Combined high speed optical profilometer and ellipsometer

Information

  • Patent Grant
  • 6757056
  • Patent Number
    6,757,056
  • Date Filed
    Friday, May 18, 2001
    23 years ago
  • Date Issued
    Tuesday, June 29, 2004
    20 years ago
Abstract
A system and method for measuring defects, film thickness, contamination, particles and height of a thin film disk or a silicon wafer.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention is directed toward measuring thin films and defects on silicon wafers, magnetic thin film disks and transparent and coated glass substrates and more particularly toward measuring thin film thickness, and wear, surface roughness, scratches, particles, stains, pits, mounds, surface topography, step heights, and inclusions using a laser directed toward a thin film disk at many angles including non-Brewster's angles of an absorbing layer of the thin film.




2. Description of Background Art




Coated thin film disks are used in a variety of industries including the semiconductor and the magnetic hard disk industry. A computer hard disk (magnetic storage device) is a non-volatile memory device that can store large amounts of data. One problem that the manufacturers of hard disks experience is how to maximize the operating life of a hard disk. When a hard disk fails the data stored therein may be difficult, expensive, or impossible to retrieve. Failure of a hard disk may be caused by defects on the surface of the thin film disk. It is crucial to be able to detect and classify these defects in order to prevent disk drive failure and to control the manufacturing process.




A schematic of a thin film disk used in magnetic storage devices is shown in FIG.


1


. It includes a magnetic thin film (layer)


106


which is deposited upon a substrate


108


(typically a NiP plated Al—Mg alloy or glass). The magnetic thin film


106


can be protected by a thin film of carbon


104


(carbon layer), for example, whose thickness is typically 20 to 200 Angstroms (Å) The carbon layer


104


is typically coated with a thin layer (


10


to 30 Angstroms) of a fluorocarbon lubricant


102


(lubricant layer). The lubricant layer


102


serves to increase the durability of the underlying carbon layer


104


particularly when the magnetic read/write head contacts the disk, for example when the disk drive is turned off. The hard disk drive industry has been dramatically improving storage capacity by flying the thin film. head closer to the surface of the thin film disk. As a result even very small defects can cause a hard drive to fail. These defects may be topographic such as scratches, pits, mounds, or particles or they may be non-topographic such as stains or inclusions. It is necessary to measure all these types of defects to control the disk manufacturing process and improve disk drive manufacturing yield.




A schematic of a semiconductor wafer is shown in FIG.


2


. The structure of a semiconductor wafer can be very complex and

FIG. 2

shows only one example of a wafer that is undergoing the copper dual damascene process. With reference to

FIG. 2

, illustrated are a copper layer


201


, a second plasma enhanced chemical vapor deposited (PECVD) oxide layer


202


, a first PECVD oxide layer


203


and is a silicon substrate


204


. The copper layer


201


is polished using a chemical mechanical polishing (CMP) process until only the via holes and copper lines remain. The problem is that the CMP process can leave residual copper, nitride, or CMP slurry on the surface of the wafer. In addition, stains, particles, scratches, and micro-waviness may be present on the polished wafer. It is necessary to detect and measure such defects to control the process of making the wafer. Fewer defects will also mean greater wafer yields at the end of the process.




A problem in the hard disk, semiconductor and photonics industries is to inspect these magnetic disks and wafers for defects such as particles, scratches, pits, mounds, stains, topographic irregularities and inclusions. Conventional techniques to solve these problems are discussed in U.S. Pat. No. 4,674,875, U.S. Pat. No. 5,694,214, U.S. Pat. No. 5,748,305, and U.S. Pat. No. 6,157,444. These patents describe techniques to measure defects using essentially sophisticated scatterometers and reflectometers. None of these systems enables the simultaneous measurement of topographic and non-topographic defects. This invention enables this measurement through the use of a combined reflectometer, scatterometer, ellipsometer, profilometer and Kerr effect microscope.




What is needed is a system and method for examining thin film disks, silicon wafers and transparent wafers that: (1) measures topographic and non-topographic defects; (2) measures the optical profile on these substrates; (3) enables the measurements to be performed simultaneously; (4) measures the thickness of thin films; (4) enables measurement on patterned or unpatterned silicon or photonic wafers; (5) is performed in situ or in line; and (6) measures only a single side of a transparent substrate.




SUMMARY OF THE INVENTION




A system and method for measuring topographic and non-topographic defects and topography on thin film magnetic disks, silicon wafers and transparent substrates. This invention enables the measurement of the height of a defect on a thin film disk or a silicon wafer having a first electromagnetic signal source for generating a first signal toward a first position on the thin film magnetic disk at a first angle, a second electromagnetic signal source for generating a second signal toward the first position on the thin film magnetic disk at a second angle, a spinning device for rotating the object to change the first position, a first position sensitive detector to receive a portion of said first signal that reflects off of the object, and to determine a radial portion of the first signal (S


1




r


) and a circumferential portion of said first signal (S


1




c


), a second position sensitive detector positioned at a right angle from the first position sensitive detector, to receive a reflected portion of the second signal that reflects off of the object, and to determine a radial portion of the second signal (S


2




r


) and a circumferential portion of the second signal (S


2




c


).




The system also includes a processor for determining the height of the first position based upon a difference between S


2




c


and S


1




c


that does not include slope information. The system also enables the detection of topographic and non-topographic defects through the measurement of the phase shift of the optical wave. A feature of this invention is its ability t o remove a semiconductor pattern from the data and enhance the ability to detect the presence of defects on the patterned silicon or photonics wafer. Several miniaturized embodiments are presented that enable measurement on both sides of disks or wafers.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is an illustration of a thin film that can be measured using an embodiment of the present invention.





FIG. 2

is an illustration of a semiconductor wafer that can be measured with one embodiment of the present invention.





FIG. 3

is an illustration from a side perspective of one half of optical layout of combined ellipsometer and optical profiler according to one embodiment of the present invention.





FIG. 4

is a top view of an optical profilometer that measures height or slope according to one embodiment of the present invention.





FIG. 5

is a top view of an optical profilometer having a single laser which measures height or slope according to another embodiment of the present invention.





FIG. 6

is a side view of optical profilometer showing laser one and PSD


1


according to one embodiment of the present invention.





FIG. 7

illustrates the height sensitivity multiplier as a function of angle of incidence (theta) according to one embodiment of the present invention.





FIG. 8

is an illustration of a miniature optical surface analyzer according to one embodiment of the present invention.





FIG. 9

is an illustration of a miniature optical surface analyzer according to another embodiment of the present invention.





FIG. 10

is an illustration from a top view perspective of a miniature surface analyzer according to another embodiment of the present invention.





FIG. 11

is an illustration from in the direction identified as “A” of the miniature surface analyzer illustrated in FIG.


