiconductor device cell layout is disclosed. The cell layout includes a diffusion level layout and agate level layout. The diffusion level layout includes a number of diffusion fin layout shapes defined to extend in only a first direction across the cell layout so as to extend parallel to each other. Each of the number of diffusion fin layout shapes corresponds to diffusion fin structures defined to project upward from a substrate along their extent in the first direction. The gate level layout includes a number of gate level layout shapes defined to extend in a second direction across the cell layout that is substantially perpendicular to the first direction. Each of the gate level layout shapes corresponds to gate level structures defined to extend in a conformal manner over some of the diffusion fin structures that correspond to the diffusion fin layout shapes. Portions of each gate level structure that extend over any of the diffusion fin structures form gate electrodes of a corresponding transistor.


Other aspects and advantages of the invention will become more apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the present invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A and 1B show a layout view of a finfet transistor, in accordance with one embodiment of the present invention;



FIG. 2A shows an exemplary cell layout incorporating finfet transistors, in accordance with one embodiment of the present invention;



FIG. 2B shows a vertical cross-section view B-B as called out in FIG. 2A, in accordance with one embodiment of the present invention;



FIG. 2C shows a vertical cross-section view C-C as called out in FIG. 2A, in accordance with one embodiment of the present invention;



FIG. 3A shows an example of gate electrode tracks defined within the restricted gate level layout architecture, in accordance with one embodiment of the present invention; and



FIG. 3B shows the exemplary restricted gate level layout architecture of FIG. 3A with a number of exemplary gate level features defined therein, in accordance with one embodiment of the present invention.





DETAILED DESCRIPTION

In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the present invention may be practiced without some or all of these specific details. In other instances, well known process operations have not been described in detail in order not to unnecessarily obscure the present invention.


A “finfet” is a transistor constructed from a vertical silicon island. The finfet transistor can also be referred to as a tri-gate transistor. FIGS. 1A and 1B show a layout view of a finfet transistor 100, in accordance with one embodiment of the present invention. The finfet transistor 100 is constructed from a diffusion island 102 and a gate electrode layer 104. The diffusion island 102 projects vertically upward from a substrate 105, as shown in FIG. 1B. A gate oxide layer 106 is disposed between the diffusion island 102 and the gate electrode layer 104. The diffusion island 102 can be doped to form either a p-type transistor or an n-type transistor. The portion of the gate electrode layer 104 that covers the diffusion island 102 forms the gate electrode of the finfet transistor 100. Therefore, the gate electrode of the finfet transistor 100 exists on three sides of the diffusion island 102, thereby providing for control of the finfet transistor channel from three sides, as opposed to from one side as in a non-finfet transistor.


Transistor scaling has slowed below the 45 nanometers (nm) critical dimension due to gate oxide limitations and/or source/drain leakage scaling issues. The finfet transistor mitigates these issues by controlling the channel of the finfet transistor from three sides. The increased electrical fields in the channel of the finfet transistor improve the relationship between I-on (on drive current) and I-off (sub-threshold leakage current). Finfet transistors can be employed at the 22 nm critical dimension and below. However, due to their vertical projection, finfet transistors can have restricted placement in various circuit layouts. For instance, there can be a required finfet-to-finfet minimum spacing and/or a required finfet-to-finfet minimum pitch, among other restrictions. Embodiments are disclosed herein for cell layouts that utilize finfet transistors in a manner which complements layout scaling.



FIG. 2A shows an exemplary cell layout incorporating finfet transistors, in accordance with one embodiment of the present invention. The cell layout is defined by a cell width W and a cell height H. The cell layout includes a diffusion level within which a number of diffusion islands 102 are defined for subsequent formation of finfet transistors and associated connections. The diffusion islands 102 are also referred to as diffusion fins 102. In an as-drawn layout state, the diffusion fins 102 are linear-shaped. The diffusion fins 102 are oriented to be parallel to each other such that their lengths extend in the direction of the cell width W.


In one embodiment, the diffusion fins 102 are placed along a number of diffusion tracks 201A-201H. The diffusion tracks 201A-201H represent virtual lines that extend in the direction of the cell width W and are equally spaced at a fixed pitch. The pitch of the diffusion tracks 201A-201H is related to the cell height H, such that the diffusion track pitch can be continued across cell boundaries. Therefore, the diffusion fins 102 for multiple neighboring cells will be placed in accordance with a common global set of equally spaced diffusion tracks, thereby facilitating chip level manufacturing of the diffusion fins 102 in multiple cells.


It should be understood that the diffusion fins 102 can be placed as needed, so long as they are placed in accordance with the diffusion tracks 201A-201H which have the controlled spatial relationship with the cell height H. Therefore, some diffusion tracks 201A-201H may not have a diffusion fin 102 placed thereon. Also, portions of some diffusion tracks 201A-201H may be vacant with regard to diffusion fin 102 placement. In other words, some diffusion tracks 201A-201H will have one or more portions occupied by diffusion fins 102 and one or more portions not occupied by diffusion fins 102.


The cell layout also includes a number of linear-shaped gate electrode structures 104. The linear-shaped gate electrode structures 104 extend in a substantially perpendicular direction to the diffusion fins 102, i.e., in the direction of the cell height H. The linear-shaped gate electrode structures 104 wrap over the diffusion fins 102 to form gate electrodes of finfet transistors. It should be understood that an appropriate gate oxide material is disposed between the diffusion fins 102 and the gate electrode structures 104 formed thereover.


In one embodiment, the linear-shaped gate electrode structures 104 are placed in accordance with a gate level virtual grate defined by a set of parallel equally spaced virtual lines 202A-202T that extend in the direction of the cell height H. The set of virtual lines 202A-202T of the gate level virtual grate are spaced at a fixed gate pitch. In one embodiment, the gate pitch is related to the cell width W, such that the gate pitch can be continued across cell boundaries. Therefore, the gate electrode structures 104 for multiple neighboring cells will be placed in accordance with a common global set of equally spaced gate level virtual grate lines, thereby facilitating chip level manufacturing of the linear-shaped gate electrode structures 104 in multiple cells.


It should be understood that some of the gate level virtual grate lines 202A-202T may be occupied by gate electrode structures 104, while others of the gate level virtual grate lines 202A-202T are left vacant. Also, along a given gate level virtual grate line 202A-202T, one or more linear-shaped gate electrode structures 104 can be placed as needed and spaced apart as needed.


The cell layout also includes a number of linear-shaped local interconnect structures 203. The local interconnect structures 203 are oriented parallel to the gate electrode structures 104. In one embodiment, placement of the local interconnect structures 203 is defined to be out of phase from placement of the gate electrode structures 104 by one-half of the gate pitch. Thus, in this embodiment, each local interconnect structure 203 is centered between its neighboring gate level virtual grate lines 202A-202T. And, if its neighboring gate level virtual grate lines 202A-202T are occupied by gate electrode structures 104, the local interconnect structure 203 will be correspondingly centered between the neighboring gate electrode structures 104. Therefore, in this embodiment, adjacently placed local interconnect structures 203 will have a center-to-center spacing equal to the gate pitch.


In one embodiment, the cell layout also includes a number of linear-shaped metal 1 (M1) interconnect structures 205. The M1 interconnect structures 205 are oriented parallel to the diffusion fins 102 and perpendicular to the gate electrode structures 104. In one embodiment, placement of the M1 interconnect structures 205 is defined to be out of phase from placement of the diffusion fins 102 by one-half of the diffusion track 201A-201H pitch. Thus, in this embodiment, each M1 interconnect structure 205 is centered between its neighboring diffusion tracks 201A-201H. And, if its neighboring diffusion tracks 201A-201H are occupied by diffusion fins 102, the M1 interconnect structure 205 will be correspondingly centered between its neighboring diffusion fins 102, albeit within a higher chip level. Therefore, in this embodiment, adjacently placed M1 interconnect structures 205 will have a center-to-center spacing equal to the diffusion track pitch. In one embodiment, the M1 interconnect structure 205 pitch, and hence the diffusion track pitch, is set at the single exposure lithographic limit, e.g., 80 nm for 193 nm wavelength light and 1.35 NA. In this embodiment, no double exposure lithography, i.e., multiple patterning, is required to manufacture the M1 interconnect structures 205.


The cell layout also includes a number of contacts 207 defined to connect various M1 interconnect structures 205 to various local interconnect structures 203 and gate electrode structures 104, thereby providing electrical connectivity between the various finfet transistors as necessary to implement the logic function of the cell. In one embodiment, the contacts 205 are defined to satisfy single exposure lithographic limits. For example, in one embodiment, layout features to which the contacts 207 are to connect are sufficiently separated to enable single exposure manufacture of the contacts 207. For instance, the M1 interconnect structures 205 are defined such that their line ends which are to receive contacts 207 are sufficiently separated from neighboring M1 interconnect structure 205 line ends which are also to receive contacts 207, such that a spatial proximity between the contacts 207 is sufficiently large to enable single exposure lithography of the contacts 207. In one embodiment, neighboring contacts 207 are separated from each other by at least 1.5 times the gate pitch. It should be appreciated that line end cutting and the associated increased expense of double exposure lithography can be eliminated by sufficiently separating opposing line ends of the M1 interconnect structures 205.


As previously mentioned, the cell height H and diffusion track pitch, i.e., diffusion fin pitch, are related. In one embodiment, the cell height H is an integer multiple of the diffusion track pitch. The cell layout techniques described herein can be used to reduce the cell height H by the approximate difference between the single exposure lithographic capability and an applicable scaling requirement. For example, consider that the cell height H is based on the single exposure straight line lithographic limit, e.g., 80 nm diffusion fin pitch. Therefore, the diffusion track pitch of the cell cannot be scaled down further without incurring the cost of multiple patterning. However, the cell layout techniques described herein can be utilized to scale down the overall size of the cell layout while maintaining the single exposure straight line lithographic limit with regard to the diffusion track pitch.


For example, if a 9 diffusion track cell was used at 32 nm, then a scaled down version of the cell having 8 tracks at 22 nm is created to provide the overall cell layout scaling requirements. Specifically, the M1 interconnect structure 205 layout of the cell is drawn in fewer tracks, e.g., 8 tracks rather than 9 tracks, and the opposing line ends of the M1 interconnect structures 205 are arranged so that the single exposure lithography design rules can be satisfied. Reduction of the cell height H by one diffusion track can add up to significant layout area savings across the chip.



FIG. 2B shows a vertical cross-section view B-B as called out in FIG. 2A, in accordance with one embodiment of the present invention. The diffusion fins 102 are shown to project upward from the substrate 105. An insulating material 211, such as an oxide, is disposed between and around the diffusion fins 102 to provide structural support and electrical insulation. The local interconnect feature 203 is shown to extend perpendicular to the diffusion fins 102 and across the tops of the diffusion fins 102 so as to establish electrical connections between the local interconnect feature 203 and each of the diffusion fins 102. The contact 207 is shown to extend vertically through the layout to electrically connect the M1 interconnect structure 205 to the local interconnect structure 203. The contact 207 and M1 interconnect structure 205 are also surrounded by the insulating material 211, which again provides structural support and electrical insulation. It should be appreciated that the M1 interconnect structure 205 is positioned in a centered manner with respect to its neighboring underlying diffusion fins 102, as discussed above.



FIG. 2C shows a vertical cross-section view C-C as called out in FIG. 2A, in accordance with one embodiment of the present invention. The diffusion fin 102 is shown to project upward from the substrate 105. The gate oxide material 106 is disposed conformally over the diffusion fin 102. The gate electrode structure 104 is shown to extend perpendicular to the diffusion fin 102 and conformally over the diffusion fin 102. The contact 207 is shown to extend vertically to electrically connect the M1 interconnect structure 205 to the gate electrode structure 104. The insulating material 211, such as an oxide, is disposed over and around the gate electrode structure 104, the contact 207, and the M1 interconnect structure 205 to provide structural support and electrical insulation.


It should be understood that the relative sizes of the different layout features as shown in FIGS. 2A-2C are exemplary, and in no way limit the principles of the present invention as disclosed herein. For example, in other embodiments, the M1 power lines shown at the top and bottom of the cell layout in FIG. 2A can be of different width, e.g., larger width, than the M1 lines within an interior of the cell. Additionally, the relative vertical heights of the layout features as shown in the cross-sections of FIGS. 2B and 2C can vary from what is depicted therein. For example, in FIG. 2C, the gate electrode 104 may extend further vertically than what is shown.


Restricted Gate Level Layout Architecture


The cell layout incorporating finfet transistors, as discussed above, can implemented a restricted gate level layout architecture. For the gate level, a number of parallel virtual lines are defined to extend across the layout. These parallel virtual lines are referred to as gate electrode tracks, as they are used to index placement of gate electrodes of various transistors within the layout. In one embodiment, such as the cell layout discussed above with regard to FIG. 2A, the parallel virtual lines which form the gate electrode tracks are defined by a perpendicular spacing therebetween equal to a specified gate electrode pitch. Therefore, placement of gate electrode segments on the gate electrode tracks corresponds to the specified gate electrode pitch. In another embodiment the gate electrode tracks can be spaced at variable pitches greater than or equal to a specified gate electrode pitch.



FIG. 3A shows an example of gate electrode tracks 301A-301E defined within the restricted gate level layout architecture, in accordance with one embodiment of the present invention. Gate electrode tracks 301A-301E are formed by parallel virtual lines that extend across the gate level layout of the chip, with a perpendicular spacing therebetween equal to a specified gate electrode pitch 307.


Within the restricted gate level layout architecture, a gate level feature layout channel is defined about a given gate electrode track so as to extend between gate electrode tracks adjacent to the given gate electrode track. For example, gate level feature layout channels 301A-1 through 301E-1 are defined about gate electrode tracks 301A through 301E, respectively. It should be understood that each gate electrode track has a corresponding gate level feature layout channel. Also, for gate electrode tracks positioned adjacent to an edge of a prescribed layout space, e.g., adjacent to a cell boundary, the corresponding gate level feature layout channel extends as if there were a virtual gate electrode track outside the prescribed layout space, as illustrated by gate level feature layout channels 301A-1 and 301E-1. It should be further understood that each gate level feature layout channel is defined to extend along an entire length of its corresponding gate electrode track. Thus, each gate level feature layout channel is defined to extend across the gate level layout within the portion of the chip to which the gate level layout is associated.


