This disclosure relates generally to the field of nanotube coated wafers and, more particularly, to a method of forming source/drain contacts to nanotube devices formed on a semiconductor wafer that is compatible with a complementary metal oxide semiconductor (CMOS) process flow.
One of the challenges facing broad commercialization of nanotube technology is the lack of a clear path for integrating carbon nanotubes (CNTs) with standard CMOS devices. CNT devices require ohmic contacts to be formed at the sources and drains of the CNT devices for the CNT devices to function as field-effect transistors (FETs), where Palladium (Pd) metal is the most commonly used source/drain ohmic contact material to the CNT devices. A commonly used technique to deposit Pd as the ohmic contact material in CNT devices is by a “lift-off” of the Pd metal using photolithography to form Pd “islands.” This lift-off photolithography technique is used only to build discrete nanotube devices (i.e., those standalone devices that are not integrated with CMOS), where such Pd “islands” can be formed underneath nanotubes or on top of nanotubes.
However, Pd is not a commonly used material in CMOS fabrication processes, because Pd can degrade CMOS device performance/reliability. Pd deposited via the above-mentioned lift-off photolithography technique is not compatible with standard CMOS fabrication processes due to high defectivity and large metal contamination of the wet benches required to lift-off the photoresist material. Further, depositing Pd using such a lift-off method to form nanotube contacts requires the Pd deposition to be done before or immediately after nanotube deposition. When attempting to integrate nanotube formation in CMOS front end processing, such a Pd deposition technique poses a danger of cross-contaminating the CMOS circuitry formed on the same wafer during front end processing as well as the fabrication equipment dedicated to front-end processing. In a standard CMOS manufacturing process, metal contamination must be avoided in all front end equipment to minimize cross-contamination and degrading of gate oxide reliability due to trace metal impurities. Thus, prior known lift-off approaches of depositing Pd as ohmic contacts to nanotube devices are not usable or compatible with standard CMOS semiconductor fabrication processes.
According to a feature of the disclosure, a method is provided integrating nanotube devices in a standard CMOS fabrication process flow without risk of cross-contamination of the CMOS components.
In one or more embodiments, a method is provided for forming metal contacts to nanotube devices in a standard CMOS process flow.
In one or more embodiments, a method is provided for forming source/drain contacts to nanotube devices, such as CNTs or the like, while minimizing the possibility of metal contamination to the complementary metal oxide semiconductor (CMOS) circuitry in a standard CMOS process flow. This enables nanotube devices to be integrated into a standard CMOS process flow, thereby opening avenues to commercializing new generations of radio frequency (RF) CMOS technology where superior RF/analog circuitry based on nanotube devices can be combined with digital circuitry based on standard silicon CMOS.
In one or more embodiments, a method is provided that circumvents the need for depositing source/drain contacts to nanotube devices formed on a wafer or substrate in a front end CMOS process flow where the risk of contaminating CMOS circuitry formed on the wafer or CMOS fabrication equipment is high. In one or more embodiments, a method is provided that allows a modular path for integrating source/drain contacts to nanotube devices, regardless of where in the CMOS process flow the nanotube devices are integrated. In one or more embodiments, a method is provided that enables a self-aligned nanotube device to be formed on a wafer with source and drain contacts for the nanotube device being separated from the gate for the nanotube device by a spacer formed of a fixed width.
In one or more embodiments, the method of forming a nanotube field effect transistor semiconductor device includes forming a nanotube layer on a semiconductor substrate to be used in a CMOS process flow. A nanotube protection layer is deposited over the nanotube layer, wherein the nanotube protection layer also serves as a gate dielectric material. A plurality of gates are formed for a plurality of nanotube field effect transistors on the nanotube protection layer, where spacers are formed on opposing sides of each gate. A dielectric layer is deposed over the gates, spacers and exposed portions of the nanotube protection layer. Contact holes are then formed extending through the dielectric layer to the nanotube layer to expose portions of the nanotube layer. An ohmic contact material is deposited that extends into each of the contact holes and in contact with the exposed portions of the nanotube layer, where the ohmic contact material is further deposited over the surface of the dielectric layer. Metallic source/drain contacts are then formed in the contact holes in contact with the ohmic contact material.
