The invention relates to a method and apparatus for sensing the resistance of a Programmable Conductor Random Access Memory (PCRAM) element.
PCRAM devices store binary data as two different resistance values, one higher than the other. The resistance value represents a particular binary value of logic “0” or logic “1”. When sensing the resistance value of a PCRAM device, it is common to compare the resistance of a memory cell undergoing a read operation with resistance of a reference cell to determine the resistance value of the cell being read and thus its logic state. Such an approach is disclosed in U.S. Pat. No. 5,883,827. However, this approach has some limitations.
If the reference cell is defective and a column of memory cells within an array uses a same defective reference cell, the entire column of memory cells will have erroneous resistance readings. In addition, specialized circuitry is required to write a resistance value into the reference cell, and a sense amplifier circuit for such an arrangement tends to be complex and large.
Typically, sensing schemes for PCRAM devices also tend to have a unique architecture which is different from that normally employed in typical DRAM circuits. Although PCRAM's differ from DRAM's in that they store binary values in resistive memory elements rather than as charges on capacitors, and although PCRAM's are non-volatile, where the capacitor structures employed in DRAM's are volatile, nevertheless it would be desirable if the read and write circuits for both devices were as similar as possible so that existing DRAM memory device architectures could be easily adapted to read and write PCRAM devices.
The present invention provides a PCRAM memory device and its method of operation which utilizes a read architecture similar to that employed in some DRAM memory devices. A pair of complementary PCRAM memory cells comprising first and second programmable conductor memory elements are employed, each connected to respective access transistors. During a write operation, the first and second memory elements are written with complementary binary values, that is: if the first memory element is written to a high resistance state, then the second memory element is written to a low resistance state; whereas if the first memory element is written to a low resistance state, the second memory element is written to a higher resistance state.
During a read operation of, for example, the first memory element, a sense amplifier is connected so that its respective inputs are coupled to receive respective precharge voltages which discharge through the first and second memory elements. A sense amplifier reads the discharging voltages through the two memory elements to determine which is the larger voltage, thus determining the resistance (high or low) and logic state (high or low) of the memory cell being read.
These and other features and advantages of the invention will become more apparent from the following detailed description of exemplary embodiments of the invention which are provided in connection with the accompanying drawings in which:
The present invention employs a sense amplifier architecture which is somewhat similar to that employed in some conventional DRAM devices to sense the resistance states of PCRAM memory cells. In the invention, a binary value is stored as a resistance value in a first PCRAM cell while its complement resistance value is stored in a second PCRAM cell. During readout of the first PCRAM cell, both PCRAM cells are used to discharge a precharge voltage into respective inputs of a sense amplifier which reads the discharge voltages to determine the resistance and thus the binary value stored in the first PCRAM cell undergoing a read operation.
As further shown in
As also illustrated in
During a write operation, a row line 104, which is coupled to transistor 207 and a row line 113 which is coupled to transistor 209 are activated such that if PCRAM memory element 102 is written to a high resistance state, PCRAM element 124 is written to a low resistance state, and vice versa. In this way, PCRAM memory elements 102 and 124 are accessed together and always store complementary resistance digit values. Thus assuming that PCRAM memory element 102 is the primary element which is being written to and read from, a sense amplifier 210 which is coupled to the digit lines 118 and 120 will read the value of PCRAM memory element 102 by comparing a discharging precharge voltage on digit line 118 to the discharging precharge voltage on digit line 120 during a memory read operation.
Thus, prior to a memory read, a precharge voltage is applied to complementary digit lines 118 and 120 by a precharge circuit 301. The precharge circuit is activated by a logic circuit on a precharge line which activates transistors 305 to supply a voltage, for example, Vcc/2, to both digit lines 118 and 120.
An equilibrate circuit 303 may also be provided which is activated by an equilibrate signal after the precharge circuit is activated to ensure that the voltages on lines 118 and 120 are the same. The voltages on lines 118 and 120 are held by a parasitic capacitance of the lines. After precharge and equilibrate (if present) circuits are activated, a read operation may be conducted on the complimentary cell pair 300. This read operation is illustrated in greater detail in
Parasitic capacitance for the complementary digit lines 118 and 120 are illustrated as C1 and C1*. The respective access transistors 207 and 209 are illustrated as connected to their respective word lines 105 and 113. The PCRAM memory elements 102 and 124 are also illustrated. As noted, a binary value is stored, for example, in memory PCRAM memory element 102 as a resistance value. It will be either a high resistance value or a low resistance value, and the complementary resistance value will be stored in PCRAM memory element 124.