Within the restricted gate level layout architecture, gate level features associated with a given gate electrode track are defined within the gate level feature layout channel associated with the given gate electrode track. A contiguous gate level feature can include both a portion which defines a gate electrode of a transistor, i.e., of a finfet transistor as disclosed herein, and a portion that does not define a gate electrode of a transistor. Thus, a contiguous gate level feature can extend over both a diffusion region, i.e., diffusion fin, and a dielectric region of an underlying chip level.


In one embodiment, each portion of a gate level feature that forms a gate electrode of a transistor is positioned to be substantially centered upon a given gate electrode track. Furthermore, in this embodiment, portions of the gate level feature that do not form a gate electrode of a transistor can be positioned within the gate level feature layout channel associated with the given gate electrode track. Therefore, a given gate level feature can be defined essentially anywhere within a given gate level feature layout channel, so long as gate electrode portions of the given gate level feature are centered upon the gate electrode track corresponding to the given gate level feature layout channel, and so long as the given gate level feature complies with design rule spacing requirements relative to other gate level features in adjacent gate level layout channels. Additionally, physical contact is prohibited between gate level features defined in gate level feature layout channels that are associated with adjacent gate electrode tracks.



FIG. 3B shows the exemplary restricted gate level layout architecture of FIG. 3A with a number of exemplary gate level features 309-323 defined therein, in accordance with one embodiment of the present invention. The gate level feature 309 is defined within the gate level feature layout channel 301A-1 associated with gate electrode track 301A. The gate electrode portions of gate level feature 309 are substantially centered upon the gate electrode track 301A. Also, the non-gate electrode portions of gate level feature 309 maintain design rule spacing requirements with gate level features 311 and 313 defined within adjacent gate level feature layout channel 301B-1. Similarly, gate level features 311-323 are defined within their respective gate level feature layout channel, and have their gate electrode portions substantially centered upon the gate electrode track corresponding to their respective gate level feature layout channel. Also, it should be appreciated that each of gate level features 311-323 maintains design rule spacing requirements with gate level features defined within adjacent gate level feature layout channels, and avoids physical contact with any another gate level feature defined within adjacent gate level feature layout channels.


A gate electrode corresponds to a portion of a respective gate level feature that extends over a diffusion structure, i.e., over a diffusion fin, wherein the respective gate level feature is defined in its entirety within a gate level feature layout channel. Each gate level feature is defined within its gate level feature layout channel without physically contacting another gate level feature defined within an adjoining gate level feature layout channel. As illustrated by the example gate level feature layout channels 301A-1 through 301E-1 of FIG. 3B, each gate level feature layout channel is associated with a given gate electrode track and corresponds to a layout region that extends along the given gate electrode track and perpendicularly outward in each opposing direction from the given gate electrode track to a closest of either an adjacent gate electrode track or a virtual gate electrode track outside a layout boundary.


Some gate level features may have one or more contact head portions defined at any number of locations along their length. A contact head portion of a given gate level feature is defined as a segment of the gate level feature having a height and a width of sufficient size to receive a gate contact structure. In this instance, “width” is defined across the substrate in a direction perpendicular to the gate electrode track of the given gate level feature, and “height” is defined across the substrate in a direction parallel to the gate electrode track of the given gate level feature. The gate level feature width and height may or may not correspond to the cell width W and cell height H, depending on the orientation of the gate level features within the cell. It should be appreciated that a contact head of a gate level feature, when viewed from above, can be defined by essentially any layout shape, including a square or a rectangle. Also, depending on layout requirements and circuit design, a given contact head portion of a gate level feature may or may not have a gate contact defined thereabove.


A gate level of the various embodiments disclosed herein is defined as a restricted gate level, as discussed above. Some of the gate level features form gate electrodes of transistor devices. Others of the gate level features can form conductive segments extending between two points within the gate level. Also, others of the gate level features may be non-functional with respect to integrated circuit operation. It should be understood that the each of the gate level features, regardless of function, is defined to extend across the gate level within their respective gate level feature layout channels without physically contacting other gate level features defined with adjacent gate level feature layout channels.


In one embodiment, the gate level features are defined to provide a finite number of controlled layout shape-to-shape lithographic interactions which can be accurately predicted and optimized for in manufacturing and design processes. In this embodiment, the gate level features are defined to avoid layout shape-to-shape spatial relationships which would introduce adverse lithographic interaction within the layout that cannot be accurately predicted and mitigated with high probability. However, it should be understood that changes in direction of gate level features within their gate level layout channels are acceptable when corresponding lithographic interactions are predictable and manageable.


It should be understood that each of the gate level features, regardless of function, is defined such that no gate level feature along a given gate electrode track is configured to connect directly within the gate level to another gate level feature defined along a different gate electrode track without utilizing a non-gate level feature. Moreover, each connection between gate level features that are placed within different gate level layout channels associated with different gate electrode tracks is made through one or more non-gate level features, which may be defined in higher interconnect levels, i.e., through one or more interconnect levels above the gate level, or by way of local interconnect features at or below the gate level.


EXEMPLARY EMBODIMENTS

In one embodiment, a cell circuit of a semiconductor device is disclosed. The cell circuit includes a substrate and a number of linear-shaped diffusion fins defined to extend over the substrate in a first direction, so as to extend parallel to each other. Each of the number of linear-shaped diffusion fins is defined to project upward from the substrate along their extent in the first direction. In one embodiment, each of the number of linear-shaped diffusion fins is formed from a doped silicon-based material to form either a p-type or an n-type transistor diffusion region.


The cell circuit also includes a number of gate level structures defined to extend in a conformal manner over some of the number of linear-shaped diffusion fins. Portions of each gate level structure that extend over any of the number of linear-shaped diffusion fins extend in a second direction that is substantially perpendicular to the first direction. Portions of each gate level structure that extend over any of the number of linear-shaped diffusion fins form gate electrodes of a corresponding transistor. In one embodiment, each of the number of gate level structures is formed from an electrically conductive material.


In one embodiment, the number of linear-shaped diffusion fins are positioned on diffusion tracks that correspond to virtual lines of a diffusion fin virtual grate. The diffusion tracks extend in the first direction over the substrate. In a particular embodiment, the diffusion tracks are positioned based on a fixed diffusion track pitch. The fixed diffusion track pitch corresponds to an equal perpendicular spacing between adjacent diffusion tracks. In one instance of this particular embodiment, a size of the fixed diffusion track pitch is set at a single exposure lithographic limit.


Also, in one embodiment, the first direction corresponds to a width direction of the cell circuit. In this embodiment, the fixed diffusion track pitch is related to a height of the cell circuit, such that a continuity of the fixed diffusion track pitch is maintained across boundaries of the cell circuit to form a global set of equally spaced diffusion tracks across a group of neighboring cell circuits. In one instance of this embodiment, the height of the cell circuit is an integer multiple of the fixed diffusion track pitch.


The number of linear-shaped diffusion fins are positioned on diffusion tracks as needed for cell circuit functionality. In various embodiments, some diffusion tracks are partially filled with linear-shaped diffusion fins, some diffusion tracks are completely filled with linear-shaped diffusion fins, some diffusion tracks are vacant and do not have a linear-shaped diffusion fin positioned thereon, or any combination thereof.


In one embodiment, the portions of the gate level structures that extend over any of the number of linear-shaped diffusion fins are positioned on gate electrode tracks that correspond to virtual lines of a gate level virtual grate. The gate electrode tracks extend in the second direction over the substrate. In one embodiment, the gate electrode tracks are positioned based on a fixed gate electrode track pitch. The fixed gate electrode track pitch corresponds to an equal perpendicular spacing between adjacent gate electrode tracks.


In one embodiment, the second direction corresponds to a height direction of the cell circuit. The fixed gate electrode track pitch can be related to a width of the cell circuit, such that a continuity of the fixed gate electrode track pitch is maintained across boundaries of the cell circuit to form a global set of equally spaced gate electrode tracks across a group of neighboring cell circuits. In one embodiment, the width of the cell circuit is an integer multiple of the fixed gate electrode track pitch.


The gate level structures are positioned on gate electrode tracks as needed for cell circuit functionality. In various embodiments, some gate electrode tracks are partially filled with gate level structures, some gate electrode tracks are completely filled with gate level structures, some gate electrode tracks are vacant and do not have a gate level structure positioned thereon, or any combination thereof.


Also, in another embodiment, the gate level structures are positioned to maximally fill gate electrode tracks. In this embodiment, breaks are defined between multiple gate level structures along individual gate electrode tracks as needed for cell circuit functionality. In one instance of this embodiment, the breaks defined between multiple gate level structures along individual gate electrode tracks are uniform in size through the cell circuit.


The cell circuit can also include a number of local interconnect structures defined between neighboring gate level structures so as to extend in the second direction parallel to the neighboring gate level structures. The number of local interconnect structures are formed of an electrically conductive material. Also, the number of local interconnect structures are formed at or below a gate level of the cell circuit. Additionally, the cell circuit can include a number of higher level interconnect structures defined in an interconnect level above a gate level of the cell circuit. In one embodiment, the number of higher level interconnect structures are linear-shaped and extend in the first direction. In another embodiment, the number of higher level interconnect structures are unrestricted with regard to shape and are formed as necessary for circuit functionality. The cell circuit can also include a number of contact structures, and any other type of structure previously discussed with regard to the examples of FIGS. 2A-2C.


In another embodiment, a semiconductor device cell layout is disclosed. This embodiment is essentially a layout of the cell circuit embodiment discussed above. Therefore, any features discussed above with regard to the cell circuit embodiment can be represented within this cell layout embodiment. The cell layout includes a diffusion level layout and a gate level layout. The diffusion level layout includes a number of diffusion fin layout shapes defined to extend in only a first direction across the cell layout, so as to extend parallel to each other. The number of diffusion fin layout shapes correspond to diffusion fin structures defined to project upward from a substrate along their extent in the first direction.


In one embodiment, the diffusion fin layout shapes are positioned on diffusion tracks that correspond to virtual lines of a diffusion fin virtual grate. The diffusion tracks extend in the first direction across the cell layout. In one embodiment, the diffusion tracks are positioned based on a fixed diffusion track pitch. The fixed diffusion track pitch corresponds to an equal perpendicular spacing between adjacent diffusion tracks. In one embodiment, the first direction corresponds to a width direction of the cell layout. In this embodiment, the fixed diffusion track pitch is related to a height of the cell layout, such that a continuity of the fixed diffusion track pitch is maintained across boundaries of the cell layout to form a global set of equally spaced diffusion tracks across a group of neighboring cell layouts. In one instance of this embodiment, the height of the cell layout is an integer multiple of the fixed diffusion track pitch.


The gate level layout of the cell layout includes a number of gate level layout shapes defined to extend in a second direction across the cell layout that is substantially perpendicular to the first direction. The gate level layout shapes correspond to gate level structures defined to extend in a conformal manner over some of the diffusion fin structures which correspond to the diffusion fin layout shapes. Portions of each gate level structure that extend over any of the diffusion fin structures form gate electrodes of a corresponding transistor.


In one embodiment, portions of the gate level layout shapes that extend over any of the diffusion fin layout shapes are positioned on gate electrode tracks that correspond to virtual lines of a gate level virtual grate. The gate electrode tracks extend in the second direction across the cell layout, i.e., perpendicular to the first direction. In one embodiment, the gate electrode tracks are positioned based on a fixed gate electrode track pitch. The fixed gate electrode track pitch corresponds to an equal perpendicular spacing between adjacent gate electrode tracks. In one embodiment, the second direction corresponds to a height direction of the cell layout. In this embodiment, the fixed gate electrode track pitch is related to a width of the cell layout, such that a continuity of the fixed gate electrode track pitch is maintained across boundaries of the cell layout to form a global set of equally spaced gate electrode tracks across a group of neighboring cell layouts. In one instance of this embodiment, the width of the cell layout is an integer multiple of the fixed gate electrode track pitch. It should be understood that the cell layout can also include a number of additional layout shapes and levels corresponding to other circuit structures, including any other type of circuit structure previously discussed with regard to the examples of FIGS. 2A-2C.


It should be understood that any cell layout incorporating finfet transistors as disclosed herein can be stored in a tangible finial, such as in a digital format on a computer readable medium. For example, a given cell layout can be stored in a layout data file, and can be selectable from one or more libraries of cells. The layout data file can be formatted as a GDS II (Graphic Data System) database file, an OASIS (Open Artwork System Interchange Standard) database file, or any other type of data file format suitable for storing and communicating semiconductor device layouts. Also, multi-level layouts of a cell incorporating finfet transistors as disclosed herein can be included within a multi-level layout of a larger semiconductor device. The multi-level layout of the larger semiconductor device can also be stored in the form of a layout data file, such as those identified above.


Also, the invention described herein can be embodied as computer readable code on a computer readable medium. For example, the computer readable code can include a layout data file within which a layout of a cell incorporating finfet transistors as disclosed herein is stored. The computer readable code can also include program instructions for selecting one or more layout libraries and/or cells that include finfet transistors as disclosed herein. The layout libraries and/or cells can also be stored in a digital format on a computer readable medium.


The computer readable medium mentioned herein is any data storage device that can store data which can thereafter be read by a computer system. Examples of the computer readable medium include hard drives, network attached storage (NAS), read-only memory, random-access memory, CD-ROMs, CD-Rs, CD-RWs, magnetic tapes, and other optical and non-optical data storage devices. Multiple computer readable media distributed within a network of coupled computer systems can also be used to store respective portions of the computer readable code such that the computer readable code is stored and executed in a distributed fashion within the network.


It should be further understood that any cell layout incorporating finfet transistors as disclosed herein can be manufactured as part of a semiconductor device or chip. In the fabrication of semiconductor devices such as integrated circuits, memory cells, and the like, a series of manufacturing operations are performed to define features on a semiconductor wafer. The wafer includes integrated circuit devices in the form of multi-level structures defined on a silicon substrate. At a substrate level, transistor devices with diffusion regions and/or diffusion fins are formed. In subsequent levels, interconnect metallization lines are patterned and electrically connected to the transistor devices to define a desired integrated circuit device. Also, patterned conductive layers are insulated from other conductive layers by dielectric materials.