The above-mentioned features and objects of the present disclosure will become more apparent with reference to the following description taken in conjunction with the accompanying drawings wherein like reference numerals denote like elements and in which:
The present disclosure is directed to a CMOS compatible method of forming source/drain contacts to nanotube devices formed on the same wafer upon which CMOS processing is performed.
In one or more embodiments, a method is provided for forming source/drain contacts to nanotube devices formed on a wafer on which complementary metal oxide semiconductor (CMOS) circuitry can subsequently be formed in a standard CMOS process flow or upon which CMOS circuitry has already been formed using a standard CMOS process flow. The method forms source/drain contacts to the nanotube devices while minimizing the possibility of metal contamination to the CMOS circuitry formed on the wafer or CMOS fabrication equipment used in the CMOS process flow.
In one or more embodiments described herein, for ease of description, nanotube devices may be described as carbon nanotubes (CNTs), while it is understood that the nanotube devices may comprise any type of nanotubes, including but not limited to carbon nanotubes (CNTs), single walled nanotubes (SWNTS) and multiwalled nanotubes (MWNTs). Further, each of the various embodiments could also be implemented in any 1-D semiconductor device (e.g., nanotubes, nanowires, etc.) or 2-D semiconductor device (e.g., graphene-based devices, etc.).
In one or more embodiments, a method is provided that circumvents the need for depositing source/drain contacts (e.g., Pd or Ti/Au) to nanotube devices formed on a wafer in a front end CMOS process flow where the risk of contaminating CMOS circuitry formed on the wafer or CMOS fabrication equipment is high. Front end processes are those operations performed on a semiconductor wafer in the course of device manufacturing up to the first metallization, where back end processes are all operations performed on the semiconductor wafer in the course of device manufacturing following the first metallization. The present method avoids introducing Palladium (Pd) or other metallic ohmic contact materials that are not typically used in front end processes into the front end portion of a standard CMOS flow where the thermal budgets (maximum temperature×step time) are higher and the metallic content in the fabrication equipment is exceedingly low. To the contrary of front end processes, CMOS backend processes typically use Ti, Ta, Al, W, Co, or Cu metals for forming interconnects, contacts, and vias. Thus, in one or more embodiments, Pd or another metallic ohmic contact material is used in a CMOS backend process to form source/drain contacts to nanotube devices that are formed in a front end process, thereby reducing or eliminating the contamination risk to CMOS circuitry formed on the wafer or front end CMOS fabrication equipment. In one or more embodiments, a method is provided that enables a self-aligned nanotube device to be formed on a wafer with source and drain contacts for the nanotube device being separated from the gate for the nanotube device by a formed spacer of a fixed width.
Referring now to
As illustrated in
Referring now to
In one or more embodiments, a pre-metal dielectric (PMD) 22 is then deposited over the gates 18, spacers 20 and exposed portions of the nanotube protection layer 16 between the various gates 18 and spacers 20. The PMD 22 is planarized using a chemical mechanical polishing (CMP) step or other similar processing technique, as shown in
Referring to
As can be seen from the foregoing, a method is provided for forming metal contacts for nanotube devices acting as FETs in a standard CMOS process flow using steps that allow the formation of metal contacts to nanotube devices with no risk of metal contamination to CMOS circuitry formed on the wafer with the nanotube devices or front end CMOS fabrication equipment. Further, the method is completely modular and is independent of how nanotube devices are integrated with CMOS devices.
Still further, the present method enables integrating carbon nanotube (CNT) devices and other nanotube devices with a standard CMOS process flow, thereby opening avenues to commercializing new generations of radio frequency (RF) CMOS technology where superior RF/analog circuitry based on nanotube devices can be combined with digital circuitry based on standard silicon CMOS. The present method further enables the formation of self-aligned nanotube devices by positioning contact holes touching the nanotube gate spacers where, the spacing between contact holes (and thereby contacts) is automatically determined by the width of the gate electrode and spacers formed on the sides of the gate electrode.
While the system and method have been described in terms of what are presently considered to be specific embodiments, the disclosure need not be limited to the disclosed embodiments. It is intended to cover various modifications and similar arrangements included within the spirit and scope of the claims, the scope of which should be accorded the broadest interpretation so as to encompass all such modifications and similar structures. The present disclosure includes any and all embodiments of the following claims.
This application claims the benefit of and priority to U.S. Provisional Application Ser. No. 60/940,332, filed May 25, 2007, the contents of which are incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
60940332 | May 2007 | US |