During a read operation, the precharge voltage applied to the complementary digit lines 118 and 120 is allowed to discharge through the access transistors 207 and 209 and through the respective resistance values of the PCRAM memory elements 102 and 124. Because the resistance values will be different, one high and one low, the voltages on the digit lines D1 and D1* (118, 120) will begin to diverge during a read operation. Although the voltage initially applied to the complementary digit lines 118 and 120 is a voltage of Vcc/2, during a read operation this voltage actually is slightly higher by approximately 0.3 mV due to the presence of the parasitic capacitance C1 and C1* on the digit lines 118 and 120, as well as gate-drain capacitance inherent within transistors 207 and 209.
The divergence of the two voltages on the lines D1 and D1* progressively increases. At a predetermined time after the word lines 105 and 113 are activated, the sense amplifier 210 is activated. The sense amplifier can have an architecture typically employed in a DRAM arrangement which is illustrated in
Reverting back to
Although
Because programmable contact memory elements are resistive rather than capacitive memory elements, it is possible they will take longer to pull the digit lines up to Vcc and to ground than a typical capacitive memory element found within a DRAM. Supposing that to be true, older DRAM sense amplifier designs that run somewhat slower than the latest generation of DRAM sense amplifiers could also be used with PCRAM memory cells. The advantage of doing so would be that these older DRAM sense amplifiers have already been shown to perform effectively, and their test infrastructure is already confirmed. Consequently, a hybrid memory consisting of PCRAM memory elements using DRAM sense amplifiers can be produced having the advantages of PCRAM technology, yet being producible quickly and inexpensively.
Although
One or more memory devices 200 may be provided on a plug-in memory module 256, e.g. SIMM, DIMM or other plug-in memory module, for easy connection with or disconnection from the bus 420. While the invention has been described and illustrated with reference to specific exemplary embodiments, it should be understood that many modifications and substitutions can be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be considered as limited by the foregoing description but is only limited by the scope of the appended claims.
This application is a continuation of application Ser. No. 09/988,627, filed Nov. 20, 2001 now U.S. Pat. No. 6,791,859, the entire disclosure of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3271591 | Ovshinsky | Sep 1966 | A |
3622319 | Sharp | Nov 1971 | A |
3743847 | Boland | Jul 1973 | A |
3961314 | Klose et al. | Jun 1976 | A |
3966317 | Wacks et al. | Jun 1976 | A |
3983542 | Ovshinsky | Sep 1976 | A |
3988720 | Ovshinsky | Oct 1976 | A |
4112512 | Arzubi et al. | Sep 1978 | A |
4177474 | Ovshinsky | Dec 1979 | A |
4267261 | Hallman et al. | May 1981 | A |
4269935 | Masters et al. | May 1981 | A |
4312938 | Drexler et al. | Jan 1982 | A |
4316946 | Masters et al. | Feb 1982 | A |