While this invention has been described in terms of several embodiments, it will be appreciated that those skilled in the art upon reading the preceding specifications and studying the drawings will realize various alterations, additions, permutations and equivalents thereof. Therefore, it is intended that the present invention includes all such alterations, additions, permutations, and equivalents as fall within the true spirit and scope of the invention.

Claims
  • 1. A cell circuit of a semiconductor device, comprising: a substrate;a number of linear-shaped diffusion fins defined to extend over the substrate in a first direction so as to extend parallel to each other, each of the number of linear-shaped diffusion fins defined to project upward from the substrate along their extent in the first direction, wherein the number of linear-shaped diffusion fins are positioned on one or more of a plurality of diffusion tracks that are virtual lines of a diffusion fin virtual grate, wherein the plurality of diffusion tracks extend in the first direction over the substrate, wherein the plurality of diffusion tracks are positioned based on a fixed diffusion track pitch, wherein the fixed diffusion track pitch corresponds to an equal spacing between adjacent side-by-side positioned ones of the plurality of diffusion tracks as measured in a second direction perpendicular to the first direction and parallel to the substrate; anda number of gate level structures defined to extend in a conformal manner over one or more of the number of linear-shaped diffusion fins, such that portions of each gate level structure that extend over any of the number of linear-shaped diffusion fins extend in the second direction perpendicular to the first direction, wherein portions of each gate level structure that extend over any of the number of linear-shaped diffusion fins form gate electrodes of a corresponding transistor.
  • 2. The cell circuit of a semiconductor device as recited in claim 1, wherein the first direction corresponds to a width direction of the cell circuit, and wherein the fixed diffusion track pitch is related to a height of the cell circuit, such that a continuity of the fixed diffusion track pitch is maintained across boundaries of the cell circuit to form a global set of equally spaced diffusion tracks across a group of neighboring cell circuits.
  • 3. The cell circuit of a semiconductor device as recited in claim 2, wherein the height of the cell circuit is an integer multiple of the fixed diffusion track pitch.
  • 4. The cell circuit of a semiconductor device as recited in claim 1, wherein at least one of the plurality of diffusion tracks is partially filled with linear-shaped diffusion fins.
  • 5. The cell circuit of a semiconductor device as recited in claim 1, wherein at least one of the plurality of diffusion tracks is completely filled with linear-shaped diffusion fins.
  • 6. The cell circuit of a semiconductor device as recited in claim 1, wherein at least one of the plurality of diffusion tracks is vacant and does not have a linear-shaped diffusion fin positioned thereon.
  • 7. A cell circuit of a semiconductor device, comprising: a substrate;a number of linear-shaped diffusion fins defined to extend over the substrate in a first direction so as to extend parallel to each other, each of the number of linear-shaped diffusion fins defined to project upward from the substrate along their extent in the first direction; anda number of gate level structures defined to extend in a conformal manner over one or more of the number of linear-shaped diffusion fins, such that portions of each gate level structure that extend over any of the number of linear-shaped diffusion fins extend in a second direction perpendicular to the first direction, wherein the portions of each gate level structure that extend over any of the number of linear-shaped diffusion fins form gate electrodes of a corresponding transistor, wherein the portions of each gate level structure that extend over any of the number of linear-shaped diffusion fins are positioned on one or more of a plurality of gate electrode tracks that are virtual lines of a gate level virtual grate, wherein the plurality of gate electrode tracks extend in the second direction over the substrate, wherein the plurality of gate electrode tracks are positioned based on a fixed gate electrode track pitch, wherein the fixed gate electrode track pitch corresponds to an equal perpendicular spacing between adjacent side-by-side positioned ones of the plurality of gate electrode tracks.
  • 8. The cell circuit of a semiconductor device as recited in claim 7, wherein the second direction corresponds to a height direction of the cell circuit, and wherein the fixed gate electrode track pitch is related to a width of the cell circuit, such that a continuity of the fixed gate electrode track pitch is maintained across boundaries of the cell circuit to form a global set of equally spaced gate electrode tracks across a group of neighboring cell circuits.
  • 9. The cell circuit of a semiconductor device as recited in claim 8, wherein the width of the cell circuit is an integer multiple of the fixed gate electrode track pitch.
  • 10. The cell circuit of a semiconductor device as recited in claim 7, wherein at least one of the plurality of gate electrode tracks is partially filled with gate level structures.
  • 11. The cell circuit of a semiconductor device as recited in claim 7, wherein at least one of the plurality of gate electrode tracks is completely filled with gate level structures.
  • 12. The cell circuit of a semiconductor device as recited in claim 7, wherein at least one of the plurality of gate electrode tracks is vacant and does not have a gate level structure positioned thereon.
  • 13. The cell circuit of a semiconductor device as recited in claim 7, wherein the number of gate level structures are positioned to maximally fill each of the plurality of gate electrode tracks that has at least one of the number of gate level structures positioned thereon, wherein breaks are defined between multiple gate level structures along individual gate electrode tracks as needed for cell circuit functionality.
  • 14. The cell circuit of a semiconductor device as recited in claim 13, wherein the breaks defined between multiple gate level structures along individual gate electrode tracks are uniform in size through the cell circuit.
  • 15. A cell circuit of a semiconductor device, comprising: a substrate;a number of linear-shaped diffusion fins defined to extend over the substrate in a first direction so as to extend parallel to each other, each of the number of linear-shaped diffusion fins defined to project upward from the substrate along their extent in the first direction;a number of gate level structures defined to extend in a conformal manner over one or more of the number of linear-shaped diffusion fins, such that portions of each gate level structure that extend over any of the number of linear-shaped diffusion fins extend in a second direction perpendicular to the first direction, wherein the portions of each gate level structure that extend over any of the number of linear-shaped diffusion fins form gate electrodes of a corresponding transistor; anda number of local interconnect structures defined between neighboring gate level structures so as to extend in the second direction parallel to the neighboring gate level structures, wherein the number of local interconnect structures are formed of an electrically conductive material, and wherein the number of local interconnect structures are formed at or below a gate level of the cell circuit.
  • 16. A cell circuit of a semiconductor device, comprising: a substrate;a number of linear-shaped diffusion fins defined to extend over the substrate in a first direction so as to extend parallel to each other, each of the number of linear-shaped diffusion fins defined to project upward from the substrate along their extent in the first direction;a number of gate level structures defined to extend in a conformal manner over one or more of the number of linear-shaped diffusion fins, such that portions of each gate level structure that extend over any of the number of linear-shaped diffusion fins extend in a second direction perpendicular to the first direction, wherein the portions of each gate level structure that extend over any of the number of linear-shaped diffusion fins form gate electrodes of a corresponding transistor; anda number of higher level interconnect structures defined in an interconnect level above a gate level of the cell circuit, wherein the number of higher level interconnect structures are linear-shaped and extend in the first direction.
  • 17. A semiconductor device cell layout, comprising: a diffusion level layout including a number of diffusion fin layout shapes defined to extend in only a first direction across the cell layout so as to extend parallel to each other, each of the number of diffusion fin layout shapes corresponding to diffusion fin structures defined to project upward from a substrate along their extent in the first direction, wherein the number of diffusion fin layout shapes are positioned on a plurality of diffusion tracks that are virtual lines of a diffusion fin virtual grate, wherein the plurality of diffusion tracks extend in the first direction over the substrate, wherein the plurality of diffusion tracks are positioned based on a fixed diffusion track pitch, wherein the fixed diffusion track pitch corresponds to an equal spacing between adjacent side-by-side positioned ones of the plurality of diffusion tracks as measured in a second direction perpendicular to the first direction and parallel to the substrate; anda gate level layout including a number of gate level layout shapes defined to extend in the second direction across the cell layout perpendicular to the first direction, the gate level layout shapes corresponding to gate level structures defined to extend in a conformal manner over one or more of the diffusion fin structures corresponding to the diffusion fin layout shapes, such that portions of each gate level structure that extend over any of the diffusion fin structures form gate electrodes of a corresponding transistor.
  • 18. The semiconductor device cell layout as recited in claim 17, wherein the gate level layout shapes that extend over any of the diffusion fin structures are positioned on gate electrode tracks that are virtual lines of a gate level virtual grate, wherein the gate electrode tracks extend in the second direction over the substrate.
  • 19. The semiconductor device cell layout as recited in claim 17, further comprising: a number of local interconnect structure layout shapes defined between neighboring gate level layout shapes so as to extend in the second direction parallel to the neighboring gate level layout shapes, wherein the number of local interconnect structure layout shapes are formed of an electrically conductive material.
  • 20. The semiconductor device cell layout as recited in claim 17, further comprising: a higher level interconnect layout including a number of higher level interconnect structure layout shapes, wherein the number of higher level interconnect structure layout shapes are linear-shaped and extend in the first direction.
CLAIM OF PRIORITY

This application claims priority under 35 U.S.C. 119(e) to U.S. Provisional Patent Application No. 61/176,058, filed May 6, 2009, entitled “Cell Layout and Scaling Using Linear Finfet Structures,” the disclosure of which is incorporated herein by reference in its entirety.