10


.





FIG. 12

is an illustration from a top view perspective of a miniature surface analyzer according to another embodiment of the present invention.





FIG. 13

is an illustration of a final test spindle having dual miniature optical heads and stepper motor according to one embodiment of the present invention.





FIG. 14

is an illustration of a spatial filter for blocking bottom surface reflection from a glass or transparent substrate according to one embodiment of the present invention.





FIG. 15

is an illustration from a side view perspective of one half of optical layout of combined ellipsometer and optical profiler according to one embodiment of the present invention.





FIG. 16

is an illustration from a top view perspective of a combined ellipsometer and optical profilometer according to one embodiment of the present invention.





FIG. 17

is an illustration of a beam splitter that splits the beam into non-orthogonally polarized components that is capable of measuring phase shift of an elliptically polarized beam according to one embodiment of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




A preferred embodiment of the present invention is now described with reference to the figures where like reference numbers indicate identical or functionally similar elements. Also in the figures, the left most digit(s) of each reference number correspond(s) to the figure in which the reference number is first used.





FIG. 3

is an illustration of an apparatus for measuring properties of the thin film according to an embodiment of the present invention. The apparatus uses a focused laser light signal whose angle of propagation θ (as shown in

FIG. 3

) can be between zero degrees from normal and ninety degrees from normal.




One embodiment of the apparatus


300


includes a conventional laser diode


301


, e.g., RLD65MZT1 or RLD-78MD available from Rolm Corporation, Kyoto, Japan, which has been collimated by Hoetron Corp., Sunnyvale, Calif., e.g., a conventional linear polarizer


302


, e.g., made of Polarcor that is commercially available from Newport Corp., Irvine, Calif., a conventional zero order half wave plate


303


that is commercially available from CVI Laser, Livermore Calif., a conventional focusing lens


304


that is commercially available from Newport Corporation, Irvine, Calif., conventional mirrors


305


and


308


available from Newport Corp. Irving, Calif. A collimating lens


309


available from Newport Corp., a zero order quarter wave plate


310


available from CVI Laser Corp., a conventional polarizing beam splitter


312


rotated at 45° to the plane of incidence available from CVI Laser Corp., a pair of conventional quadrant detectors


311


and


313


available from Hamamatsu Corp., Hamamatsu City, Japan, a conventional avalanche photodiode


314


available from Advanced Photonix, Inc., Camarillo, Calif. and a conventional motor


315


available from Maxon Precision Motors, Burlingame, Calif. for rotating the half wave plate


303


.




It will be apparent to persons skilled in the art that the apparatus


300


is an embodiment of the present invention and that alternate designs can be used without departing from the present invention. The operation of the apparatus


300


is now described in greater detail.




A laser diode


301


emits an electromagnetic signal toward the thin film disk, silicon wafer, photonics wafer or glass substrate


306


. In an embodiment the electromagnetic signal is a light signal having a wavelength of 780 or 655 nanometers (nm) although a wide variety of wavelengths can be used. The angle of propagation of the light signal can be any angle θ between zero and ninety degrees.




Laser diodes are well known to have an internal photodiode to monitor the laser output power. An embodiment of a feedback control circuit to control the optical intensity is to use such a photodiode, which is internal to the laser diode. This photodiode which is internal to the laser diode feeds back a control signal to negative feedback circuitry and by doing so keeps the intensity of the laser at a constant value. Another means of keeping an approximate constant output power of the laser is to control the current of the laser diode, that is, run the diode laser in a constant current mode. The laser diode will exhibit a very slow decrease in output power over a period of months. As long as the scan time is less than 5 or 10 minutes then the optical power output of the laser will remain constant during the scan. The advantage of this technique is its simplicity.




Long-term drifts of the laser output power may be calibrated out of the system by first measuring a standard reflector and using this to normalize the measured signals. The value of the signal is first measured over the standard (known) reflector and then the disk or wafer is measured. If there has been any drift of the standard reflector measurement then all the data is corrected for this amount of drift. As a result long-term drifts may be compensated even when operating in a constant current mode. The emitted light passes through the linear polarizer


302


. The linear polarizer


302


improves the linear polarization of the laser light signal.




The linearly polarized light passes through a mechanically rotatable zero order half-wave plate


303


. The half wave plate


303


is attached to a miniature motor


315


which allows the polarization to be dynamically rotated between P polarized (parallel to the plane of incidence), S polarized (perpendicular to the plane of incidence) and 45° polarized (between P and S) light. The polarized light passes through a focussing lens


304


and is directed onto a thin film magnetic disk, silicon wafer or transparent substrate


306


by a turning mirror


305


. The reflected signal is directed to the detection optics by another turning mirror


308


and recollimated by another lens


309


. The scattered component of the signal is detected by an avalanche photodiode


314


. The recollimated beam passes through a zero order quarter wave plate


310


that is used to adjust the polarization of the beam so that equal amounts of energy are directed into the quadrant photodetectors


313


and


311


. After passing through the quarter wave plate


310


the beam is split by a polarization beam splitter


312


that is rotated by 45° to the plane of incidence. In another embodiment the polarizing beam splitter may be a Wollaston prism or a Glan Thompson or a Rochon prism beam splitter. The split beams are directed onto two quadrant detectors


311


and


313


. The quadrant detectors are used to compute the phase shift between the split beams, the reflectivity, the optical profiles in the radial and circumferential directions, and the Kerr rotation (if the film on the substrate


306


is magnetic). The outputs from the quadrant detectors are digitized by a conventional analog to digital converter and directed to the memory of a conventional personal computer. The signals are then analyzed by the personal computer to detect defects, measure topography, and measure stains. The entire optical apparatus


300


is placed upon a stage that moves the apparatus in the radial direction while a motor


307


rotates the sample


306


. In this manner the entire surface of the sample


306


may be scanned for defects.




The spindle or motor which rotates the disk at a high rate of speed contains an encoder which produces 1024 pulses as it rotates through 360 degrees, for example. This encoder is used to determine the circumferential positions around the disk. The present invention preferably utilizes a very high-resolution determination of the position around the circumference of the disk. This is accomplished by using a phase locked loop to multiply the encoder signal by a selectable factor. The phase locked loop, which multiplies the 1024 encoder pulses, has the ability to track any velocity jitter in the encoder. This feature allows averaging of repeated revolutions to be done with no loss of lateral resolution. That is, subsequent revolutions lie in phase with one another and when averaged, the resulting image is not smeared by any jitter effect. Averaging is done to improve signal-to-noise ratio.