4320191 | Yoshikawa et al. | Mar 1982 | A |
4405710 | Balasubramanyam et al. | Sep 1983 | A |
4419421 | Wichelhaus et al. | Dec 1983 | A |
4499557 | Holmberg et al. | Feb 1985 | A |
4597162 | Johnson et al. | Jul 1986 | A |
4608296 | Keem et al. | Aug 1986 | A |
4637895 | Ovshinsky et al. | Jan 1987 | A |
4646266 | Ovshinsky et al. | Feb 1987 | A |
4664939 | Ovshinsky | May 1987 | A |
4668968 | Ovshinsky et al. | May 1987 | A |
4670763 | Ovshinsky et al. | Jun 1987 | A |
4671618 | Wu et al. | Jun 1987 | A |
4673957 | Ovshinsky et al. | Jun 1987 | A |
4678679 | Ovshinsky | Jul 1987 | A |
4696758 | Ovshinsky et al. | Sep 1987 | A |
4698234 | Ovshinsky et al. | Oct 1987 | A |
4710899 | Young et al. | Dec 1987 | A |
4728406 | Banerjee et al. | Mar 1988 | A |
4737379 | Hudgens et al. | Apr 1988 | A |
4766471 | Ovshinsky et al. | Aug 1988 | A |
4769338 | Ovshinsky et al. | Sep 1988 | A |
4775425 | Guha et al. | Oct 1988 | A |
4788594 | Ovshinsky et al. | Nov 1988 | A |
4795657 | Formigoni et al. | Jan 1989 | A |
4800526 | Lewis | Jan 1989 | A |
4809044 | Pryor et al. | Feb 1989 | A |
4818717 | Johnson et al. | Apr 1989 | A |
4843443 | Ovshinsky et al. | Jun 1989 | A |
4845533 | Pryor et al. | Jul 1989 | A |
4847674 | Sliwa et al. | Jul 1989 | A |
4853785 | Ovshinsky et al. | Aug 1989 | A |
4891330 | Guha et al. | Jan 1990 | A |
5128099 | Strand et al. | Jul 1992 | A |
5159661 | Ovshinsky et al. | Oct 1992 | A |
5166758 | Ovshinsky et al. | Nov 1992 | A |
5177567 | Klersy et al. | Jan 1993 | A |
5219788 | Abernathey et al. | Jun 1993 | A |
5238862 | Blalock et al. | Aug 1993 | A |
5272359 | Nagasubramanian et al. | Dec 1993 | A |
5296716 | Ovshinsky et al. | Mar 1994 | A |
5314772 | Kozicki et al. | May 1994 | A |
5315131 | Kishimoto et al. | May 1994 | A |
5335219 | Ovshinsky et al. | Aug 1994 | A |
5341328 | Ovshinsky et al. | Aug 1994 | A |
5350484 | Gardner et al. | Sep 1994 | A |
5359205 | Ovshinsky | Oct 1994 | A |
5360981 | Owen et al. | Nov 1994 | A |
5406509 | Ovshinsky et al. | Apr 1995 | A |
5414271 | Ovshinsky et al. | May 1995 | A |
5500532 | Kozicki | Mar 1996 | A |
5512328 | Yoshimura et al. | Apr 1996 | A |
5512773 | Wolf et al. | Apr 1996 | A |
5534711 | Ovshinsky et al. | Jul 1996 | A |
5534712 | Ovshinsky et al. | Jul 1996 | A |
5536947 | Klersy et al. | Jul 1996 | A |
5543737 | Ovshinsky | Aug 1996 | A |
5591501 | Ovshinsky et al. | Jan 1997 | A |
5596522 | Ovshinsky et al. | Jan 1997 | A |
5687112 | Ovshinsky | Nov 1997 | A |
5694054 | Ovshinsky et al. | Dec 1997 | A |
5699293 | Tehrani et al. | Dec 1997 | A |
5714768 | Ovshinsky et al. | Feb 1998 | A |
5726083 | Takaishi | Mar 1998 | A |
5751012 | Wolstenholme et al. | May 1998 | A |
5761115 | Kozicki et al. | Jun 1998 | A |
5789277 | Zahorik et al. | Aug 1998 | A |
5814527 | Wolstenholme et al. | Sep 1998 | A |
5818749 | Harshfield | Oct 1998 | A |
5825046 | Czubatyj et al. | Oct 1998 | A |
5841150 | Gonzalez et al. | Nov 1998 | A |
5846889 | Harbison et al. | Dec 1998 | A |
5851882 | Harshfield | Dec 1998 | A |
5869843 | Harshfield | Feb 1999 | A |
5883827 | Morgan | Mar 1999 | A |
5896312 | Kozicki et al. | Apr 1999 | A |