US Referenced Citations (833)
Number Name Date Kind
4069493 Bobenrieth Jan 1978 A
4197555 Uehara et al. Apr 1980 A
4417161 Uya Nov 1983 A
4424460 Best Jan 1984 A
4602270 Finegold Jul 1986 A
4613940 Shenton et al. Sep 1986 A
4657628 Holloway et al. Apr 1987 A
4682202 Tanizawa Jul 1987 A
4745084 Rowson et al. May 1988 A
4780753 Ohkura et al. Oct 1988 A
4801986 Chang et al. Jan 1989 A
4804636 Groover, III Feb 1989 A
4812688 Chu et al. Mar 1989 A
4884115 Michel et al. Nov 1989 A
4928160 Crafts May 1990 A
4975756 Haken et al. Dec 1990 A
5047979 Leung Sep 1991 A
5068603 Mahoney Nov 1991 A
5079614 Khatakhotan Jan 1992 A
5097422 Corbin et al. Mar 1992 A
5117277 Yuyama et al. May 1992 A
5121186 Wong et al. Jun 1992 A
5208765 Turnbull May 1993 A
5224057 Igarashi Jun 1993 A
5242770 Chen et al. Sep 1993 A
5268319 Harari Dec 1993 A
5298774 Ueda et al. Mar 1994 A
5313426 Sakuma et al. May 1994 A
5338963 Klaasen Aug 1994 A
5351197 Upton et al. Sep 1994 A
5359226 DeJong Oct 1994 A
5365454 Nakagawa et al. Nov 1994 A
5367187 Yuen Nov 1994 A
5378649 Huang Jan 1995 A
5396128 Dunning et al. Mar 1995 A
5420447 Waggoner May 1995 A
5461577 Shaw et al. Oct 1995 A
5471403 Fujimaga Nov 1995 A
5497334 Russell et al. Mar 1996 A
5497337 Ponnapalli et al. Mar 1996 A
5526307 Lin et al. Jun 1996 A
5536955 Ali Jul 1996 A
5545904 Orbach Aug 1996 A
5581098 Chang Dec 1996 A
5581202 Yano et al. Dec 1996 A
5612893 Hao et al. Mar 1997 A
5636002 Garofalo Jun 1997 A
5656861 Godinho et al. Aug 1997 A
5682323 Pasch et al. Oct 1997 A
5684311 Shaw Nov 1997 A
5684733 Wu et al. Nov 1997 A
5698873 Colwell et al. Dec 1997 A
5705301 Garza et al. Jan 1998 A
5723883 Gheewalla Mar 1998 A
5723908 Fuchida et al. Mar 1998 A
5740068 Liebmann et al. Apr 1998 A
5745374 Matsumoto Apr 1998 A
5764533 deDood Jun 1998 A
5774367 Reyes et al. Jun 1998 A
5780909 Hayashi Jul 1998 A
5789776 Lancaster et al. Aug 1998 A
5790417 Chao et al. Aug 1998 A
5796128 Tran et al. Aug 1998 A
5796624 Sridhar et al. Aug 1998 A
5798298 Yang et al. Aug 1998 A
5814844 Nagata et al. Sep 1998 A
5825203 Kusunoki et al. Oct 1998 A
5834851 Ikeda et al. Nov 1998 A
5838594 Kojima Nov 1998 A
5841663 Sharma et al. Nov 1998 A
5847421 Yamaguchi Dec 1998 A
5850362 Sakuma et al. Dec 1998 A
5852562 Shinomiya et al. Dec 1998 A
5858580 Wang et al. Jan 1999 A
5898194 Gheewala Apr 1999 A
5900340 Reich et al. May 1999 A
5905287 Hirata May 1999 A
5908827 Sirna Jun 1999 A
5915199 Hsu Jun 1999 A
5917207 Colwell et al. Jun 1999 A
5920486 Beahm et al. Jul 1999 A
5923059 Gheewala Jul 1999 A
5923060 Gheewala Jul 1999 A
5929469 Mimoto et al. Jul 1999 A
5930163 Hara et al. Jul 1999 A
5935763 Caterer et al. Aug 1999 A
5949101 Aritome Sep 1999 A
5973507 Yamazaki Oct 1999 A
5977305 Wigler et al. Nov 1999 A
5977574 Schmitt et al. Nov 1999 A
5998879 Iwaki et al. Dec 1999 A
6009251 Ho et al. Dec 1999 A
6026223 Scepanovic et al. Feb 2000 A
6026225 Iwasaki Feb 2000 A
6037613 Mariyama Mar 2000 A
6037617 Kumagai Mar 2000 A
6044007 Capodieci Mar 2000 A
6054872 Fudanuki et al. Apr 2000 A
6063132 DeCamp et al. May 2000 A
6077310 Yamamoto et al. Jun 2000 A
6080206 Tadokoro et al. Jun 2000 A
6084255 Ueda Jul 2000 A
6084437 Sako Jul 2000 A
6091845 Pierrat et al. Jul 2000 A
6099584 Arnold et al. Aug 2000 A
6100025 Wigler et al. Aug 2000 A
6114071 Chen et al. Sep 2000 A
6144227 Sato Nov 2000 A
6159839 Jeng et al. Dec 2000 A
6166415 Sakemi et al. Dec 2000 A
6166560 Ogura et al. Dec 2000 A
6174742 Sudhindranath et al. Jan 2001 B1
6182272 Andreev et al. Jan 2001 B1
6194104 Hsu Feb 2001 B1
6194252 Yamaguchi Feb 2001 B1
6194912 Or-Bach Feb 2001 B1
6209123 Maziasz et al. Mar 2001 B1
6230299 McSherry et al. May 2001 B1
6232173 Hsu et al. May 2001 B1
6240542 Kapur May 2001 B1
6249902 Igusa et al. Jun 2001 B1
6255600 Schaper Jul 2001 B1
6255845 Wong et al. Jul 2001 B1
6262487 Igarashi et al. Jul 2001 B1
6269472 Garza et al. Jul 2001 B1
6275973 Wein Aug 2001 B1
6282696 Garza et al. Aug 2001 B1
6291276 Gonzalez Sep 2001 B1
6297668 Schober Oct 2001 B1
6297674 Kono et al. Oct 2001 B1
6303252 Lin Oct 2001 B1
6331733 Or-Bach et al. Dec 2001 B1
6331791 Huang Dec 2001 B1
6335250 Egi Jan 2002 B1
6338972 Sudhindranath et al. Jan 2002 B1
6347062 Nii et al. Feb 2002 B2
6356112 Tran et al. Mar 2002 B1
6359804 Kuriyama et al. Mar 2002 B2
6370679 Chang et al. Apr 2002 B1
6378110 Ho Apr 2002 B1
6380592 Tooher et al. Apr 2002 B2
6388296 Hsu May 2002 B1
6393601 Tanaka et al. May 2002 B1
6399972 Masuda et al. Jun 2002 B1
6400183 Yamashita et al. Jun 2002 B2
6408427 Cong et al. Jun 2002 B1
6415421 Anderson et al. Jul 2002 B2
6416907 Winder et al. Jul 2002 B1
6417549 Oh Jul 2002 B1
6421820 Mansfield et al. Jul 2002 B1
6425112 Bula et al. Jul 2002 B1
6425117 Pasch et al. Jul 2002 B1
6426269 Haffner et al. Jul 2002 B1
6436805 Trivedi Aug 2002 B1
6445049 Iranmanesh Sep 2002 B1
6445065 Gheewala et al. Sep 2002 B1
6467072 Yang et al. Oct 2002 B1
6469328 Yanai et al. Oct 2002 B2
6470489 Chang et al. Oct 2002 B1
6476493 Or-Bach et al. Nov 2002 B2
6477695 Gandhi Nov 2002 B1
6480032 Aksamit Nov 2002 B1
6480989 Chan et al. Nov 2002 B2
6492066 Capodieci et al. Dec 2002 B1
6496965 van Ginneken et al. Dec 2002 B1
6504186 Kanamoto et al. Jan 2003 B2
6505327 Lin Jan 2003 B2
6505328 van Ginneken et al. Jan 2003 B1
6507941 Leung et al. Jan 2003 B1
6509952 Govil et al. Jan 2003 B1
6514849 Hui et al. Feb 2003 B1
6516459 Sahouria Feb 2003 B1
6523156 Cirit Feb 2003 B2
6525350 Kinoshita et al. Feb 2003 B1
6536028 Katsioulas et al. Mar 2003 B1
6543039 Watanabe Apr 2003 B1
6553544 Tanaka et al. Apr 2003 B2
6553559 Liebmann et al. Apr 2003 B2
6553562 Capodieci et al. Apr 2003 B2
6566720 Aldrich May 2003 B2
6570234 Gardner May 2003 B1
6571140 Wewalaarachchi May 2003 B1
6571379 Takayama May 2003 B2
6574786 Pohlenz et al. Jun 2003 B1
6578190 Ferguson et al. Jun 2003 B2
6583041 Capodieci Jun 2003 B1
6588005 Kobayashi et al. Jul 2003 B1
6590289 Shively Jul 2003 B2
6591207 Naya et al. Jul 2003 B2
6609235 Ramaswamy et al. Aug 2003 B2
6610607 Armbrust et al. Aug 2003 B1
6617621 Gheewala et al. Sep 2003 B1
6620561 Winder et al. Sep 2003 B2
6621132 Onishi et al. Sep 2003 B2
6632741 Clevenger et al. Oct 2003 B1
6633182 Pileggi et al. Oct 2003 B2
6635935 Makino Oct 2003 B2
6642744 Or-Bach et al. Nov 2003 B2
6643831 Chang et al. Nov 2003 B2
6650014 Kariyazaki Nov 2003 B2
6661041 Keeth Dec 2003 B2
6662350 Fried et al. Dec 2003 B2
6664587 Guterman et al. Dec 2003 B2
6673638 Bendik et al. Jan 2004 B1
6677649 Minami et al. Jan 2004 B2
6687895 Zhang Feb 2004 B2
6690206 Rikino et al. Feb 2004 B2
6691297 Misaka et al. Feb 2004 B1
6700405 Hirairi Mar 2004 B1
6703170 Pindo Mar 2004 B1
6709880 Yamamoto et al. Mar 2004 B2
6714903 Chu et al. Mar 2004 B1
6732334 Nakatsuka May 2004 B2
6732338 Crouse et al. May 2004 B2
6732344 Sakamoto et al. May 2004 B2
6734506 Oyamatsu May 2004 B2
6737199 Hsieh May 2004 B1
6737318 Murata et al. May 2004 B2
6737347 Houston et al. May 2004 B1
6745372 Cote et al. Jun 2004 B2
6745380 Bodendorf et al. Jun 2004 B2
6749972 Yu Jun 2004 B2
6750555 Satomi et al. Jun 2004 B2
6760269 Nakase et al. Jul 2004 B2
6765245 Bansal Jul 2004 B2
6777138 Pierrat et al. Aug 2004 B2
6777146 Samuels Aug 2004 B1
6787823 Shibutani Sep 2004 B2
6789244 Dasasathyan et al. Sep 2004 B1
6789246 Mohan et al. Sep 2004 B1
6792591 Shi et al. Sep 2004 B2
6792593 Takashima et al. Sep 2004 B2
6794677 Tamaki et al. Sep 2004 B2
6794914 Sani et al. Sep 2004 B2
6795332 Yamaoka et al. Sep 2004 B2
6795358 Tanaka et al. Sep 2004 B2
6795952 Stine et al. Sep 2004 B1
6795953 Bakarian et al. Sep 2004 B2
6800883 Furuya et al. Oct 2004 B2
6806180 Cho Oct 2004 B2
6807663 Cote et al. Oct 2004 B2
6809399 Ikeda et al. Oct 2004 B2
6812574 Tomita et al. Nov 2004 B2
6818389 Fritze et al. Nov 2004 B2
6818929 Tsutsumi et al. Nov 2004 B2
6819136 Or-Bach Nov 2004 B2
6820248 Gan Nov 2004 B1
6826738 Cadouri Nov 2004 B2
6834375 Stine et al. Dec 2004 B1
6841880 Matsumoto et al. Jan 2005 B2
6850854 Naya et al. Feb 2005 B2
6854096 Eaton et al. Feb 2005 B2
6854100 Chuang et al. Feb 2005 B1
6867073 Enquist Mar 2005 B1
6871338 Yamauchi Mar 2005 B2
6872990 Kang Mar 2005 B1
6877144 Rittman et al. Apr 2005 B1
6881523 Smith Apr 2005 B2
6884712 Yelehanka et al. Apr 2005 B2
6885045 Hidaka Apr 2005 B2
6889370 Kerzman et al. May 2005 B1
6897517 Houdt et al. May 2005 B2
6897536 Nomura et al. May 2005 B2
6898770 Boluki et al. May 2005 B2
6904582 Rittman et al. Jun 2005 B1
6918104 Pierrat et al. Jul 2005 B2
6920079 Shibayama Jul 2005 B2
6921982 Joshi et al. Jul 2005 B2
6922354 Ishikura et al. Jul 2005 B2
6924560 Wang et al. Aug 2005 B2
6928635 Pramanik et al. Aug 2005 B2
6931617 Sanie et al. Aug 2005 B2
6953956 Or-Bach et al. Oct 2005 B2
6954918 Houston Oct 2005 B2
6957402 Templeton et al. Oct 2005 B2
6968527 Pierrat Nov 2005 B2
6974978 Possley Dec 2005 B1
6977856 Tanaka et al. Dec 2005 B2
6978436 Cote et al. Dec 2005 B2
6978437 Rittman et al. Dec 2005 B1
6980211 Lin et al. Dec 2005 B2
6992394 Park Jan 2006 B2
6992925 Peng Jan 2006 B2
6993741 Liebmann et al. Jan 2006 B2
6994939 Ghandehari et al. Feb 2006 B1
6998722 Madurawe Feb 2006 B2
7003068 Kushner et al. Feb 2006 B2
7009862 Higeta et al. Mar 2006 B2
7016214 Kawamata et al. Mar 2006 B2
7022559 Barnak et al. Apr 2006 B2
7028285 Cote et al. Apr 2006 B2
7041568 Goldbach et al. May 2006 B2
7052972 Sandhu et al. May 2006 B2
7053424 Ono May 2006 B2
7063920 Baba-Ali Jun 2006 B2
7064068 Chou et al. Jun 2006 B2
7065731 Jacques et al. Jun 2006 B2
7079413 Tsukamoto et al. Jul 2006 B2
7079989 Wimer Jul 2006 B2
7093208 Williams et al. Aug 2006 B2
7093228 Andreev et al. Aug 2006 B2
7103870 Misaka et al. Sep 2006 B2
7105871 Or-Bach et al. Sep 2006 B2
7107551 de Dood et al. Sep 2006 B1
7115343 Gordon et al. Oct 2006 B2
7115920 Bernstein et al. Oct 2006 B2
7120882 Kotani et al. Oct 2006 B2
7124386 Smith et al. Oct 2006 B2
7126837 Banachowicz et al. Oct 2006 B1
7132203 Pierrat Nov 2006 B2
7137092 Maeda Nov 2006 B2
7141853 Campbell et al. Nov 2006 B2
7143380 Anderson et al. Nov 2006 B1
7149999 Kahng et al. Dec 2006 B2
7152215 Smith et al. Dec 2006 B2
7155685 Mori et al. Dec 2006 B2
7155689 Pierrat et al. Dec 2006 B2
7159197 Falbo et al. Jan 2007 B2
7174520 White et al. Feb 2007 B2
7175940 Laidig et al. Feb 2007 B2
7176508 Joshi et al. Feb 2007 B2
7177215 Tanaka et al. Feb 2007 B2
7183611 Bhattacharyya Feb 2007 B2
7185294 Zhang Feb 2007 B2
7188322 Cohn et al. Mar 2007 B2
7194712 Wu Mar 2007 B2
7200835 Zhang et al. Apr 2007 B2
7202517 Dixit et al. Apr 2007 B2
7205191 Kobayashi Apr 2007 B2
7208794 Hofmann et al. Apr 2007 B2
7214579 Widdershoven et al. May 2007 B2
7219326 Reed et al. May 2007 B2
7221031 Ryoo et al. May 2007 B2
7225423 Bhattacharya et al. May 2007 B2
7227183 Donze et al. Jun 2007 B2
7228510 Ono Jun 2007 B2
7231628 Pack et al. Jun 2007 B2
7235424 Chen et al. Jun 2007 B2
7243316 White et al. Jul 2007 B2
7252909 Shin et al. Aug 2007 B2
7257017 Liaw Aug 2007 B2
7264990 Rueckes et al. Sep 2007 B2
7266787 Hughes et al. Sep 2007 B2
7269803 Khakzadi et al. Sep 2007 B2
7278118 Pileggi et al. Oct 2007 B2
7279727 Ikoma et al. Oct 2007 B2
7287320 Wang et al. Oct 2007 B2
7294534 Iwaki Nov 2007 B2
7302651 Allen et al. Nov 2007 B2
7308669 Buehler et al. Dec 2007 B2
7312003 Cote et al. Dec 2007 B2
7315994 Aller et al. Jan 2008 B2
7327591 Sadra et al. Feb 2008 B2