FIG. 4

shows the top view design of an optical profilometer, which is capable of only measuring the height and directly measuring the height, that is, it can measure the height without measuring the slope. It can also measure the slope of the surface independent of height. This differs from previous optical profilometers that measure both slope and height simultaneously. With such systems the height is obtained from the slope data by integrating the slope information. However, if the slope information is contaminated with height information then the integration will not give the correct surface profile. The problem is to obtain data that contains only height information and not a combination of both slope and height. The design illustrated and described with reference to

FIGS. 4-7

accomplishes this by using two lasers and two position sensitive detectors (PSD) oriented at right angles to one another.




The position sensitive detectors (PSD) are quadrant detectors that are oriented as shown in FIG.


4


. The PSD's measure the displacement of the beam in the radial and circumferential directions by subtracting the appropriate PSD quadrants. As the laser beam moves along the surface of the object to be measured, the roughness and waviness of the surface cause the laser beam to “wiggle” on the quadrant detector in response to the slope of the surface. The quadrant detector measures this by subtracting the sum of one pair of quadrants from the sum of another pair. For example, referring to

FIG. 6

, the slope of the surface in the circumferential direction is given by [(A


1


+B


1


)−(C


1


+D


1


)]/[A


1


+B


1


+C


1


+D


1


] where the sum of the four quadrants in the denominator is used to normalize for reflectivity differences. At the same time, if the average distance of the surface from the detector changes, then the average position of the beam on the quadrant detector will change. The resulting difference signal in the above equation will register a slope change when in fact a difference in surface height is occurring. The problem is to be able to separate slope changes from height changes. This can be accomplished by considering the slope in the radial direction, which is obtained by referring to FIG.


6


and is given by [(A


1


+D


1


)−(B


1


+C


1


)]/[A


1


+B


1


+C


1


+D


1


]. The equation for the radial slope measures the “wiggle” of the beam in the radial direction. In the case of the radial slope, if the average distance of the surface from the detector changes then the beam simply moves along the line separating A


1


+D


1


from B


1


+C


1


. As a result the radial slope signal does not change when the surface height changes and the equation for the radial slope records only slope and not height changes.




When the orientation of the laser beam is rotated by 90 degrees (as with laser


2


and PSD


2


in

FIG. 4

) the behavior of the radial and circumferential slope will reverse. In the case of laser


2


and PSD


2


the circumferential slope equation will record only slope changes and not height changes. On the other hand, for laser


2


, the radial slope equation will record both slope and height changes. Since the output beam of both lasers


1


and


2


is positioned at the same location on the surface (as shown in

FIG. 4

) then it is possible to subtract the radial slope equation from laser


1


and PSD


1


from the radial slope equation from laser


2


and PSD


2


. The resulting subtraction will contain only height information and no slope information. It is also possible to obtain the same information by subtracting the circumferential slope equation from laser


1


and PSD


1


from the circumferential slope equation from laser


2


and PSD


2


. The radial slope (with no height information) can be obtained by choosing the radial slope equation from laser


1


and PSD


1


. The circumferential slope (with no height information) can be obtained by choosing the circumferential slope equation from laser


2


and PSD


2


. In this manner it is possible to independently measure surface height variation and slope variation.




In another embodiment of this optical profilometer, as shown in

FIG. 5

, a single laser is used and a 50/50 mirror


504


oriented at a compound angle directs a second beam onto the surface to a position labeled


502


on FIG.


5


. The beam that passes through the 50/50 mirror


504


is directed onto the surface to a position labeled


501


on FIG.


5


. The entire surface of the object to be measured is scanned with both of the beams resulting in at least two images of the surface. The resulting images are stored and digitally shifted so that the resulting images have the object to be profiled at the same x, y location. The resulting shifted images may then be subtracted to give the height profile in the manner described above. The advantage of this embodiment is that it uses only a single laser and fewer optical components and the beam shape of the two beams is identical.




Laser one and PSD


1


nominally measure the signal in the radial, Sr, and the signal in the circumferential, Sc, directions. However, the nature of the PSD results in Sc from laser one and PSD


1


being contaminated with height information, in addition to slope information. Sr from laser


1


and PSD


1


include only slope information. Laser two and PSD


2


also nominally measure the slope in the radial and circumferential directions. However, Sr from laser


2


and PSD


2


measures both slope and height at the same positions as Sr from laser


1


and PSD


1


. As a result the true height variation can be obtained by subtracting Sr from laser


2


and PSD


2


from Sr from laser


1


and PSD


1


. That is, the slope information is removed when subtracting Sr from PSD


2


from Sr from PSD


1


, leaving only the height information.




A similar result can be obtained from subtracting Sc from PSD


2


that only contains slope information. As a result, subtracting Sc from PSD


2


from Sc from PSD


1


gives data containing only height information. The result is a direct measurement of height. The advantages of this technique are that it gives a direct measurement of height and it can be done in a non-contact manner at high speed. This technique can also measure step heights with 90-degree step angles. Conventional systems, which use slope measurements, cannot measure 90-degree step heights.





FIG. 6

shows the side view design of the optical profilometer. This figure only shows laser


1


and PSD


1


in an effort to easily show the side view design. In

FIG. 6

one can see that the optical profilometer is positioned above a thin film disk or wafer and is translated in the radial direction while the disk or semiconductor wafer is rotated.




The angle of incidence (θ) shown in

FIG. 6

can be chosen for the particular application. Any angle of incidence can be chosen except normal incidence, where the PSD's would have no height sensitivity. For an application that involves transparent substrates one could choose angles greater than 45 degrees in order to increase the reflection signal from the surface. As the angle of incidence increases, the height sensitivity also increases by the factor 2*sin(θ) [sin(θ)/cos


2


(θ)]. A plot of this factor is shown in FIG.


7


. This suggests that an angle of incidence greater than or equal to approximately 60 degrees would be optimal, although not necessary. At angles greater than 60 degrees the sensitivity will increase and the signal from a transparent surface will increase. This invention requires that the focused spot sizes of the two lasers be substantially identical and that the laser spots overlap as closely as possible.




A problem in the magnetic recording industry is to inspect thin film disks for defects at the final test step of the manufacturer of disks. The manufacturers of thin film disks require that both sides of the thin film disk be inspected simultaneously. The problem is that the clearance between the disk and the chuck (which holds the disk) is only 1″ or less (see

FIG. 13

,


1304


). This requires that the optics be miniaturized in order to fit in the small space between the disk and the chuck (see FIG.


13


). A solution to this problem can be obtained by using the optical designs in

FIGS. 8

,


9


,


10


, and


11


. These designs have several key improvements over conventional systems, which allow the design to be miniaturized without compromising the performance of the device. First of all the design uses the internal feedback photodiode, which is contained within the laser diode


801


to achieve stabilization of the DC level of the optical signal Secondly, the angle of incidence, θ, is adjusted to reduce the height of the instrument so that it will fit within the 1″ space requirement. Thirdly, the surface topography measurement capability feature of the instrument is incorporated within the phase/specular detectors


808


and


809


shown in

FIGS. 8 and 9

. The position sensitive detectors


808


and


809


(quadrant detectors) serve as both phase detectors, specular detectors, and topography measurement detectors.




