This application is a §371 of International Application No. PCT/EP2012/055746 filed Mar. 30, 2012, and claims priority from German Patent Application No. 10 2011 006 726.4 filed Apr. 4, 2011.
The invention relates to a ceramic printed circuit board comprising an upper side and a lower side, sintered metallization regions being arranged on the upper side, and the lower side being configured as a cooling body.
Such a ceramic printed circuit board is known from WO 2007/107601 A3.
It is an object of the invention to improve a ceramic printed circuit board according to the preamble of the claim 1 in such a manner that heat the dissipation of components on the upper side of the printed circuit board is improved.
According to the invention, this object is achieved in that sintered metallization regions, onto which a metallic cooling body is soldered, are also arranged on the lower side. By means of the sintered metallization regions on the lower side and by soldering on the metallic cooling body, particularly good heat dissipation from the upper side of the printed circuit board up into the metallic cooling body is achieved. Preferably, a high-melting brazing solder with a melting point between 450 and 660° C. is used. Metallic cooling bodies exhibit high thermal conductivity.
In one embodiment of the invention, the printed circuit board consists of aluminum oxide or aluminum nitride. Preferably, the printed circuit board is made of aluminum nitride, which has a particularly good thermal conductivity.
In a preferred embodiment, the metallic cooling body consists of aluminum. Aluminum has a high thermal conductivity.
In one embodiment according to the invention, the metallic cooling body consists of a carrier plate having a connection side and an active side, and the cooling body is soldered with the connection side onto the metallization regions of the lower side of the printed circuit board, and has protruding cooling elements on the active side. Due to the protruding cooling elements, the surface of the cooling body is enlarged and is able to better emit the introduced heat.
In one embodiment according to the invention, the protruding cooling elements are a plurality of pins like a type of a pin cushion. Through this, the surface is extremely enlarged within a minimum of space.
In one embodiment of the invention, the upper side of the printed circuit board is concave or convex, so that when using the circuit board as a lamp, light can be focused or scattered.
A method according to the invention for producing a printed circuit board is characterized in that a ceramic substrate is produced that is pre-metallized on both sides by sintered metallization regions, that the metallization regions are metallized with gold, silver, silver alloys, active solder with galvanic coatings such as Ni+Au or with aluminum using thick film technology or alternative methods such as thin film technology or plasma spraying, and subsequently, the cooling body is soldered with its connection side onto the lower side of the printed circuit board, a high-melting brazing solder with a melting point between 450 and 660° C. preferably being used as a solder. By soldering in the mentioned temperature range using a brazing solder, a required firm connection is achieved while obtaining a good heat transfer rate. No clamping, screwing or glueing takes place since this involves shortcomings that are avoided by soldering using a brazing solder.
Preferably, the printed circuit board is used as a lamp or as part of a lamp, and LEDs, optionally with an associated circuit, and/or electrical components being soldered onto the upper side of the printed circuit board.
For protection, the circuit can be covered with an opaque cover.
For controlling the emitted light, single lenses or group lenses can be placed on the LEDs.
The printed circuit board 2 according to the invention (see
The ceramic substrate, preferably made from AIN, that is pre-metallized on both sides by sintered metallization regions is metallized (base metallization) with gold, silver, silver alloys, active solder with galvanic coatings such as Ni+Au or with aluminum using thick film technology or alternative methods (thin film technology, plasma spraying). Both sides of the substrate can also be coated with different metallization. Preferably, the printed circuit board consists of aluminum nitride because in this case, the thermal conductivity is extremely high.
For reasons of high thermal conductivity, a metallic cooling body 3 of suitable geometry is soldered onto the lower side of the ceramic printed circuit board 2 or the side with the base metallization. The cooling body 3 preferably consists of aluminum (injection molding, casting or the like). The solder preferably is a high-melting brazing solder with a melting point between 450 and 660° C. which firmly connects the printed circuit board 2 via the base metallization thereof and the brazing solder to the metallic cooling body 3. No clamping, screwing or glueing takes place.
The ceramic printed circuit board 2 that has sintered metallization regions on both sides and therefore is a circuit board on both sides, or can be used as such, is preferably flat on one side toward the cooler side, i.e., toward the metallic cooling body 3. On the component side, i.e., on the upper side 2a where preferably LEDs 6 are arranged, the surface can also be curved convexly or concavely. Through this, if the components are LEDs 6, the light is emitted in a scattered or bundled manner.
The brazing solder used for soldering on the metallic cooling body 3 preferably is a commercially available aluminum brazing solder (TMP aluminum soldering paste 39) as it is used for repairing aluminum components, which, at 570° C. on a heating plate or in a suitable soldering furnace, is firmly connected with good thermal conductivity (above 50 W/mK) to an inexpensive (oxide-free) aluminum cooler 3 that is thoroughly cleaned mechanically or chemically on the mounting side, i.e., the lower side 2b.
The electrical components such as diodes, LEDs 6, transistors or the like, together with potentially required further components such as resistors or drivers, are then soldered in a second step with a soft solder in the temperature range of preferably 100-400° C. onto the upper side 2A of the pre-metallized ceramic printed circuit board 2. This provides for good transfer in particular for power components.
The connection to the electrical network is preferably carried out through connector strips on the upper side 2a of the ceramic, or via bond wires from the ceramic to the outside. In the case of soldered-on LEDs 6, single lenses or group lenses can be glued on or soldered on for protection or for light scattering. Also, opaque covers can serve for sealing the circuit.
The ceramic printed circuit board according to the invention can be used as a lamp or as part of a lamp.
Number | Date | Country | Kind |
---|---|---|---|
10 2011 006 726 | Apr 2011 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/055746 | 3/30/2012 | WO | 00 | 9/30/2013 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2012/136579 | 10/11/2012 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3561110 | Fuelner | Feb 1971 | A |
5299090 | Brady et al. | Mar 1994 | A |
6003586 | Beane | Dec 1999 | A |
7269017 | Berlin | Sep 2007 | B2 |
7521789 | Rinehart et al. | Apr 2009 | B1 |
7659551 | Loh | Feb 2010 | B2 |
8040676 | Kluge | Oct 2011 | B2 |
20020176250 | Bohler | Nov 2002 | A1 |
20040144561 | Osanai et al. | Jul 2004 | A1 |
20040208210 | Inoguchi | Oct 2004 | A1 |
20040234213 | Narayan | Nov 2004 | A1 |
20080080187 | Purinton | Apr 2008 | A1 |
20080191231 | Park et al. | Aug 2008 | A1 |
20090086436 | Kluge | Apr 2009 | A1 |
20100060374 | Kishimoto | Mar 2010 | A1 |
20100193801 | Yamada | Aug 2010 | A1 |
20100236819 | Chiang | Sep 2010 | A1 |
20100328947 | Chang et al. | Dec 2010 | A1 |
20110267801 | Tong et al. | Nov 2011 | A1 |
20110279981 | Horng et al. | Nov 2011 | A1 |
Number | Date | Country |
---|---|---|
2007107601 | Sep 2007 | WO |
Entry |
---|
EP 0889522 English Translation. |
Number | Date | Country | |
---|---|---|---|
20140016330 A1 | Jan 2014 | US |