7329938 Kinoshita Feb 2008 B2
7335966 Ihme et al. Feb 2008 B2
7337421 Kamat Feb 2008 B2
7338896 Vanhaelemeersch et al. Mar 2008 B2
7345909 Chang et al. Mar 2008 B2
7346885 Semmler Mar 2008 B2
7350183 Cui et al. Mar 2008 B2
7353492 Gupta et al. Apr 2008 B2
7358131 Bhattacharyya Apr 2008 B2
7360179 Smith et al. Apr 2008 B2
7360198 Rana et al. Apr 2008 B2
7366997 Rahmat et al. Apr 2008 B1
7367008 White et al. Apr 2008 B2
7376931 Kokubun May 2008 B2
7383521 Smith et al. Jun 2008 B2
7397260 Chanda et al. Jul 2008 B2
7400627 Wu et al. Jul 2008 B2
7402848 Chang et al. Jul 2008 B2
7404154 Venkatraman et al. Jul 2008 B1
7404173 Wu et al. Jul 2008 B2
7411252 Anderson et al. Aug 2008 B2
7421678 Barnes et al. Sep 2008 B2
7423298 Mariyama et al. Sep 2008 B2
7424694 Ikeda Sep 2008 B2
7424695 Tamura et al. Sep 2008 B2
7424696 Vogel et al. Sep 2008 B2
7426710 Zhang et al. Sep 2008 B2
7432562 Bhattacharyya Oct 2008 B2
7434185 Dooling et al. Oct 2008 B2
7441211 Gupta et al. Oct 2008 B1
7442630 Kelberlau et al. Oct 2008 B2
7444609 Charlebois et al. Oct 2008 B2
7446352 Becker et al. Nov 2008 B2
7449371 Kemerling et al. Nov 2008 B2
7458045 Cote et al. Nov 2008 B2
7459792 Chen Dec 2008 B2
7465973 Chang et al. Dec 2008 B2
7466607 Hollis et al. Dec 2008 B2
7469396 Hayashi et al. Dec 2008 B2
7480880 Visweswariah et al. Jan 2009 B2
7480891 Sezginer Jan 2009 B2
7484197 Allen et al. Jan 2009 B2
7485934 Liaw Feb 2009 B2
7487475 Kriplani et al. Feb 2009 B1
7492013 Correale, Jr. Feb 2009 B2
7500211 Komaki Mar 2009 B2
7502275 Nii et al. Mar 2009 B2
7503026 Ichiryu et al. Mar 2009 B2
7504184 Hung et al. Mar 2009 B2
7506300 Sezginer et al. Mar 2009 B2
7508238 Yamagami Mar 2009 B2
7509621 Melvin, III Mar 2009 B2
7509622 Sinha et al. Mar 2009 B2
7512017 Chang Mar 2009 B2
7512921 Shibuya Mar 2009 B2
7514355 Katase Apr 2009 B2
7514959 Or-Bach et al. Apr 2009 B2
7523429 Kroyan et al. Apr 2009 B2
7527900 Zhou et al. May 2009 B2
7538368 Yano May 2009 B2
7543262 Wang et al. Jun 2009 B2
7563701 Chang et al. Jul 2009 B2
7564134 Lee et al. Jul 2009 B2
7568174 Sezginer et al. Jul 2009 B2
7569309 Blatchford et al. Aug 2009 B2
7569310 Wallace et al. Aug 2009 B2
7569894 Suzuki Aug 2009 B2
7575973 Mokhlesi et al. Aug 2009 B2
7598541 Okamoto et al. Oct 2009 B2
7598558 Hashimoto et al. Oct 2009 B2
7614030 Hsu Nov 2009 B2
7625790 Yang Dec 2009 B2
7632610 Wallace et al. Dec 2009 B2
7640522 Gupta et al. Dec 2009 B2
7646651 Lee et al. Jan 2010 B2
7653884 Furnish et al. Jan 2010 B2
7665051 Ludwig et al. Feb 2010 B2
7700466 Booth et al. Apr 2010 B2
7712056 White et al. May 2010 B2
7739627 Chew et al. Jun 2010 B2
7749662 Matthew et al. Jul 2010 B2
7755110 Gliese et al. Jul 2010 B2
7770144 Dellinger Aug 2010 B2
7791109 Wann et al. Sep 2010 B2
7802219 Tomar et al. Sep 2010 B2
7825437 Pillarisetty et al. Nov 2010 B2
7842975 Becker et al. Nov 2010 B2
7873929 Kahng et al. Jan 2011 B2
7882456 Zach Feb 2011 B2
7888705 Becker et al. Feb 2011 B2
7898040 Nawaz Mar 2011 B2
7906801 Becker et al. Mar 2011 B2
7908578 Becker et al. Mar 2011 B2
7910958 Becker et al. Mar 2011 B2
7910959 Becker et al. Mar 2011 B2
7917877 Singh et al. Mar 2011 B2
7917879 Becker et al. Mar 2011 B2
7923266 Thijs et al. Apr 2011 B2
7923337 Chang et al. Apr 2011 B2
7923757 Becker et al. Apr 2011 B2
7926001 Pierrat Apr 2011 B2
7932544 Becker et al. Apr 2011 B2
7932545 Becker et al. Apr 2011 B2
7934184 Zhang Apr 2011 B2
7939443 Fox et al. May 2011 B2
7943966 Becker et al. May 2011 B2
7943967 Becker et al. May 2011 B2
7948012 Becker et al. May 2011 B2
7948013 Becker et al. May 2011 B2
7952119 Becker et al. May 2011 B2
7956421 Becker Jun 2011 B2
7958465 Lu et al. Jun 2011 B2
7962867 White et al. Jun 2011 B2
7962879 Tang et al. Jun 2011 B2
7964267 Lyons et al. Jun 2011 B1
7971160 Osawa et al. Jun 2011 B2
7989847 Becker et al. Aug 2011 B2
7989848 Becker et al. Aug 2011 B2
7992122 Burstein et al. Aug 2011 B1
7994583 Inaba Aug 2011 B2
8004042 Yang et al. Aug 2011 B2
8022441 Becker et al. Sep 2011 B2
8030689 Becker et al. Oct 2011 B2
8035133 Becker et al. Oct 2011 B2
8044437 Venkatraman et al. Oct 2011 B1
8058671 Becker et al. Nov 2011 B2
8058690 Chang Nov 2011 B2
8072003 Becker et al. Dec 2011 B2
8072053 Li Dec 2011 B2
8088679 Becker et al. Jan 2012 B2
8088680 Becker et al. Jan 2012 B2
8088681 Becker et al. Jan 2012 B2
8088682 Becker et al. Jan 2012 B2
8089098 Becker et al. Jan 2012 B2
8089099 Becker et al. Jan 2012 B2
8089100 Becker et al. Jan 2012 B2
8089101 Becker et al. Jan 2012 B2
8089102 Becker et al. Jan 2012 B2
8089103 Becker et al. Jan 2012 B2
8089104 Becker et al. Jan 2012 B2
8101975 Becker et al. Jan 2012 B2
8110854 Becker et al. Feb 2012 B2
8129750 Becker et al. Mar 2012 B2
8129751 Becker et al. Mar 2012 B2
8129752 Becker et al. Mar 2012 B2
8129754 Becker et al. Mar 2012 B2
8129755 Becker et al. Mar 2012 B2
8129756 Becker et al. Mar 2012 B2
8129757 Becker et al. Mar 2012 B2
8129819 Becker et al. Mar 2012 B2
8130529 Tanaka Mar 2012 B2
8134183 Becker et al. Mar 2012 B2
8134184 Becker et al. Mar 2012 B2
8134185 Becker et al. Mar 2012 B2
8134186 Becker et al. Mar 2012 B2
8138525 Becker et al. Mar 2012 B2
8161427 Morgenshtein et al. Apr 2012 B2
8178905 Toubou May 2012 B2
8178909 Venkatraman et al. May 2012 B2
8198656 Becker et al. Jun 2012 B2
8207053 Becker et al. Jun 2012 B2
8214778 Quandt et al. Jul 2012 B2
8217428 Becker et al. Jul 2012 B2
8225239 Reed et al. Jul 2012 B2
8225261 Hong et al. Jul 2012 B2
8245180 Smayling et al. Aug 2012 B2
8247846 Becker Aug 2012 B2
8253172 Becker et al. Aug 2012 B2
8253173 Becker et al. Aug 2012 B2
8258547 Becker et al. Sep 2012 B2
8258548 Becker et al. Sep 2012 B2
8258549 Becker et al. Sep 2012 B2
8258550 Becker et al. Sep 2012 B2
8258551 Becker et al. Sep 2012 B2
8258552 Becker et al. Sep 2012 B2
8258581 Becker et al. Sep 2012 B2
8264007 Becker et al. Sep 2012 B2
8264008 Becker et al. Sep 2012 B2
8264009 Becker et al. Sep 2012 B2
8283701 Becker et al. Oct 2012 B2
8294212 Wang et al. Oct 2012 B2
8316327 Herold Nov 2012 B2
8356268 Becker et al. Jan 2013 B2
8378407 Audzeyeu et al. Feb 2013 B2
8395224 Becker et al. Mar 2013 B2
8402397 Robles et al. Mar 2013 B2
8405163 Becker et al. Mar 2013 B2
8422274 Tomita et al. Apr 2013 B2
8436400 Becker et al. May 2013 B2
8453094 Kornachuk et al. May 2013 B2
8575706 Becker et al. Nov 2013 B2
8667443 Smayling et al. Mar 2014 B2
8701071 Kornachuk et al. Apr 2014 B2
8735995 Becker et al. May 2014 B2
8756551 Becker et al. Jun 2014 B2
8836045 Becker et al. Sep 2014 B2
8839162 Amundson et al. Sep 2014 B2
8839175 Smayling et al. Sep 2014 B2
8847329 Becker et al. Sep 2014 B2
8863063 Becker et al. Oct 2014 B2
9202779 Kornachuk et al. Dec 2015 B2
9336344 Smayling May 2016 B2
20010049813 Chan et al. Dec 2001 A1
20020003270 Makino Jan 2002 A1
20020015899 Chen et al. Feb 2002 A1
20020030510 Kono et al. Mar 2002 A1
20020063582 Rikino May 2002 A1
20020068423 Park et al. Jun 2002 A1
20020079927 Katoh et al. Jun 2002 A1
20020149392 Cho Oct 2002 A1
20020166107 Capodieci et al. Nov 2002 A1
20020194575 Allen et al. Dec 2002 A1
20030042930 Pileggi et al. Mar 2003 A1
20030046653 Liu Mar 2003 A1
20030061592 Agrawal et al. Mar 2003 A1
20030088839 Watanabe May 2003 A1
20030088842 Cirit May 2003 A1
20030103176 Abe et al. Jun 2003 A1
20030106037 Moniwa et al. Jun 2003 A1
20030117168 Uneme et al. Jun 2003 A1
20030124847 Houston et al. Jul 2003 A1
20030125917 Rich et al. Jul 2003 A1
20030126569 Rich et al. Jul 2003 A1
20030145288 Wang et al. Jul 2003 A1
20030145299 Fried et al. Jul 2003 A1
20030177465 MacLean et al. Sep 2003 A1
20030185076 Worley Oct 2003 A1
20030203287 Miyagawa Oct 2003 A1
20030229868 White et al. Dec 2003 A1
20030229875 Smith et al. Dec 2003 A1
20040029372 Jang et al. Feb 2004 A1
20040049754 Liao et al. Mar 2004 A1
20040063038 Shin et al. Apr 2004 A1
20040115539 Broeke et al. Jun 2004 A1
20040139412 Ito et al. Jul 2004 A1
20040145028 Matsumoto et al. Jul 2004 A1
20040153979 Chang Aug 2004 A1
20040161878 Or-Bach et al. Aug 2004 A1
20040164360 Nishida et al. Aug 2004 A1
20040169201 Hidaka Sep 2004 A1
20040194050 Hwang et al. Sep 2004 A1
20040196705 Ishikura et al. Oct 2004 A1
20040229135 Wang et al. Nov 2004 A1
20040232444 Shimizu Nov 2004 A1
20040243966 Dellinger Dec 2004 A1
20040262640 Suga Dec 2004 A1
20050009312 Butt et al. Jan 2005 A1
20050009344 Hwang et al. Jan 2005 A1
20050012157 Cho et al. Jan 2005 A1
20050044522 Maeda Feb 2005 A1
20050055828 Wang et al. Mar 2005 A1
20050076320 Maeda Apr 2005 A1
20050087806 Hokazono Apr 2005 A1
20050093147 Tu May 2005 A1
20050101112 Rueckes et al. May 2005 A1
20050110130 Kitabayashi et al. May 2005 A1
20050135134 Yen Jun 2005 A1
20050136340 Baselmans et al. Jun 2005 A1
20050138598 Kokubun Jun 2005 A1
20050156200 Kinoshita Jul 2005 A1
20050185325 Hur Aug 2005 A1
20050189604 Gupta et al. Sep 2005 A1
20050189614 Ihme et al. Sep 2005 A1
20050196685 Wang et al. Sep 2005 A1
20050205894 Sumikawa et al. Sep 2005 A1
20050212018 Schoellkopf et al. Sep 2005 A1
20050224982 Kemerling et al. Oct 2005 A1
20050229130 Wu et al. Oct 2005 A1
20050251771 Robles Nov 2005 A1
20050264320 Chan et al. Dec 2005 A1
20050264324 Nakazato Dec 2005 A1
20050266621 Kim Dec 2005 A1
20050268256 Tsai et al. Dec 2005 A1
20050278673 Kawachi Dec 2005 A1
20050280031 Yano Dec 2005 A1
20060038234 Liaw Feb 2006 A1
20060063334 Donze et al. Mar 2006 A1
20060070018 Semmler Mar 2006 A1
20060084261 Iwaki Apr 2006 A1
20060091550 Shimazaki et al. May 2006 A1
20060095872 McElvain May 2006 A1
20060101370 Cui et al. May 2006 A1
20060112355 Pileggi et al. May 2006 A1
20060113533 Tamaki et al. Jun 2006 A1
20060113567 Ohmori et al. Jun 2006 A1
20060120143 Liaw Jun 2006 A1
20060121715 Chang et al. Jun 2006 A1
20060123376 Vogel et al. Jun 2006 A1
20060125024 Ishigaki Jun 2006 A1
20060131609 Kinoshita et al. Jun 2006 A1
20060136848 Ichiryu et al. Jun 2006 A1
20060146638 Chang et al. Jul 2006 A1
20060151810 Ohshige Jul 2006 A1
20060158270 Gibet et al. Jul 2006 A1
20060177744 Bodendorf et al. Aug 2006 A1
20060181310 Rhee Aug 2006 A1
20060195809 Cohn et al. Aug 2006 A1
20060195810 Morton Aug 2006 A1
20060197557 Chung Sep 2006 A1
20060206854 Barnes et al. Sep 2006 A1
20060223302 Chang et al. Oct 2006 A1
20060248495 Sezginer Nov 2006 A1
20060261417 Suzuki Nov 2006 A1
20060277521 Chen Dec 2006 A1
20070001304 Liaw Jan 2007 A1
20070002617 Houston Jan 2007 A1
20070004147 Toubou Jan 2007 A1
20070007574 Ohsawa Jan 2007 A1
20070038973 Li et al. Feb 2007 A1
20070074145 Tanaka Mar 2007 A1
20070094634 Seizginer et al. Apr 2007 A1
20070101305 Smith et al. May 2007 A1
20070105023 Zhou et al. May 2007 A1
20070106971 Lien et al. May 2007 A1
20070113216 Zhang May 2007 A1
20070172770 Witters et al. Jul 2007 A1
20070186196 Tanaka Aug 2007 A1
20070196958 Bhattacharya et al. Aug 2007 A1
20070209029 Ivonin et al. Sep 2007 A1
20070210391 Becker et al. Sep 2007 A1
20070234252 Visweswariah et al. Oct 2007 A1
20070234262 Uedi et al. Oct 2007 A1
20070241810 Onda Oct 2007 A1
20070256039 White Nov 2007 A1
20070257277 Takeda et al. Nov 2007 A1
20070264758 Correale Nov 2007 A1
20070274140 Joshi et al. Nov 2007 A1
20070277129 Allen et al. Nov 2007 A1
20070288882 Kniffin et al. Dec 2007 A1
20070290361 Chen Dec 2007 A1
20070294652 Bowen Dec 2007 A1
20070297249 Chang et al. Dec 2007 A1
20080001176 Gopalakrishnan Jan 2008 A1