Fourthly, the size may be decreased by using a polarizing beam splitter


901


as shown in

FIG. 9

instead of a Wollaston prism


807


as shown in FIG.


8


. The polarizing beam splitter


807


or Wollaston prism


901


is rotated at 45° with respect to the plane of incidence. Another embodiment of this invention can use a beam splitter that splits the beam into non-orthogonal components, which will be discussed in a subsequent section. Fifthly using two spherical mirrors


1004


and


1006


to direct the beam onto the disk as shown in

FIG. 10

will diminish the size in the lateral dimension. The mirrors


1004


and


1006


are adjusted at a compound angle as shown in FIG.


10


. This is also shown in

FIG. 11

which is a view of

FIG. 10

along the “A” direction, where the mirrors that are at a compound angle are


1102


and


1104


. These mirrors direct the beam


1103


onto the disk or wafer


1101


. In addition to directing the beam onto the disk the spherical mirrors also focus the beam to a small spot. An alternative embodiment to the use of a spherical mirror is to use flat mirrors


1202


and


1203


in combination with focussing lenses


1201


as shown in FIG.


12


. Also shown in

FIG. 12

is a silicon photodetector or avalanche photodiode


1204


, which is positioned above the point where the beam strikes the disk. This element enables the detection of submicron particles. The avalanche photodiode


1204


is available from Advanced Photonix, Inc., Camarillo, Calif.




Referring to

FIG. 8

, the laser beam from the diode laser


801


passes through a linear polarizer


802


, and a focussing lens


803


and then strikes a disk or wafer


804


. Upon reflecting from the surface the beam passes through a recollimating lens


805


, a quartet wave plate


806


, and through a polarizing beam splitter such as Wollaston prism


807


which is rotated at 45° to the plane of incidence and onto two quadrant detectors


808


and


809


.




Referring to

FIG. 8

, the specular signal is obtained by summing the signals from position sensitive detector


1809


with the sum of position sensitive detector


2


,


808


times a constant κ:






Specular signal=(


A




1


+


B




1


+


C




1


+


D




1


)+κ*(


A




2


+


B




2


+


C




2


+


D




2


)






The phase shift between the two split beams of the wave (PS) can be obtained by subtracting the sum of the elements of detector


1




809


from those of detector


2


,


808


times a constant K:








PS


=(


A




1


+


B




1


+


C




1


+


D




1


)−


K


*(


A




2


+


B




2


+


C




2


+


D




2


)






Referring to

FIG. 8

detector


1


,


809


, the slope in the circumferential direction (SCD) is given by:








SCD


=[(


B




1


+


C




1


)−(


A




1


+


D




1


)]/(


A




1


+


B




1


+


C




1


+


D




1


)






The slope in the radial direction (SRD) is given by:








SRD


=[(


A




1


+


B




1


)−(


C




1


+


D




1


)]/(


A




1


+


B




1


+


C




1


+


D




1


)






The topography in the circumferential or radial direction is obtained by integrating the slope in the circumferential or radial direction, respectively. The slope signals can also be obtained from detector


2


,


808


with the same equations as shown above except for substituting 2 for 1.




Using the designs in

FIGS. 8

,


9


,


10


and


12


will allow the measurement of sub-micron scratches, particles, stains, pits, mounds, handling damage, wear of the carbon layer, outside diameter damage and contamination. This design can also measure the longitudinal Kerr effect by a measurement of the Kerr rotation angle. The advantages of this design are its small size which is made possible by detectors which combine the measurement of phase shift, specular reflectivity, radial and circumferential slope, and scattered light.




One embodiment of a miniature optical design that may be mounted on the top and bottom of a thin film disk


1302


is shown in FIG.


13


. The resulting combination is translated over the surface of the disk with a stepper or DC servomotor driven stage


1308


. A spindle motor


1306


rotates the disk while the optics


1301


is translated in the radial direction so that 100% of the surface of the disk may be measured for defects. The entire apparatus is mounted on a baseplate


1307


. The electronics package is located above the stepper motor


1303


. The disk is placed upon a vacuum chuck


1305


that is rotated at a high rate of speed.




A problem in the inspection of transparent glass substrates


1406


and other transparent objects is to separate the signal from the top and the bottom surface. This can be accomplished by the use of a spatial filter


1404


that blocks the signal from the bottom surface


1405


and does not affect the top surface reflection


1403


.

FIG. 14

shows this in the optical design of the Optical Surface Analyzer (OSA). The incoming optical beam is


1401


.




The spatial filter


1404


is in the shape of a small wedge that is attached to the bottom surface of the integrating sphere


1402


. The location of the spatial filter is adjusted to just block the bottom surface reflection


1405


and not to interfere with the top surface reflection


1403


. This invention allows one to separate information from the top and bottom surface of a transparent glass disk or wafer


1406


. This invention also works with any transparent medium such as lithium niobate, fused silica, photoresist, and other transparent oxides.




An alternative design does not require the spatial filter to be attached to the bottom of the integrating sphere. For example, the integrating sphere may be omitted and the spatial filter may be attached to any other point on the optical body. The spatial filter should be located near enough to the transparent substrate so that the reflections from the top and bottom surface are separated in the lateral plane. In this manner it is possible to intercept the bottom surface reflection with the spatial filter and leave the top surface reflection unaffected.




A problem in the measurement of semiconductor wafers is the detection of defects caused by the CMP (Chemical Mechanical Polishing) process. These defects can be residual copper, nitride, slurry, particles, scratches and stains. The measurement is complicated by the fact that the semiconductor wafers have a complex pattern on their surface. A goal is to separate the defects from the complex pattern of semiconductor devices on the surface of the semiconductor wafer. This can be accomplished by the design shown in FIG.


15


. The device consists of a means for measuring the phase shift between two mixed polarization components of the incident beam, where the two mixed polarization components are comprised of both P and S polarization components relative to the plane of incidence, and a means to measure the topography of the surface. The device consists of a laser


1501


and a polarizer


1502


. The laser is directed onto a focussing lens


1503


and onto a mirror


1504


that directs the beam onto a wafer or disk


1505


that may be rotated by a motor


1506


. The reflected beam is directed by another mirror


1507


onto a collimating lens


1508


and through a quarter wave plate


1509


. The signal passing through the quarter wave plate is directed onto a polarizing beam splitter


151


.