5903504 | Chevallier et al. | May 1999 | A |
5912839 | Ovshinsky et al. | Jun 1999 | A |
5914893 | Kozicki et al. | Jun 1999 | A |
5914902 | Lawrence et al. | Jun 1999 | A |
5920788 | Reinberg | Jul 1999 | A |
5933365 | Klersy et al. | Aug 1999 | A |
5936880 | Payne | Aug 1999 | A |
5936882 | Dunn | Aug 1999 | A |
5998066 | Block et al. | Dec 1999 | A |
6011757 | Ovshinsky | Jan 2000 | A |
6031287 | Harshfield | Feb 2000 | A |
6072716 | Jacobson et al. | Jun 2000 | A |
6077729 | Harshfield | Jun 2000 | A |
6084796 | Kozicki et al. | Jul 2000 | A |
6087674 | Ovshinsky et al. | Jul 2000 | A |
6117720 | Harshfield | Sep 2000 | A |
6141241 | Ovshinsky et al. | Oct 2000 | A |
6143604 | Chiang et al. | Nov 2000 | A |
6177338 | Liaw et al. | Jan 2001 | B1 |
6191972 | Miura et al. | Feb 2001 | B1 |
6191989 | Luk et al. | Feb 2001 | B1 |
6236059 | Wolstenholme et al. | May 2001 | B1 |
6243311 | Keeth | Jun 2001 | B1 |
RE37259 | Ovshinsky | Jul 2001 | E |
6297170 | Gabriel et al. | Oct 2001 | B1 |
6300684 | Gonzalez et al. | Oct 2001 | B1 |
6314014 | Lowrey et al. | Nov 2001 | B1 |
6316784 | Zahorik et al. | Nov 2001 | B1 |
6329606 | Freyman et al. | Dec 2001 | B1 |
6339544 | Chiang et al. | Jan 2002 | B1 |
6348365 | Moore et al. | Feb 2002 | B1 |
6350679 | McDaniel et al. | Feb 2002 | B1 |
6376284 | Gonzalez et al. | Apr 2002 | B1 |
6388324 | Kozicki et al. | May 2002 | B1 |
6391688 | Gonzalez et al. | May 2002 | B1 |
6404665 | Lowrey et al. | Jun 2002 | B1 |
6414376 | Thakur et al. | Jul 2002 | B1 |
6418049 | Kozicki et al. | Jul 2002 | B1 |
6420725 | Harshfield | Jul 2002 | B1 |
6423628 | Li et al. | Jul 2002 | B1 |
6429064 | Wicker | Aug 2002 | B1 |
6437383 | Xu | Aug 2002 | B1 |
6440837 | Harshfield | Aug 2002 | B1 |
6462981 | Numata et al. | Oct 2002 | B1 |
6462984 | Xu et al. | Oct 2002 | B1 |
6469364 | Kozicki | Oct 2002 | B1 |
6473332 | Ignatiev et al. | Oct 2002 | B1 |
6480438 | Park | Nov 2002 | B1 |
6487106 | Kozicki | Nov 2002 | B1 |
6487113 | Park et al. | Nov 2002 | B1 |
6490190 | Ramcke et al. | Dec 2002 | B1 |
6501111 | Lowrey | Dec 2002 | B1 |
6507061 | Hudgens et al. | Jan 2003 | B1 |
6511862 | Hudgens et al. | Jan 2003 | B1 |
6511867 | Lowrey et al. | Jan 2003 | B1 |
6512241 | Lai | Jan 2003 | B1 |
6514805 | Xu et al. | Feb 2003 | B1 |
6531373 | Gill et al. | Mar 2003 | B1 |
6534781 | Dennison | Mar 2003 | B1 |
6545287 | Chiang | Apr 2003 | B1 |
6545907 | Lowrey et al. | Apr 2003 | B1 |
6555860 | Lowrey et al. | Apr 2003 | B1 |
6563164 | Lowrey et al. | May 2003 | B1 |
6566700 | Xu | May 2003 | B1 |
6567293 | Lowrey et al. | May 2003 | B1 |
6569705 | Chiang et al. | May 2003 | B1 |
6570784 | Lowrey | May 2003 | B1 |
6576921 | Lowrey | Jun 2003 | B1 |
6577525 | Baker | Jun 2003 | B1 |
6586761 | Lowrey | Jul 2003 | B1 |
6589714 | Maimon et al. | Jul 2003 | B1 |
6590807 | Lowrey | Jul 2003 | B1 |
6593176 | Dennison | Jul 2003 | B1 |
6597009 | Wicker | Jul 2003 | B1 |
6605527 | Dennison et al. | Aug 2003 | B1 |
6608773 | Lowrey et al. | Aug 2003 | B1 |
6613604 | Maimon et al. | Sep 2003 | B1 |
6621095 | Chiang et al. | Sep 2003 | B1 |
6625054 | Lowrey et al. | Sep 2003 | B1 |