20080005712 Charlebois et al. Jan 2008 A1
20080021689 Yamashita et al. Jan 2008 A1
20080022247 Kojima et al. Jan 2008 A1
20080046846 Chew et al. Feb 2008 A1
20080081472 Tanaka Apr 2008 A1
20080082952 O'Brien Apr 2008 A1
20080086712 Fujimoto Apr 2008 A1
20080097641 Miyashita et al. Apr 2008 A1
20080098334 Pileggi et al. Apr 2008 A1
20080098341 Kobayashi et al. Apr 2008 A1
20080099795 Bernstein et al. May 2008 A1
20080127000 Majumder et al. May 2008 A1
20080127029 Graur et al. May 2008 A1
20080134128 Blatchford et al. Jun 2008 A1
20080144361 Wong Jun 2008 A1
20080148216 Chan et al. Jun 2008 A1
20080163141 Scheffer et al. Jul 2008 A1
20080168406 Rahmat et al. Jul 2008 A1
20080211028 Suzuki Sep 2008 A1
20080216207 Tsai Sep 2008 A1
20080244494 McCullen Oct 2008 A1
20080251779 Kakoschke et al. Oct 2008 A1
20080265290 Nielsen et al. Oct 2008 A1
20080276105 Hoberman et al. Nov 2008 A1
20080283910 Dreeskornfeld et al. Nov 2008 A1
20080285331 Torok et al. Nov 2008 A1
20080308848 Inaba Dec 2008 A1
20080308880 Inaba Dec 2008 A1
20080315258 Masuda et al. Dec 2008 A1
20090014811 Becker et al. Jan 2009 A1
20090024974 Yamada Jan 2009 A1
20090031261 Smith et al. Jan 2009 A1
20090032898 Becker et al. Feb 2009 A1
20090032967 Becker et al. Feb 2009 A1
20090037864 Becker et al. Feb 2009 A1
20090057780 Wong et al. Mar 2009 A1
20090075485 Ban et al. Mar 2009 A1
20090077524 Nagamura Mar 2009 A1
20090085067 Hayashi et al. Apr 2009 A1
20090087991 Yatsuda et al. Apr 2009 A1
20090101940 Barrows et al. Apr 2009 A1
20090106714 Culp et al. Apr 2009 A1
20090155990 Yanagidaira et al. Jun 2009 A1
20090181314 Shyu et al. Jul 2009 A1
20090187871 Cork Jul 2009 A1
20090206443 Juengling Aug 2009 A1
20090224408 Fox Sep 2009 A1
20090228853 Hong et al. Sep 2009 A1
20090228857 Kornachuk et al. Sep 2009 A1
20090235215 Lavin Sep 2009 A1
20090273100 Aton et al. Nov 2009 A1
20090280582 Thijs et al. Nov 2009 A1
20090302372 Chang et al. Dec 2009 A1
20090319977 Saxena et al. Dec 2009 A1
20100001321 Becker et al. Jan 2010 A1
20100006897 Becker et al. Jan 2010 A1
20100006898 Becker et al. Jan 2010 A1
20100006899 Becker et al. Jan 2010 A1
20100006900 Becker et al. Jan 2010 A1
20100006901 Becker et al. Jan 2010 A1
20100006902 Becker et al. Jan 2010 A1
20100006903 Becker et al. Jan 2010 A1
20100006947 Becker et al. Jan 2010 A1
20100006948 Becker et al. Jan 2010 A1
20100006950 Becker et al. Jan 2010 A1
20100006951 Becker et al. Jan 2010 A1
20100006986 Becker et al. Jan 2010 A1
20100011327 Becker et al. Jan 2010 A1
20100011328 Becker et al. Jan 2010 A1
20100011329 Becker et al. Jan 2010 A1
20100011330 Becker et al. Jan 2010 A1
20100011331 Becker et al. Jan 2010 A1
20100011332 Becker et al. Jan 2010 A1
20100011333 Becker et al. Jan 2010 A1
20100012981 Becker et al. Jan 2010 A1
20100012982 Becker et al. Jan 2010 A1
20100012983 Becker et al. Jan 2010 A1
20100012984 Becker et al. Jan 2010 A1
20100012985 Becker et al. Jan 2010 A1
20100012986 Becker et al. Jan 2010 A1
20100017766 Becker et al. Jan 2010 A1
20100017767 Becker et al. Jan 2010 A1
20100017768 Becker et al. Jan 2010 A1
20100017769 Becker et al. Jan 2010 A1
20100017770 Becker et al. Jan 2010 A1
20100017771 Becker et al. Jan 2010 A1
20100017772 Becker et al. Jan 2010 A1
20100019280 Becker et al. Jan 2010 A1
20100019281 Becker et al. Jan 2010 A1
20100019282 Becker et al. Jan 2010 A1
20100019283 Becker et al. Jan 2010 A1
20100019284 Becker et al. Jan 2010 A1
20100019285 Becker et al. Jan 2010 A1
20100019286 Becker et al. Jan 2010 A1
20100019287 Becker et al. Jan 2010 A1
20100019288 Becker et al. Jan 2010 A1
20100019308 Chan et al. Jan 2010 A1
20100023906 Becker et al. Jan 2010 A1
20100023907 Becker et al. Jan 2010 A1
20100023908 Becker et al. Jan 2010 A1
20100023911 Becker et al. Jan 2010 A1
20100025731 Becker et al. Feb 2010 A1
20100025732 Becker et al. Feb 2010 A1
20100025733 Becker et al. Feb 2010 A1
20100025734 Becker et al. Feb 2010 A1
20100025735 Becker et al. Feb 2010 A1
20100025736 Becker et al. Feb 2010 A1
20100032722 Becker et al. Feb 2010 A1
20100032723 Becker et al. Feb 2010 A1
20100032724 Becker et al. Feb 2010 A1
20100032726 Becker et al. Feb 2010 A1
20100037194 Becker et al. Feb 2010 A1
20100037195 Becker et al. Feb 2010 A1
20100096671 Becker et al. Apr 2010 A1
20100115484 Frederick May 2010 A1
20100203689 Bernstein et al. Aug 2010 A1
20100224943 Kawasaki Sep 2010 A1
20100229140 Strolenberg et al. Sep 2010 A1
20100232212 Anderson et al. Sep 2010 A1
20100252865 Van Der Zanden Oct 2010 A1
20100252896 Smayling Oct 2010 A1
20100264468 Xu Oct 2010 A1
20100270681 Bird et al. Oct 2010 A1
20100287518 Becker Nov 2010 A1
20100301482 Schultz et al. Dec 2010 A1
20110016909 Mirza et al. Jan 2011 A1
20110108890 Becker et al. May 2011 A1
20110108891 Becker et al. May 2011 A1
20110154281 Zach Jun 2011 A1
20110207298 Anderson et al. Aug 2011 A1
20110260253 Inaba Oct 2011 A1
20110298025 Haensch et al. Dec 2011 A1
20110317477 Liaw Dec 2011 A1
20120012932 Perng et al. Jan 2012 A1
20120118854 Smayling May 2012 A1
20120131528 Chen May 2012 A1
20120273841 Quandt et al. Nov 2012 A1
20130097574 Balabanov et al. Apr 2013 A1
20130200465 Becker et al. Aug 2013 A1
20130200469 Becker et al. Aug 2013 A1
20130207198 Becker et al. Aug 2013 A1
20130207199 Becker et al. Aug 2013 A1
20130254732 Kornachuk et al. Sep 2013 A1
20140197543 Kornachuk et al. Jul 2014 A1
20150249041 Becker et al. Sep 2015 A1
20150270218 Becker et al. Sep 2015 A1
20160079159 Kornachuk et al. Mar 2016 A1
Foreign Referenced Citations (76)
Number Date Country
0102644 Jul 1989 EP
0788166 Aug 1997 EP
1394858 Mar 2004 EP
1670062 Jun 2006 EP
1833091 Aug 2007 EP
1730777 Sep 2007 EP
2251901 Nov 2010 EP
2860920 Apr 2005 FR
58-182242 Oct 1983 JP
58-215827 Dec 1983 JP
61-182244 Aug 1986 JP
S63-310136 Dec 1988 JP
H01284115 Nov 1989 JP
03-165061 Jul 1991 JP
H05152937 Jun 1993 JP
H05211437 Aug 1993 JP
H05218362 Aug 1993 JP
H07-153927 Jun 1995 JP
2684980 Jul 1995 JP
1995-302706 Nov 1995 JP
1997-09289251 Nov 1997 JP
10-116911 May 1998 JP
1999-045948 Feb 1999 JP
2001-068558 Mar 2001 JP
2001-168707 Jun 2001 JP
2002-026125 Jan 2002 JP
2002-026296 Jan 2002 JP
2002-184870 Jun 2002 JP
2001-056463 Sep 2002 JP
2002-258463 Sep 2002 JP
2002-289703 Oct 2002 JP
2001-272228 Mar 2003 JP
2003-100872 Apr 2003 JP
2003-264231 Sep 2003 JP
2004-013920 Jan 2004 JP
2004-200300 Jul 2004 JP
2004-241529 Aug 2004 JP
2004-342757 Dec 2004 JP
2005-020008 Jan 2005 JP
2003-359375 May 2005 JP
2005-135971 May 2005 JP
2005-149265 Jun 2005 JP
2005-183793 Jul 2005 JP
2005-203447 Jul 2005 JP
2005-268610 Sep 2005 JP
2006-073696 Mar 2006 JP
2005-114752 Oct 2006 JP
2006-303022 Nov 2006 JP
2007-012855 Jan 2007 JP
2007-013060 Jan 2007 JP
2007-043049 Feb 2007 JP
2007-141971 Jun 2007 JP
2011-515841 May 2011 JP
10-0417093 Jun 1997 KR
10-1998-087485 Dec 1998 KR
1998-0084215 Dec 1998 KR
10-1999-0057943 Jul 1999 KR
10-2000-0028830 May 2000 KR
10-2002-0034313 May 2002 KR
10-2002-0070777 Sep 2002 KR
2003-0022006 Mar 2003 KR
2004-0005609 Jan 2004 KR
10-2005-0030347 Mar 2005 KR
2005-0037965 Apr 2005 KR
2006-0108233 Oct 2006 KR
386288 Apr 2000 TW
200709309 Mar 2007 TW
200709565 Mar 2007 TW
200811704 Mar 2008 TW
200947567 Nov 2009 TW
WO 2005104356 Nov 2005 WO
WO 2006014849 Feb 2006 WO
WO 2006052738 May 2006 WO
WO 2006090445 Aug 2006 WO
WO 2007014053 Feb 2007 WO
WO 2007103587 Sep 2007 WO
Non-Patent Literature Citations (207)
Entry
P. Mishra et al., FinFET Circuit Design, Nanoelectronic Circuit Design, pp. 23-54, 2011.
D. D Pham et al., FinFET Device Junction Formation Challenges, @006 International Workshop on Junction Technology, pp. 73-77, Aug. 2006.
Acar, et al., “A Linear-Centric Simulation Framework for Parametric Fluctuations”, 2002, IEEE, Carnegie Mellon University USA, pp. 1-8.
Amazawa, et al., “Fully Planarized Four-Level Interconnection with Stacked VLAS Using CMP of Selective CVD-A1 and Insulator and its Application to Quarter Micron Gate Array LSIs”, 1995, IEEE, Japan, pp. 473-476.
Axelrad et al. “Efficient Full-Chip Yield Analysis Methodology for OPC-Corrected VLSI Design”, 2000, International Symposium on Quality Electronic Design (ISQED).
Balasinski et al. “Impact of Subwavelength CD Tolerance on Device Performance”, 2002, SPIE.
Burkhardt, et al., “Dark Field Double Dipole Lithography (DDL) for Back-End-Of-Line Processes”, 2007, SPIE Proceeding Series, vol. 6520; 65200K.
Capetti, et al., “Sub kl=0.25 Lithography with Double Patterning Technique for 45nm Technology Node Flash Memory Devices at λ=193nm”, 2007, SPIE Proceeding Series, vol. 6520; 65202K.
U.S. Appl. No. 60/625,342, filed May 25, 2006, Pileggi et al.
Capodieci, L., et al., “Toward a Methodology for Manufacturability-Driven Design Rule Exploration,” DAC 2004, Jun. 7-11, 2004, San Diego, CA.
Chandra, et al., “An Interconnect Channel Design Methodology for High Performance Integrated Circuits”, 2004, IEEE, Carnegie Mellon University, pp. 1-6.
Cheng, et al., “Feasibility Study of Splitting Pitch Technology on 45nm Contact Patterning with 0.93 NA”, 2007, SPIE Proceeding Series, vol. 6520; 65202N.
Chow, et al., “The Design of a SRAM-Based Field-Programmable Gate Array—Part II: Circuit Design and Layout”, 1999, IEEE, vol. 7 # 3 pp. 321-330.
Clark et al. “Managing Standby and Active Mode Leakage Power in Deep Sub-Micron Design”, Aug. 9-11, 2004, ACM.
Cobb et al. “Using OPC to Optimize for Image Slope and Improve Process Window”, 2003, SPIE.
Devgan “Leakage Issues in IC Design: Part 3”, 2003, CCAD.
DeVor, et al., “Statistical Quality Design and Control”, 1992, Macmillan Publishing Company, pp. 264-267.
Dictionary.com, “channel,” in Collins English Dictionary—Complete & Unabridged 10th Edition. Source location: HarperCollins Publishers. http://dictionary.reference.com/browse/channel. Available: http://dictionary.reference.com.
Dusa, et al. “Pitch Doubling Through Dual Patterning Lithography Challenges in Integration and Litho Budgets”, 2007, SPIE Proceedings Series, vol. 6520; 65200G.
El-Gamal, “Fast, Cheap and Under Control: The Next Implementation Fabric”, Jun. 2-6, 2003, ACM Press, pp. 354-355.
Frankel, “Quantum State Control Interference Lithography and Trim Double Patterning for 32-16nm Lithography”, 2007, SPIE; Proceeding Series, vol. 6520; 65202L.
Garg, et al. “ Lithography Driven Layout Design”, 2005, IEEE.
Grobman et al. “Reticle Enhancement Technology Trends: Resource and Manufacturability Implications for the Implementation of Physical Designs” Apr. 1-4, 2001, ACM.
Grobman et al. “Reticle Enhancement Technology: Implications and Challenges for Physical Design” Jun. 18-22, 2001, ACM.
Gupta et al. “Enhanced Resist and Etch CD Control by Design Perturbation”, Oct. 4-7, 2006, Society of Photo-Optical Instrumentation Engineers.
Gupta et al. “A Practical Transistor-Level Dual Threshold Voltage Assignment Methodology”, 2005, Sixth International Symposium on Quality Electronic Design (ISQED).
Gupta et al. “Detailed Placement for Improved Depth of Focus and Cd Control”, 2005, ACM.
Gupta et al. “Joining the Design and Mask Flows for Better and Cheaper Masks”, Oct. 14-17, 2004, Society of Photo-Optical Instrumentation Engineers.
Gupta et al. “Manufacturing-Aware Physical Design”, 2003, ACM.
Gupta et al. “Selective Gate-Length Biasing for Cost-Effective Runtime Leakage Control”, Jun. 7-11, 2004, ACM.