1


that is oriented at 45° to the plane of incidence. The split beams are measured with two photodetectors


1510


and


1512


. The phase shift of the incident beam is proportional to the difference in the amplitudes of photodetectors


1510


and


1512


.




When the phase shift between the split beams is measured it is found that the orientation of the semiconductor pattern lines will have a substantial effect on the measured phase shift. What is desired is to remove the semiconductor pattern and enhance the defects.




A means to accomplish this is to image the wafer with two orthogonal beams as shown in FIG.


16


. An optical path shown in

FIG. 15

generates each of the beams shown in FIG.


16


. Laser one


1601


and detector one


1602


in

FIG. 16

generate a phase shift image of the surface that has one particular amplitude due to the orientation of the semiconductor pattern lines. Laser two


1603


and detector two


1604


have a particular amplitude pattern that is identical in lateral shape but opposite in amplitude to that generated by laser one


1601


and detector one


1602


. This is because the orientation of the optical beams of lasers one and two are orthogonal with respect to the orientation of the pattern lines. As a result, what is generated are two phase shift images of the surface of the semiconductor that have opposite amplitude phase shift signals from the semiconductor pattern lines. If these two images are added together then the semiconductor pattern will be greatly attenuated.




Defects, on the other hand, do not change phase shift in the two orthogonal beams and as a result when the two orthogonal images are added the defects increase in amplitude and the semiconductor pattern diminishes in amplitude. Defects do not have opposite phase shift amplitudes since most defects are isotropic in nature and do not have the strong anisotropy associated with semiconductor pattern lines. This technique effectively enhances the defect signals and diminishes the semiconductor pattern signal. The focussed beams


1607


cross at point


1606


. The entire device is contained within housing


1605


.




This invention has the additional advantage that it can simultaneously measure the topography of the surface. In the preferred embodiment the angle of incidence (θ) shown in

FIG. 15

is at approximately 60°. Larger or smaller angles of incidence may be used depending upon the application. For example, a larger angle of incidence may be used if a transparent substrate is to be examined. This would be advantageous since a transparent substrate will give a larger signal from the top surface with a greater angle of incidence.





FIG. 17

illustrates the measurement of the phase shift of an elliptically polarized beam by the use of a beam splitter that splits the beam into non-orthogonally polarized components. The incoming elliptically polarized beam is labeled


1701


, this beam is directed into a quarter wave plate


1702


and subsequently into a beam splitter


1703


which splits the beam into non-orthogonally polarized components. Internal to


1703


is a polarizing beam splitter such as a Wollaston prism


1704


or a polarizing cube beam splitter and a polarization rotation device


1705


such as a half wave plate or an optically active quartz polarization rotator. The two beams leaving the beam splitter


1703


are polarized in the same direction as indicated by


1706


and


1707


. In general the two beams leaving the beam splitter


1703


may be polarized at any angle with respect to the other. This is accomplished by rotating a half wave plate


1705


(which is internal to the beam splitter


1703


) to an arbitrary angle so that the beam leaving


1707


will now be polarized at an arbitrary angle with respect to beam


1706


. After the beams leave the beam splitter


1703


they strike diffusers


1708


and subsequently are detected by photodetectors


1709


and


1710


. The advantage of this type of beam splitter


1703


is that the outgoing beams may be polarized in the same direction. As a result when the beams


1706


and


1707


strike the diffusers


1708


and photodetectors


1709


and


1710


the reflection from these surfaces will be identical and the detected signals will have identical reduction due to surface reflection. This fact makes the calibration of the instrument considerably easier. The computation of the phase shift of the incoming beam


1701


is computed from the difference in the amplitude of the two beams as measured by the photodetectors


1709


and


1710


.




The incoming laser beams discussed in previous paragraphs have been described as P, S or 45° polarized beams. These earlier discussions are preferred embodiments of this invention. It is also possible to illuminate the surface with unpolarized light and detect the resulting reflected signals with the same optical and electronic methods. The resulting detected signals, which use a source of light which is unpolarized, will still give measurements of the phase shift, topography, reflectivity, defects and particles.




While the invention has been particularly shown and described with reference to a preferred embodiment and several alternate embodiments, it will be understood by persons skilled in the relevant art that various changes in form and details can be made therein without departing from the spirit and scope of the invention.