6642102 | Xu | Nov 2003 | B1 |
6646297 | Dennison | Nov 2003 | B1 |
6649928 | Dennison | Nov 2003 | B1 |
6667900 | Lowrey et al. | Dec 2003 | B1 |
6671710 | Ovshinsky et al. | Dec 2003 | B1 |
6673648 | Lowrey | Jan 2004 | B1 |
6673700 | Dennison et al. | Jan 2004 | B1 |
6674115 | Hudgens et al. | Jan 2004 | B1 |
6687153 | Lowrey | Feb 2004 | B1 |
6687427 | Ramalingam et al. | Feb 2004 | B1 |
6690026 | Peterson | Feb 2004 | B1 |
6696355 | Dennison | Feb 2004 | B1 |
6707712 | Lowery | Mar 2004 | B1 |
6714954 | Ovshinsky et al. | Mar 2004 | B1 |
6757784 | Lu et al. | Jun 2004 | B1 |
20020000666 | Kozicki et al. | Jan 2002 | A1 |
20020027805 | Roohparvar | Mar 2002 | A1 |
20020057594 | Hirai | May 2002 | A1 |
20020072188 | Gilton | Jun 2002 | A1 |
20020106849 | Moore | Aug 2002 | A1 |
20020123169 | Moore et al. | Sep 2002 | A1 |
20020123170 | Moore et al. | Sep 2002 | A1 |
20020123248 | Moore et al. | Sep 2002 | A1 |
20020127886 | Moore et al. | Sep 2002 | A1 |
20020132417 | Li | Sep 2002 | A1 |
20020160551 | Harshfield | Oct 2002 | A1 |
20020163828 | Krieger et al. | Nov 2002 | A1 |
20020168820 | Kozicki | Nov 2002 | A1 |
20020168852 | Kozicki | Nov 2002 | A1 |
20020190289 | Harshfield et al. | Dec 2002 | A1 |
20020190350 | Kozicki et al. | Dec 2002 | A1 |
20030001229 | Moore et al. | Jan 2003 | A1 |
20030027416 | Moore | Feb 2003 | A1 |
20030032254 | Gilton | Feb 2003 | A1 |
20030035314 | Kozicki | Feb 2003 | A1 |
20030035315 | Kozicki | Feb 2003 | A1 |
20030038301 | Moore | Feb 2003 | A1 |
20030043631 | Gilton et al. | Mar 2003 | A1 |
20030045049 | Campbell et al. | Mar 2003 | A1 |
20030045054 | Campbell et al. | Mar 2003 | A1 |
20030047765 | Campbell | Mar 2003 | A1 |
20030047772 | Li | Mar 2003 | A1 |
20030047773 | Li | Mar 2003 | A1 |
20030048519 | Kozicki | Mar 2003 | A1 |
20030048744 | Ovshinsky et al. | Mar 2003 | A1 |
20030049912 | Campbell et al. | Mar 2003 | A1 |
20030068861 | Li et al. | Apr 2003 | A1 |
20030068862 | Li et al. | Apr 2003 | A1 |
20030095426 | Hush et al. | May 2003 | A1 |
20030096497 | Moore et al. | May 2003 | A1 |
20030107105 | Kozicki | Jun 2003 | A1 |
20030117831 | Hush | Jun 2003 | A1 |
20030128612 | Moore et al. | Jul 2003 | A1 |
20030137869 | Kozicki | Jul 2003 | A1 |
20030143782 | Gilton et al. | Jul 2003 | A1 |
20030155589 | Campbell et al. | Aug 2003 | A1 |
20030155606 | Campbell et al. | Aug 2003 | A1 |
20030156447 | Kozicki | Aug 2003 | A1 |
20030156463 | Casper et al. | Aug 2003 | A1 |
20030209728 | Kozicki et al. | Nov 2003 | A1 |
20030209971 | Kozicki et al. | Nov 2003 | A1 |
20030210564 | Kozicki et al. | Nov 2003 | A1 |
20030212724 | Ovshinsky et al. | Nov 2003 | A1 |
20030212725 | Ovshinsky et al. | Nov 2003 | A1 |
20040035401 | Ramachandran et al. | Feb 2004 | A1 |
Number | Date | Country |
---|---|---|
1109170 | Jun 2001 | EP |
56126916 | Oct 1998 | JP |
WO 9748032 | Dec 1997 | WO |
WO 9928914 | Jun 1999 | WO |
WO 0048196 | Aug 2000 | WO |
WO 0221542 | Mar 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20050018509 A1 | Jan 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09988627 | Nov 2001 | US |
Child | 10866091 | US |