Gupta et al. “Wafer Topography-Aware Optical Proximity Correction for Better DOF Margin and CD Control”, Apr. 13-15, 2005, SPIE.
Gupta, Puneet, et al., “Manufacturing-aware Design Methodology for Assist Feature Correctness,” 2005.
Ha et al., “Reduction in the Mask Error Factor by Optimizing the Diffraction Order of a Scattering Bar in Lithography,” Journal of the Korean Physical Society, vol. 46, No. 5, May 2005, pp. 1213-1217.
Halpin et al., “Detailed Placement with Net Length Constraints,” Publication Year 2003, Proceedings of the 3rd IEEE International Workshop on System-on-Chip for Real-Time Applications, pp. 22-27.
Hayashida, et al., “Manufacturable Local Interconnect technology Fully Compatible with Titanium Salicide Process”, Jun. 11-12, 1991, VMIC Conference.
Heng, et al., “A VLSI Artwork Legalization Technique Base on a New Criterion of Minimum Layout Perturbation”, 1997, ACM Press, pp. 116-121.
Heng, et al., “Toward Through-Process Layout Quality Metrics”, Mar. 3-4, 2005, Society of Photo-Optical Instrumentation Engineers.
Hu, et al., “Synthesis and Placement Flow for Gain-Based Programmable Regular Fabrics”, Apr. 6-9, 2003, ACM Press, pp. 197-203.
Hur et al., “Mongrel: Hybrid Techniques for Standard Cell Placement,” Publication Year 2000, IEEE/ACM International Conference on Computer Aided Design, ICCAD-2000, pp. 165-170.
Hutton, et al., “A Methodology for FPGA to Structured-ASIC Synthesis and Verification”, 2006, EDAA, pp. 64-69.
INTEL Core Microarchitecture White Paper “Introducing the 45 nm Next-Generation Intel Core Microarchitecture,” 2007, Intel Corporation.
Jayakumar, et al., “A Metal and VIA Maskset Programmable VLSI Design Methodology using PLAs”, 2004, IEEE, pp. 590-594.
Jhaveri, T. et al., Maximization of Layout Printability/Manufacturability by Extreme Layout Regularity, Proc. of the SPIE, Apr. 2006.
Kang, S.M., Metal-Metal Matrix (M3) for High-Speed MOS VLSI Layout, IEEE Trans. on CAD, vol. CAD-6, No. 5, Sep. 1987.
Kheterpal, et al., “Design Methodology for IC Manufacturability Based on Regular Logic-Bricks”, DAC, Jun. 13-17, 2005, IEEE/AMC, vol. 6520.
Kheterpal, et al., “Routing Architecture Exploration for Regular Fabrics”, DAC, Jun. 7-11, 2004, ACM Press, pp. 204-207.
Kim, et al., “Double Exposure Using 193nm Negative Tone Photoresist”, 2007, SPIE Proceeding Series, vol. 6520; 65202M.
Kim, et al., “Issues and Challenges of Double Patterning Lithography in DRAM”, 2007, SPIE Proceeding Series, vol. 6520; 65200H.
Koorapaty, et al., “Exploring Logic Block Granularity for Regular Fabrics”, 2004, IEEE, pp. 1-6.
Koorapaty, et al., “Heterogeneous Logic Block Architectures for Via-Patterned Programmable Fabric”, 13th International Conference on Field Programmable Logic and Applications (FPL) 2003, Lecture Notes in Computer Science (LNCS), Sep. 2003, Springer-Verlag, vol. 2778, pp. 426-436.
Koorapaty, et al., “Modular, Fabric-Specific Synthesis for Programmable Architectures”, 12th International Conference on Field Programmable Logic and Applications (FPL—2002, Lecture Notes in Computer Science (LNCS)), Sep. 2002, Springer-Verlag, vol. 2438 pp. 132-141.
Kuh et al., “Recent Advances in VLSI Layout,” Publication Year 1990, Proceedings of the IEEE, vol. 78, Issue 2, pp. 237-263.
Lavin et al. “Backend DAC Flows for “Restrictive Design Rules””, 2004, IEEE.
Li, et al., “A Linear-Centric Modeling Approach to Harmonic Balance Analysis”, 2002, IEEE, pp. 1-6.
Li, et al., “Nonlinear Distortion Analysis Via Linear-Centric Models”, 2003, IEEE, pp. 897-903.
Liebmann et al., “Integrating DfM Components Into a Cohesive Design-To-Silicon Solution”, IBM Systems and Technology Group, IBM Research, pp. 1-12.
Liebmann et al., “Optimizing Style Options for Sub-Resolution Assist Features,” Proc. of SPIE vol. 4346, 2001, pp. 141-152.
Liebmann, L. W., Layout Impact of Resolution Enhancement Techniques: Impediment or Opportunity?, International Symposium on Physical Design, 2003.
Liebmann, et al., “High-Performance Circuit Design for the RET-Enabled 65nm Technology Node”, Feb. 26-27, 2004, SPIE: Proceeding Series, vol. 5379 pp. 20-29.
Liu, et al., “Double Patterning with Multilayer Hard Mask Shrinkage for Sub-0.25 k1 Lithography”, 200, SPIE Proceeding Series, vol. 6520; 65202J.
Mansfield et al., “Lithographic Comparison of Assist Feature Design Strategies,” Proc. of SPIE, vol. 4000, 2000, pp. 63-76.
Miller, “Manufacturing-Aware Design Helps Boost IC Yield”, Sep. 9, 2004, http://www.eetimes.com/showArticle.jhtml?articleID=47102054.
Mishra, P., et al., “FinFET Circuit Design,” Nanoelectronic Circuit Design, pp. 23-54, 2011.
Mo, et al., “Checkerboard: A Regular Structure and its Synthesis, International Workshop on Logic and Synthesis”, 2003, Department of Electrical Engineering and Computer Sciences, UC Berkeley, California, pp. 1-7.
Mo, et al., “PLA-Based Regular Structures and Their Synthesis”, 2003, Department of Electrical Engineering and Computer Sciences, IEEE, pp. 723-729.
Mo, et al., “Regular Fabrics in Deep Sub-Micron Integrated-Circuit Design”, 2004, Kluwer Academic Publishers, Entire Book.
Moore, Samuel K., “Intel 45-nanometer Penryn Processors Arrive,” Nov. 13, 2007, IEEE Spectrum, http://spectrum.ieee.org/semiconductors/design/intel-45nanometer-penryn-processors-arrive.
Mutoh et al. “1-V Power Supply High-Speed Digital Circuit Technology with Multithreshold-Voltage CMOS”, 1995, IEEE.
Op de Beek, et al., “Manufacturability issues with Double Patterning for 50nm half pitch damascene applications, using RELACS® shrink and corresponding OPC”, 2007, SPIE Proceeding Series, vol. 6520; 652001.
Or-Bach, “Programmable Circuit Fabrics”, Sep. 18, 2001, e-ASIC, pp. 1-36.
Otten, et al., “Planning for Performance”, DAC 1998, ACM Inc., pp. 122-127.
Pack et al. “Physical & Timing Verification of Subwavelength-Scale Designs-Part I: Lithography Impact on MOSFETs”, 2003, SPIE.
Pandini, et al., “Congestion-Aware Logic Synthesis”, 2002, IEEE, pp. 1-8.
Pandini, et al., “Understanding and Addressing the Impact of Wiring Congestion During Technology Mapping”, ISPD Apr. 7-10, 2002, ACM Press, pp. 131-136.
Patel, et al., “An Architectural Exploration of Via Patterned Gate Arrays, ISPD 2003”, Apr. 6, 2003, pp. 184-189.
Pileggi, et al., “Exploring Regular Fabrics to Optimize the Perfointance-Cost Trade-Offs, Proceedings of the 40th ACM/IEEE Design Automation Conference (DAC) 2003”, Jun. 2003, ACM Press, pp. 782-787.
Pham, D., et al., “FINFET Device Junction Formation Challenges,” 2006 International Workshop on Junction Technology, pp. 73-77, Aug. 2006.
Poonawala, et al., “ILT for Double Exposure Lithography with Conventional and Novel Materials”, 2007, SPIE Proceeding Series, vol. 6520; 65202Q.
Qian et al. “Advanced Physical Models for Mask Data Verification and Impacts on Physical Layout Synthesis” 2003. IEEE.
Ran, et al., “An Integrated Design Flow for a Via-Configurable Gate Array”, 2004, IEEE, pp. 582-589.
Ran, et al., “Designing a Via-Configurable Regular Fabric”, Custom Integrated Circuits Conference (CICC). Proceedings of the IEEE, Oct. 1, 2004, pp. 423-426.
Ran, et al., “On Designing Via-Configurable Cell Blocks for Regular Fabrics” Proceedings of the Design Automation Conference (DAC) 2004, Jun. 2004, ACM Press, s 198-203.
Ran, et al., “The Magic of a Via-Configurable Regular Fabric”, Proceedings of the IEEE International Conference on Computer Design (ICCD) Oct. 2004.
Ran, et al., “Via-Configurable Routing Architectures and Fast Design Mappability Estimation for Regular Fabrics”, 2005, IEEE, pp. 25-32.
Reis, et al., “Physical Design Methodologies for Performance Predictability and Manufacturability”, Apr. 14-16, 2004, ACM Press, pp. 390-397.
Robertson, et al., “The Modeling of Double Patterning Lithographic Processes”, 2007, SPIE Proceeding Series, vol. 6520; 65200J.
Rovner, “Design for Manufacturability in Via Programmable Gate Arrays”, May 2003, Graduate School of Carnegie Mellon University.
Sengupta, “An Integrated CAD Framework Linking VLSI Layout Editors and Process Simulators”, 1998, Thesis for Rice University, pp. 1-101.
Sengupta, et al., “An Integrated CAD Framework Linking VLSI Layout Editors and Process Simulators”, 1996, SPIE Proceeding Series, vol. 2726; pp. 244-252.
Sherlekar, “Design Considerations for Regular Fabrics”, Apr. 18-21, 2004, ACM Press, pp. 97-102.
Shi et al., “Understanding the Forbidden Pitch and Assist Feature Placement,” Proc. of SPIE vol. 4562, 2002, pp. 968-979.
Smayling et al., “APF Pitch Halving for 22 nm Logic Cells Using Gridded Design Rules,” Proceedings of SPIE, USA, vol. 6925, Jan. 1, 2008, pp. 69251E-1-69251E-7.
Sreedhar et al. “ Statistical Yield Modeling for Sub-Wavelength Lithography”, 2008, IEEE.
Stapper, “Modeling of Defects in Integrated Circuit Photolithographic Patterns”, Jul. 1, 1984, IBM, vol. 28 # 4, pp. 461-475.
Taylor, et al., “Enabling Energy Efficiency in Via-Patterned Gate Array Devices”, Jun. 7-11, 2004, ACM Press, pp. 874-877.
Tian et al. “Model-Based Dummy Feature Placement for Oxide Chemical—Mechanical Polishing Manufacturability” 2000, ACM.
Tong, et al., “Regular Logic Fabrics for a Via Patterned Gate Array (VPGA), Custom Integrated Circuits Conference”, Sep. 2003, Proceedings of the IEEE, pp. 53-56.
Vanleenhove, et al., “A Litho-Only Approach to Double Patterning”, 2007, SPIE Proceeding Series, vol. 6520; 65202F.
Wang, et al., “Performance Optimization for Gridded-Layout Standard Cells”, 2004, vol. 5567 SPIE.
Wang, J. et al., Standard Cell Layout with Regular Contact Placement, IEEE Trans. on Semicon. Mfg., vol. 17, No. 3, Aug. 2004.
Webb, Clair, “Layout Rule Trends and Affect upon CPU Design”, 2006, vol. 6156 SPIE.
Webb, Clair, “45nm Design for Manufacturing,” Intel Technology Journal, vol. 12, Issue 02, Jun. 17, 2008, ISSN 1535-864X, pp. 121-130.
Wenren, et al., “The Improvement of Photolithographic Fidelity of Two-dimensional Structures Though Double Exposure Method”, 2007, SPIE Proceeding Series, vol. 6520; 652021.
Wilcox, et al., “Design for Manufacturability: A Key to Semiconductor Manufacturing Excellence”, 1998, IEEE, pp. 308-313.
Wu, et al., “A Study of Process Window Capabilities for Two-dimensional Structures under Double Exposure Condition”, 2007, SPIE Proceeding Series, vol. 6520; 65202O.
Xiong, et al., “The Constrained Via Minimization Problem for PCB and VLSI Design”, 1988, ACM Press/IEEE, pp. 573-578.
Yamamaoto, et al., “New Double Exposure Technique without Alternating Phase Shift Mask”, 2007, SPIE, Proceeding Series, vol. 6520; 652052P.
Yang, et al., “Interconnection Driven VLSI Module Placement Based on Quadratic Programming and Considering Congestion Using LFF Principles”, 2004, IEEE, pp. 1243-1247.
Yao, et al., “Multilevel Routing With Redundant Via Insertion”, Oct. 2006, IEEE, pp. 1148-1152.
Zheng, et al.“Modeling and Analysis of Regular Symmetrically Structured Power/Ground Distribution Networks”, DAC, Jun. 10-14, 2002, ACM Press, pp. 395-398.
Zhu, et al., “A Stochastic Integral Equation Method for Modeling the Rough Surface Effect on Interconnect Capacitance”, 2004, IEEE.
Zhu, et al., “A Study of Double Exposure Process Design with Balanced Performance Parameters for Line/Space Applications”, 2007, SPIE Proceeding Series, vol. 6520; 65202H.