Claims
  • 1. A system for measuring a phase difference between light signals reflected from both sides of a first object comprising:a first light source for transmitting a first incident light signal toward a first surface of said first object in a first plane of incidence; a first polarization splitter for separating, from a first reflected light signal that has reflected off said first surface, a first mixed reflected polarized light signal component having a first phase and a second mixed reflected polarized light signal component having a second phase different from said first phase, wherein said first mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to a plane of incidence of said first incident light signal, and wherein said second mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of said first incident light signal; a first detector for detecting a first intensity of said first mixed reflected polarized light signal component; a second detector for detecting a second intensity of said second mixed reflected polarized light signal component; a first phase determinator for determining a first difference in phase between said first and second mixed reflected polarized light signal components based upon said first and second intensities; a second light source for transmitting a second incident light signal toward a second surface of said first object in a second plane of incidence different from the first plane of incidence; a second polarization splitter for separating, from a second reflected light signal that has reflected off said second surface, a third mixed reflected polarized light signal component having a third phase and a fourth mixed reflected polarized light signal component having a fourth phase different from said third phase, wherein said third mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to a plane of incidence of the second incident light signal, and wherein the fourth mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of the second incident light signal; a third detector for detecting a third intensity of said third mixed reflected polarized light signal component; a fourth detector for detecting a fourth intensity of said fourth mixed reflected polarized light signal component; and a second phase determinator for determining a second difference in phase between said third and fourth mixed reflected polarized light signal components based upon said third and fourth intensities.
  • 2. The system of claim 1, wherein said first object is one of a magnetic disk and a silicon wafer.
  • 3. The system of claim 1, wherein said first object is a transparent glass substrate.
  • 4. The system of claim 1, further comprising:a first thickness determinator for determining a thickness of a lubricant on said first surface based upon said first difference in phase.
  • 5. The system of claim 4, further comprising:a second thickness determinator for determining a thickness of a lubricant on said second surface based upon said second difference in phase.
  • 6. The system of claim 1, further comprising:a first carbon thickness determinator for determining a thickness of a carbon layer of said first surface based upon said first difference in phase.
  • 7. The system of claim 6, further comprising:a second carbon thickness determinator for determining a thickness of a carbon layer of said second surface based upon said second difference in phase.
  • 8. The system of claim 1, further comprising:a first magnetic identifier for determining a magnetic characteristic of said first surface based upon said first difference in phase.
  • 9. The system of claim 8, further comprising:a second magnetic identifier for determining a magnetic characteristic of said second surface based upon said second difference in phase.
  • 10. The system of claim 1, further comprising:a first Kerr effect determinator for measuring the magneto-optic Kerr effect of said first surface based upon said first difference in phase.
  • 11. The system of claim 10, further comprising:a second Kerr effect determinator for measuring the magneto-optic Kerr effect of said second surface based upon said second difference in phase.
  • 12. The system of claim 10, further comprising:a first defect determinator for determining whether a first defect exists at a first location on the first surface based upon said first and second intensities.
  • 13. The system of claim 12, further comprising:a second defect determinator for determining whether a second defect exists at a first location on the second surface based upon said third and fourth intensities.
  • 14. The system of claim 13, further comprising:a first mechanical scribe for marking said first location to identify said first defect.
  • 15. The system of claim 14, further comprising:a second mechanical scribe for marking said second location to identify said second defect.
  • 16. The system of claim 14, further comprising:a scribe positioner for moving said first mechanical scribe to a position substantially adjacent to said first location before marking said first location.
  • 17. The system of claim 1, further comprising:a first defect determinator for determining whether a first defect exists at a first location on the first surface based upon said first and second intensities.
  • 18. The system of claim 17, further comprising:a second defect determinator for determining whether a second defect exists at a first location on the second surface based upon said third and fourth intensities.
  • 19. The system of claim 18, further comprising:a first mechanical scribe for marking said first location to identify said first defect.
  • 20. The system of claim 19, further comprising:a second mechanical scribe for marking said second location to identify said second defect.
  • 21. The system of claim 19, further comprising:a scribe positioner for moving said first mechanical scribe to a position substantially adjacent to said first location before marking said first location.
  • 22. The system of claim 1, wherein said first mixed reflected polarized light signal component and said second mixed reflected polarized light signal are orthogonally polarized.
  • 23. The system of claim 1, wherein said first mixed reflected polarized light signal component and said second mixed reflected polarized light signal are non-orthogonally polarized.
  • 24. The system of claim 1, wherein said third mixed reflected polarized light signal component and said fourth mixed reflected polarized light signal are orthogonally polarized.
  • 25. The system of claim 1, wherein said third mixed reflected polarized light signal component and said fourth mixed reflected polarized light signal are non-orthogonally polarized.
  • 26. The system of claim 1, wherein said first phase determinator comprises:a first texture eliminator for determining a difference between said first and second intensities to reduce the effect on at least one measured value of a texture on said first object.
  • 27. The system of claim 26, wherein said second phase determinator comprises:a second texture eliminator for determining a difference between said third and fourth intensities to reduce the effect on at least one measured value of a texture on said first object.
  • 28. A method for measuring a phase shift of each of two light signals, comprising:transmitting a first incident light signal toward a first surface of a first object in a first plane of incidence; separating from a first reflected light signal that has reflected off said first surface, a first mixed reflected polarized light signal component having a first phase and a second mixed reflected polarized light signal component having a second phase different from said first phase, wherein the first mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of said first incident light signal, and wherein the second mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of said first incident light signal; detecting a first intensity of said first mixed reflected polarized light signal component; detecting a second intensity of said second mixed reflected polarized light signal component; determining a first difference in phase between said first and second mixed reflected polarized light signal components based upon said first and second intensities; transmitting a second incident light signal toward the first surface of said first object in a second plane of incidence different from the first plane of incidence; separating from a second reflected light signal that has reflected from said first surface, a third mixed reflected polarized light signal component having a third phase and a fourth mixed reflected polarized light signal component having a fourth phase different from said third phase, wherein the third mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of the second incident light signal, and wherein the fourth mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of the second incident light signal; detecting a third intensity of said third mixed reflected polarized light signal component; detecting a fourth intensity of said fourth mixed reflected polarized light signal component; and determining a second difference in phase between said third and fourth mixed reflected polarized light signal components based upon said third and fourth intensities.
  • 29. The method of claim 28, wherein the first plane of incidence and the second plane of incidence are substantially mutually perpendicular.
  • 30. The system of claim 28, wherein said first object is one of a magnetic disk and a silicon wafer.
  • 31. The system of claim 28, wherein said first object is a transparent glass substrate.
  • 32. The method of claim 28, further comprising:generating a first phase shift image of the first surface of said first object; generating a second phase shift image of the first surface of said first object; and adding together the first phase shift image and the second phase shift image to diminish a signal generated by a pattern on the first surface of said first object.
  • 33. The method of claim 28, further comprising:generating a first phase shift image of the first surface of said first object; generating a second phase shift image of the first surface of said first object; and subtracting the first phase shift image from the second phase shift image to diminish a signal generated by a pattern on the first surface of said first object.
  • 34. The method of claim 28, further comprising blocking a light signal reflected from a second surface of said first object to prevent detection of said light signal reflected from the second surface of said first object.
  • 35. The method of claim 28, wherein said first intensity is detected by a first position sensitive detector, said second intensity is detected by a second position sensitive detector, said third intensity is detected by a third position sensitive detector, and said fourth intensity is detected by a fourth position sensitive detector.
  • 36. The method of claim 35, wherein said first intensity is detected by a first quadrant detector, said second intensity is detected by a second quadrant detector, said third intensity is detected by a third quadrant detector, and said fourth intensity is detected by a fourth quadrant detector.
  • 37. The method of claim 35, further comprising determining a first slope on the first surface of said first object.
  • 38. The method of claim 36, further comprising determining a second slope on the first surface of said first object.
  • 39. The method of claim 38, wherein said first slope on the first surface comprises a slope in the radial direction, and wherein said second slope on the first surface comprises a slope in the circumferential direction.
  • 40. The method of claim 38, further comprising determining a first height and a second height on the first surface of said first object.
  • 41. The method of claim 35, further comprising simultaneously measuring said first and second differences in phase and a topography on the first surface of said first object.
  • 42. The method of claim 28, wherein said first incident light signal is transmitted toward said first object with an angle of incidence of at least approximately 60 degrees.
  • 43. The method of claim 28, wherein said second incident light signal is transmitted toward said first object with an angle of incidence of at least approximately 60 degrees.
  • 44. The method of claim 28, wherein the step of transmitting a first incident light signal toward a first surface of a first object in a first plane of incidence comprises:providing a first light source; and directing a light signal generated by said first light source toward the first surface of said first object in a first plane of incidence.
  • 45. The method of claim 44, wherein the step of transmitting a second incident light signal toward a first surface of a first object in a second plane of incidence comprises:splitting said directed light signal into said first incident light signal and said second incident light signal; and directing said second incident light signal toward the first surface of said first object in a second plane of incidence.
  • 46. A system for measuring a phase shift of each of two light signals in two planes of incidence comprising:a first light source for transmitting a first incident light signal toward a first surface of a first object in a first plane of incidence; a first polarization splitter for separating, from a first reflected light signal that has reflected off the first surface of said first object, a first mixed reflected polarized light signal component having a first phase and a second mixed reflected polarized light signal component having a second phase different from said first phase, wherein said first mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of said first incident light signal, and wherein said second mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of said first incident light signal; a first detector for detecting a first intensity of said first mixed reflected polarized light signal component; a second detector for detecting a second intensity of said second mixed reflected polarized light signal component; a first phase determinator for determining a first difference in phase between said first and second mixed reflected polarized light signal components based upon said first and second intensities; a second light source for transmitting a second light signal toward the first surface of said first object in a second plane of incidence different from the first plane of incidence; a second polarization splitter for separating, from a second reflected light signal that has reflected off the first surface of said first object, a third mixed reflected polarized light signal component having a third phase and a fourth mixed reflected polarized light signal component having a fourth phase different from said third phase, wherein said third mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of the second incident light signal, and wherein the fourth mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of the second incident light signal; a third detector for detecting a third intensity of said third mixed reflected polarized light signal component; a fourth detector for detecting a fourth intensity of said fourth mixed reflected polarized light signal component; and a second phase determinator for determining a second difference in phase between said third and fourth mixed reflected polarized light signal components based upon said third and fourth intensities.
  • 47. The system of claim 46, wherein the first plane of incidence and the second plane of incidence are substantially mutually perpendicular.
  • 48. The system of claim 46, further comprising a first spatial filter positioned to block a light signal reflected from a second surface of said first object from reaching said first and second detectors.
  • 49. The system of claim 46, further comprising a second spatial filter positioned to block a light signal reflected from a second surface of said first object from reaching said third and fourth detectors.
  • 50. The system of claim 46, wherein said first object is one of a magnetic disk and a silicon wafer.
  • 51. The system of claim 46, wherein said first object is a transparent glass substrate.
  • 52. The system of claim 46, wherein said first detector comprises a first position sensitive detector, said second detector comprises a second position sensitive detector, said third detector comprises a third position sensitive detector, and said fourth detector comprises a fourth position sensitive detector.
  • 53. The system of claim 52, wherein said first detector comprises a first quadrant detector, said second detector comprises a second quadrant detector, said third detector comprises a third quadrant detector, and said fourth detector comprises a fourth quadrant detector.
  • 54. The system of claim 46, further comprising a topography determinator for determining at least one slope and at least one height on the first surface of said first object.
  • 55. The system of claim 54, wherein said first difference in phase and a topography on the first surface of said first object are measured simultaneously.
  • 56. A method for simultaneously measuring a phase shift for each of two light signals in two substantially mutually perpendicular planes of incidence comprising:transmitting a first incident light signal toward a first surface of a first object in a first plane of incidence; separating from a first reflected light signal that has reflected off the first surface of said first object, a first mixed reflected polarized light signal component having a first phase and a second mixed reflected polarized light signal component having a second phase different from said first phase, wherein the first mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of said first incident light signal, and wherein the second mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of said first incident light signal; detecting a first intensity of said first mixed reflected polarized light signal component, wherein said first intensity is detected by a first position sensitive detector; detecting a second intensity of said second mixed reflected polarized light signal component, wherein said second intensity is detected by a second position sensitive detector; determining a first difference in phase between said first and second mixed reflected polarized light signal components based upon said first and second intensities; transmitting a second incident light signal toward the first surface of said first object in a second plane of incidence, wherein the second plane of incidence is substantially mutually perpendicular to the first plane of incidence; separating from a second reflected light signal that has reflected off the first surface of said first object, a third mixed reflected polarized light signal component having a third phase and a fourth mixed reflected polarized light signal component having a fourth phase different from said third phase, wherein the third mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of the second incident light signal, and wherein the fourth mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of the second incident light signal; detecting a third intensity of said third mixed reflected polarized light signal component, wherein said third intensity is detected by a third position sensitive detector; detecting a fourth intensity of said fourth mixed reflected polarized light signal component, wherein said fourth intensity is detected by a fourth position sensitive detector; and determining a second difference in phase between said third and fourth mixed reflected polarized light signal components based upon said third and fourth intensities.
  • 57. The method of claim 56, further comprising determining a first slope on the first surface of said first object.
  • 58. The method of claim 57, further comprising determining a second slope on the first surface of said first object.
  • 59. The method of claim 58, wherein said first slope on the first surface of said first object comprises a slope in the radial direction, and wherein said second slope on the first surface of said first object comprises a slope in the circumferential direction.
  • 60. The method of claim 58, further comprising determining a first height and a second height on the first surface of said first object.
  • 61. The method of claim 56, wherein said first incident light signal is transmitted toward said first object with an angle of incidence of at least approximately 60 degrees.
  • 62. The method of claim 56, wherein said first incident light signal is transmitted toward said first object with an angle of incidence of at least approximately 60 degrees.
  • 63. The method of claim 56, wherein transmitting a first incident light signal toward a first surface of a first object in a first plane of incidence comprises:providing a first light source; and directing a light signal generated by said first light source toward the first surface of said first object in a first plane of incidence.
  • 64. The method of claim 63, wherein transmitting a second incident light signal toward a first surface of a first object in a second plane of incidence comprises:splitting said directed light signal into said first incident light signal and said second incident light signal; and directing said second incident light signal toward the first surface of said first object in a second plane of incidence.
  • 65. A method for measuring a phase shift of a light signal, comprising:transmitting a first incident light signal toward a first surface of a first object in a first plane of incidence; separating from a first reflected light signal that has reflected off said first surface, a first mixed reflected polarized light signal component having a first phase and a second mixed reflected polarized light signal component having a second phase different from said first phase, wherein the first mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of said first incident light signal, and wherein the second mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of said first incident light signal; detecting a first intensity of said first mixed reflected polarized light signal component; detecting a second intensity of said second mixed reflected polarized light signal component; blocking a light signal reflected from a second surface of said first object to prevent detection of said light signal reflected from the second surface of said first object; and determining a first difference in phase between said first and second mixed reflected polarized light signal components based upon said first and second intensities.
  • 66. A system for measuring a phase shift of a light signal, comprising:a first light source for transmitting a first incident light signal toward a first surface of a first object in a first plane of incidence; a first polarization splitter for separating, from a first reflected light signal that has reflected off the first surface of said first object, a first mixed reflected polarized light signal component having a first phase and a second mixed reflected polarized light signal component having a second phase different from said first phase, wherein said first mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of said first incident light signal, and wherein said second mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of said first incident light signal; a first detector for detecting a first intensity of said first mixed reflected polarized light signal component; a second detector for detecting a second intensity of said second mixed reflected polarized light signal component; a first spatial filter positioned to block a light signal reflected from a second surface of said first object from reaching said first and second detectors; and a first phase determinator for determining a first difference in phase between said first and second mixed reflected polarized light signal components based upon said first and second intensities.
  • 67. A method for measuring a specular reflectivity of a light signal, comprising:transmitting a first incident light signal toward a first surface of a first object in a first plane of incidence; separating from a first reflected light signal that has reflected off said first surface, a first mixed reflected polarized light signal component having a first phase and a second mixed reflected polarized light signal component having a second phase different from said first phase, wherein the first mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of said first incident light signal, and wherein the second mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of said first incident light signal; detecting a first intensity of said first mixed reflected polarized light signal component; detecting a second intensity of said second mixed reflected polarized light signal component; blocking a light signal reflected from a second surface of said first object to prevent detection of said light signal reflected from the second surface of said first object; and determining a first specular reflectivity based upon said first and second intensities.
  • 68. The method of claim 67, wherein said first incident light signal comprises an S-polarized light signal relative to the plane of incidence of said first incident light signal.
  • 69. The method of claim 67, wherein said first incident light signal is transmitted toward said first object with an angle of incidence of at least approximately 60 degrees.
  • 70. The system of claim 67, wherein said first object is one of a magnetic disk and a silicon wafer.
  • 71. The system of claim 67, wherein said first object is a transparent glass substrate.
  • 72. A system for measuring a specular reflectivity of a light signal, comprising:a first light source for transmitting a first incident light signal toward a first surface of a first object in a first plane of incidence; a first polarization splitter for separating, from a first reflected light signal that has reflected off the first surface of said first object, a first mixed reflected polarized light signal component having a first phase and a second mixed reflected polarized light signal component having a second phase different from said first phase, wherein said first mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of said first incident light signal, and wherein said second mixed reflected polarized light signal component comprises both P-polarized and S-polarized light relative to the plane of incidence of said first incident light signal; a first detector for detecting a first intensity of said first mixed reflected polarized light signal component; a second detector for detecting a second intensity of said second mixed reflected polarized light signal component; a first spatial filter positioned to block a light signal reflected from a second surface of said first object from reaching said first and second detectors; and a first specular reflectivity determinator for determining a first specular reflectivity based upon said first and second intensities.
RELATED APPLICATION