Zuchowski, et al., “A Hybrid ASIC and FPGA Architecture”, 2003, IEEE, pp. 187-194.
Firedberg, et al., “Modeling Within-Field Gate Length Spatial Variation for Process-Design Co-Optimization,” 2005 Proc. of SPIE vol. 5756, pp. 178-188.
Hakko, et al., “Extension of the 2D-TCC Technique to Optimize Mask Pattern Layouts,” 2008 Proc. of SPIE vol. 7028, 11 pages.
Kawashima, et al., “Mask Optimization for Arbitrary Patterns with 2D-TCC Resolution Enhancement Technique,” 2008 Proc. of SPIE vol. 6924, 12 pages.
Rosenbluth, et al., “Optimum Mask and Source Patterns to Print a Given Shape,” 2001 Proc. of SPIE vol. 4346, pp. 486-502.
Socha, et al., “Simultaneous Source Mask Optimization (SMO),” 2005 Proc. of SPIE vol. 5853, pp. 180-193.
Wong, et al., “Resolution Enhancement Techniques and Design for Manufacturability: Containing and Accounting for Variabilities in Integrated Circuit Creation,” J. Micro/Nanolith. MEMS MOEMS, Jul.-Sep. 2007, vol. 6(3), 2 pages.
Yamazoe, ct al., “Resolution Enhancement by Aerial Image Approximation with 2D-TCC,” 2007 Proc. of SPIE vol. 6730, 12 pages.
Yu, ct al., “True Process Variation Aware Optical Proximity Correction with Variational Lithography Modeling and Model Calibration,” J. Micro/Nanolith. MEMS MOEMS, Jul.-Sep. 2007 vol. 6(3), 16 pages.
Alam, Syed M. et al., “A Comprehensive Layout Methodology and Layout-Specific Circuit Analyses for Three-Dimensional Integrated Circuits,” Mar. 21, 2002.
Alam, Syed M. et al., “Layout-Specific Circuit Evaluation in 3-D Integrated Circuits,” May 2003.
Aubusson, Russel, “Wafer-Scale Integration of Semiconductor Memory,” Apr. 1979.
Bachtold, “Logic Circuits with Carbon,” Nov. 9, 2001.
Baker, R. Jacob, “CMOS: Circuit Design, Layout, and Simulation (2nd Edition),” Nov. 1, 2004.
Baldi et al., “A Scalable Single Poly EEPROM Cell for Embedded Memory Applications,” pp. 1-4, Fig. 1, Sep. 1997.
Cao, Ke, “Design for Manufacturing (DFM) in Submicron VLSI Design,” Aug. 2007.
Capodieci, Luigi, “From Optical Proximity Correction to Lithography-Driven Physical Design (1996-2006): 10 years of Resolution Enhancement Technology and the roadmap enablers for the next decade,” Proc. SPIE 6154, Optical Microlithography XIX, 615401, Mar. 20, 2006.
Chang, Leland et al., “Stable SRAM Cell Design for the 32 nm Node and Beyond,” Jun. 16, 2005.
Cheung, Peter, “Layout Design,” Apr. 4, 2004.
Chinnery, David, “Closing the Gap Between ASIC & Custom: Tools and Techniques for High-Performance ASIC Design,” Jun. 30, 2002.
Chou, Dyiann et al., “Line End Optimization through Optical Proximity Correction (OPC): A Case Study,” Feb. 19, 2006.
Clein, Dan, “CMOS IC Layout: Concepts, Methodologies, and Tools,” Dec. 22, 1999.
Cowell, “Exploiting Non-Uniform Access Time,” Jul. 2003.
Das, Shamik, “Design Automation and Analysis of Three-Dimensional Integrated Circuits,” May 1, 2004.
Dehaene, W. et al., “Technology-Aware Design of SRAM Memory Circuits,” Mar. 2007.
Deng, Liang et al., “Coupling-aware Dummy Metal Insertion for Lithography,” p. 1, col. 2, 2007.
Devoivre et al., “Validated 90nm CMOS Technology Platform with Low-k Copper Interconnects for Advanced System-on-Chip (SoC),” 2002.
Enbody, R. J., “Near-Optimal n-Layer Channel Routing,” 1986.
Ferretti, Marcos et al., “High Performance Asynchronous ASIC Back-End Design Flow Using Single-Track Full-Buffer Standard Cells,” Apr. 23, 2004.
Garg, Manish et al., “Litho-driven Layouts for Reducing Perfolinance Variability,” p. 2, Figs. 2b-2c, May 23, 2005.
Greenway, Robert et al., “32nm 1-D Regular Pitch SRAM Bitcell Design for Interference-Assisted Lithography,” 2008.
Gupta et al., “Modeling Edge Placement Error Distribution in Standard Cell Library,” Feb. 23-24, 2006.
Grad, Johannes et al., “A standard cell library for student projects,” Proceedings of the 2003 IEEE International Conference on Microelectronic Systems Education, Jun. 2, 2003.
Hartono, Roy et al., “Active Device Generation for Automatic Analog Layout Retargeting Tool,” May 13, 2004.
Hartono, Roy et al., “IPRAIL—Intellectual Property Reuse-based Analog IC Layout Automation,” Mar. 17, 2003.
Hastings, Alan, “The Art of Analog Layout (2nd Edition),” Jul. 4, 2005.
Hurata et al., “A Genuine Design Manufacturability Check for Designers,” 2006.
Institute of Microelectronic Systems, “Digital Subsystem Design,” Oct. 13, 2006.
Ishida, M. et al., “A Novel 6T-SRAM Cell Technology Designed with Rectangular Patterns Scalable beyond 0.18 pm Generation and Desirable for Ultra High Speed Operation,” 1998.
Jakusovszky, “Linear IC Parasitic Element Simulation Methodology,” Oct. 1, 1993.
Jangkrajarng, Nuttorn et al., “Template-Based Parasitic-Aware Optimization and Retargeting of Analog and RF Integrated Circuit Layouts,” Nov. 5, 2006.
Kahng, Andrew B., “Design Optimizations DAC-2006 DFM Tutorial, part V),” 2006.
Kang, Sung-Mo et al., “CMOS Digital Integrated Circuits Analysis & Design,” Oct. 29, 2002.
Kottoor, Mathew Francis, “Development of a Standard Cell Library based on Deep Sub-Micron SCMOS Rules using Open Source Software (MS Thesis),” Aug. 1, 2005.
Kubicki, “Intel 65nm and Beyond (or Below): IDF Day 2 Coverage (available at http://www.anandtech.com/show/1468/4),” Sep. 9, 2004.
Kuhn, Kelin J., “Reducing Variation in Advanced Logic Technologies: Approaches to Process and Design for Manufacturability of Nanoscale CMOS,” p. 27, Dec. 12, 2007.
Kurokawa, Atsushi et al., “Dummy Filling Methods for Reducing Interconnect Capacitance and Number of Fills, Proc. of ISQED,” pp. 586-591, 2005.
Lavin, Mark, “Open Access Requirements from RDR Design Flows,” Nov. 11, 2004.
Liebmann, Lars et al., “Layout Methodology Impact of Resolution Enhancement Techniques,” pp. 5-6, 2003.
Liebmann, Lars et al., “TCAD development for lithography resolution enhancement,” Sep. 2001.
Lin, Chung-Wei et al., “Recent Research and Emerging Challenges in Physical Design for Manufacturability/Reliability,” Jan. 26, 2007.
McCullen, Kevin W., “Layout Techniques for Phase Correct and Gridded Wiring,” pp. 13, 17, Fig. 5, 2006.
MOSIS, “Design Rules MOSIS Scalable CMOS (SCMOS) (Revision 8.00),” Oct. 4, 2004.
MOSIS, “MOSIS Scalable CMOS (SCMOS) Design Rules (Revision 7.2).”
Muta et al., “Manufacturability-Aware Design of Standard Cells,” pp. 2686-2690, Figs. 3, 12, Dec. 2007.
Na, Kee-Yeol et al., “A Novel Single Polysilicon EEPROM Cell With a Polyfinger Capacitor,” Nov. 30, 2007.
Pan et al., “Redundant Via Enahnced Maze Routing for Yield Improvement,” 2005.
Park, Tae Hong, “Characterization and Modeling of Pattern Dependencies in Copper Interconnects for Integrated Circuits,” Ph.D. Thesis, MIT, 2002.
Patel, Chetan, “An Architectural Exploration of Via Patterned Gate Arrays (CMU Master's Project),” May 2003.
Pease, R. Fabian et al., “Lithography and Other Patterning Techniques for Future Electronics,” 2008.
Serrano, Diego Emilio, Pontificia Universidad Javeriana Facultad De Ingenieria, Departamento De Electronica, “Diselio De Multiplicador 4×8 en VLSI, Introduccion al VLSI,” 2006.
Pramanik, “Impact of layout on variability of devices for sub 90nm technologies,” 2004.
Pramanik, Dipankar et al., “Lithography-driven layout of logic cells for 65-nm node (SPIE Proceedings vol. 5042),” Jul. 10, 2003.
Roy et al., “Extending Aggressive Low-K1 Design Rule Requirements For 90 and 65 Nm Nodes Via Simultaneous Optimization of Numerical Aperture, Illumination and Optical Proximity Correction,” J.Micro/Nanolith, MEMS MOEMS, 4(2), 023003, Apr. 26, 2005.
Saint, Christopher et al., “IC Layout Basics: A Practical Guide,” Chapter 3, Nov. 5, 2001.
Saint, Christopher et al., “IC Mask Design: Essential Layout Techniques,” 2002.
Scheffer, “Physical CAD Changes to Incorporate Design for Lithography and Manufacturability,” Feb. 4, 2004.
Smayling, Michael C., “Part 3: Test Structures, Test Chips, In-Line Metrology & Inspection,” 2006.
Spence, Chris, “Full-Chip Lithography Simulation and Design Analysis: How OPC is changing IC Design, Emerging Lithographic Technologies IX,” May 6, 2005.
Subramaniam, Anupama R., “Design Rule Optimization of Regular layout for Leakage Reduction in Nanoscale Design,” pp. 474-478, Mar. 24, 2008.
Tang, C. W. et al., “A compact large signalmodel of LDMOS,” 2002.
Taylor, Brian et al., “Exact Combinatorial Optimization Methods for Physical Design of Regular Logic Bricks,” Jun. 8, 2007.
Tian, Ruiqi et al., “Dummy Feature Placement for Chemical-Mechanical Uniformity in a Shallow Trench Isolation Process,” IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 21, No. 1, pp. 63-71, Jan. 2002.
Tian, Ruiqi et al., “Proximity Dummy Feature Placement and Selective Via Sizing for Process Uniformity in a Trench-First-Via-Last Dual-Inlaid Metal Process,” Proc. of IITC, pp. 48-50, 2001.
Torres, J. A. et al., “RET Compliant Cell Generation for sub-130nm Processes,” 2002.
Uyemura, John P., “Introduction to VLSI Circuits and Systems,” Chapters 2, 3, 5, and Part 3, 2002.
Uyemura, John, “Chip Design for Submicron VLSI: CMOS Layout and Simulation,” Chapters 2-5, 7-9, Feb. 8, 2005.
Verhaegen et al., “Litho Enhancements for 45nm-nod MuGFETs,” Aug. 1, 2005.
Wong, Ban P., “Bridging the Gap between Dreams and Nano-Scale Reality (DAC-2006 DFM Tutorial),” 2006.
Wang, Dunwei et al., “Complementary Symmetry Silicon Nanowire Logic: Power-Efficient Inverters with Gain,” 2006.
Wang, Jun et al., “Effects of grid-placed contacts on circuit performance,” pp. 135-139, Figs. 2,4-8, Feb. 28, 2003.
Wang, Jun et al., “Standard cell design with regularly placed contacts and gates (SPIE vol. 5379),” 2004.
Wang, Jun et al., “Standard cell design with resolution-enhancement-technique-driven regularly placed contacts and gates,” J. Micro/Nanolith, MEMS MOEMS, 4(1), 013001, Mar. 16, 2005.
Watson, Bruce, “Challenges and Automata Applications in Chip-Design Software,” pp. 38-40, 2007.
Weste, Neil et al., “CMOS VLSI Design: A Circuits and Systems Perspective, 3rd Edition,” May 21, 2004.
Wingerden, Johannes van, “Experimental verification of improved printability for litho-driven designs,” Mar. 14, 2005.
Wong, Alfred K., “Microlithography: Trends, Challenges, Solutions and Their Impact on Design,” 2003.
Xu, Gang, “Redundant-Via Enhanced Maze Routing for Yield Improvement,” 2005.
Yang, Jie, “Manufacturability Aware Design,” pp. 93, 102, Fig. 5.2, 2007.
Yongshun, Wang et al., “Static Induction Devices with Planar Type Buried Gate,” 2004.
Zobrist, George (editor), “Progress in Computer Aided VLSI Design: Implementations (Ch. 5),” 1990.
International Search Report and Written Opinion for PCT Application No. PCT/US2013/021345.
Petley, Graham, “VLSI and ASIC Technology Standard Cell Library Design,” from website www.vlsitechnology.org, Jan. 11, 2005.
Liebmann, Lars, et al., “Layout Optimization at the Pinnacle of Optical Lithography,” Design and Process Integration for Microelectronic Manufacturing II, Proceedings of SPIE vol. 5042, Jul. 8, 2003.
Kawasaki, H., et al., “Challenges and Solutions of FinFET Integration in an SRAM Cell and a Logic Circuit for 22 nm node and beyond,” Electron Devices Meeting (IEDM), 2009 IEEE International, IEEE, Piscataway, NJ, USA, Dec. 7, 2009, pp. 1-4.
Related Publications (1)
Number Date Country
20100287518 A1 Nov 2010 US
Provisional Applications (1)
Number Date Country
61176058 May 2009 US