This application claims priority under 35 U.S.C. §120 to U.S. patent application Ser. No. 09/818,199, entitled “A Combined High Speed Optical Profilometer and Ellipsometer”, that was filed on Mar. 26, 2001.

US Referenced Citations (54)
Number Name Date Kind
3885875 Rosenfeld et al. May 1975 A
4332477 Sato Jun 1982 A
4585348 Chastang et al. Apr 1986 A
4668860 Anthon May 1987 A
4870631 Stoddard Sep 1989 A
4873430 Juliana et al. Oct 1989 A
5017012 Merritt, Jr. et al. May 1991 A
5129724 Brophy et al. Jul 1992 A
5189481 Jann et al. Feb 1993 A
5196906 Stover et al. Mar 1993 A
5270794 Tsuji et al. Dec 1993 A
5293216 Moslehi Mar 1994 A
5313542 Castonguay May 1994 A
5406082 Pearson et al. Apr 1995 A
5416594 Gross et al. May 1995 A
5446549 Mazumder et al. Aug 1995 A
5463897 Prater et al. Nov 1995 A
5608527 Valliant et al. Mar 1997 A
5610897 Yamamoto et al. Mar 1997 A
5633747 Nikoonahad May 1997 A
5644562 de Groot Jul 1997 A
5694214 Watanabe et al. Dec 1997 A
5726455 Vurens Mar 1998 A
5748305 Shimono et al. May 1998 A
5777740 Lacey et al. Jul 1998 A
5798829 Vaez-Iravani Aug 1998 A
5864394 Jordan, III et al. Jan 1999 A
5875029 Jann et al. Feb 1999 A
5880838 Marx et al. Mar 1999 A
5903342 Yatsugake et al. May 1999 A
5951891 Barenboim et al. Sep 1999 A
5978091 Jann et al. Nov 1999 A
5985680 Singhal et al. Nov 1999 A
5986761 Crawforth et al. Nov 1999 A
5986763 Inoue Nov 1999 A
5995226 Abe et al. Nov 1999 A
6081325 Leslie et al. Jun 2000 A
6088092 Chen et al. Jul 2000 A
6091493 Stover et al. Jul 2000 A
6107637 Watanabe et al. Aug 2000 A
6118525 Fossey et al. Sep 2000 A
6134011 Klein et al. Oct 2000 A
6157444 Tomita et al. Dec 2000 A
6169601 Eremin et al. Jan 2001 B1
6172752 Haruna et al. Jan 2001 B1
6201601 Vaez-Iravani et al. Mar 2001 B1
6248988 Krantz Jun 2001 B1
6271916 Marxer et al. Aug 2001 B1
6307627 Vurens Oct 2001 B1
6353222 Dotan Mar 2002 B1
6384910 Vaez-Iravani et al. May 2002 B2
6509966 Ishiguro et al. Jan 2003 B2
6542248 Schwarz Apr 2003 B1
6603542 Chase et al. Aug 2003 B1
Foreign Referenced Citations (2)
Number Date Country
3-221804 Sep 1991 JP
WO9852019 Nov 1998 WO
Non-Patent Literature Citations (6)
Entry
Leung, W.C., Crooks, W., Rosen, H., and Strand T., An Optical Method Using a Laser and an Integrating Sphere Combination for Characterizing the Thickness Profile of Magnetic Media, IEEE Transactions on Magnetics, vol. 25, No. 5, Sep. 1989.
Meeks, Steven W., Weresin, Walter E., and Rosen, Hal J., Optical Surface Analysis of the Head-Disk-Interface of Thin Film Disks, Transactions of the ASME, vol. 117, Jan. 1995, pp. 112-118.
Meeks, Steven, Maxtor, and Kudinar, Rusmin, The Next Battleground: Head-Disk Interface, Data Storage, Mar. 1998, pp. 29-30, 34 & 38.
Laser Scanning Surface Profilometer, IBM Technical Disclosure Bulletin, Aug. 1970, pp 789-190.
Stover, John C., Optical Scattering—Measurement and Analysis, SPIE Press, Bellingham, WA, 1995, pp. 169-170.
Meeks, Steven W.: “A Combined Ellipsometer, Reflectometer, Scatterometer and Kerr Effect Microscope for Thin Film Disk Characterization,” Machine Vision Applications in Industrial Inspection VIII, Proceedings of SPIE, vol. 3966, 2000, pp. 385-391, XP001085220.
Continuations (1)
Number Date Country
Parent 09/818199 Mar 2001 US
Child 09/861280 US