The present invention relates to the manufacture of semiconductor devices, and in particular, to the manufacture of gate structures utilized in advanced semiconductor products, having a nitrided conductor layer.
Semiconductor memory devices are comprised of an array of memory cells. Each memory cell is comprised of a capacitor, on which the charge stored represents the logical state of the memory cell. A charged capacitor corresponds to a logical state of “1” and an uncharged capacitor corresponds to a logical state of “0.” Word lines activate access transistors, so that the logical state of a memory cell can be read. Gates of multiple transistors are formed as one word line.
An example of a word line's application is in a dynamic random access memory (DRAM). In a DRAM, a common word line, used to access memory cells, is fabricated on a p-type silicon substrate coated with a thin film of silicon dioxide (SiO2), known as gate oxide. Then, a word line is formed on the gate oxide layer as a two-layer stack, comprising silicon (or polysilicon), coated with a conductor material. The most common two-layer stack used in the industry is a layer of polysilicon, coated with a tungsten silicide layer. Tungsten silicide is used because of its good integration properties, such as providing good thermal stability, stability during source/drain oxidation, and stability during dry etching, as well as having a low resistivity. Although titanium silicide is approximately 75% less resisitive than tungsten silicide, it has not been used extensively in two-layer stacks because it is not as thermally stable. Titanium silicide tends to agglomerate during subsequent high temperature processing steps. Alternatively, a metal is used instead of a silicide for the conductor layer.
Of primary concern is minimizing resistivity throughout the word line, due to the need to reduce RC time constants and access multiple memory cells in as short a period of time as possible. The problem is especially critical due to the extended length of word lines. Diffusion of silicon from the bottom polysilicon layer to the top conductor layer increases the resistivity of the two-layer stack. When silicon diffuses through the stack, it reacts with the conductor layer elements, increasing the resistivity of the conductor layer. When the conductor layer is formed of a metal, silicides are formed, which have a higher resistivity than pure metal.
One previous unsuccessful attempt to solve this diffusion problem introduces a third layer, which acts as a diffusion barrier, between the silicon and conductor layers. For example, a silicon nitride layer is used as the third layer in a two-layer stack. However, the silicon nitride diffusion barrier layer of Ito et al. (IEEE Transactions on Electron Devices, ED-33 (1986), 464 and U.S. Pat. No. 4,935,804) is difficult to employ because it must be ultrathin (less than 3 nanometers thick) to allow tunneling of charges through the layer, yet thick enough to act as a reaction barrier between the polysilicon and conductor layer elements.
Another diffusion barrier used in the past is comprised of a titanium nitride layer interposed between a two-layer stack. The conductive titanium nitride barrier layer of Pan et al. (IBM General Technology Division, “Highly Conductive Electrodes for CMOS”) attempts to solve the problems of Ito et al., but it requires a special source/drain (S/D) oxidation process when forming oxide spacers to maintain gate oxide layer integrity. A special process is required due to the tendency for tungsten and titanium nitride to oxidize, resulting in degradation of these layers. This adds time and cost to the fabrication process.
In ultra large scale integrated (ULSI) circuits, a highly conductive word line is necessary to improve circuit density and performance. In order to maintain a highly conductive word line, it is necessary to provide an effective method for decreasing diffusion within the two-layer stack. As devices are scaled down in size, word line widths are also decreased. While smaller line widths result in a decreased amount of resistance, this decrease is more than offset by an increase in resistance due to the longer length of word lines. To date, word line resistance is one of the primary limitations of achieving faster ULSI circuits. A method for decreasing the resistivity of word lines is needed for use in ULSI applications.
In addition to creating a diffusion barrier layer in a two-layer word line stack, another way of decreasing resistance in a word line is by forming a high conductivity film on the word line. Such films are commonly formed of a refractory metal silicide, such as titanium silicide (TiSi2). Titanium is preferably used as the refractory metal component because it has the ability to reduce oxygen, which remains on surfaces in the form of native oxides. Native oxides are reduced to titanium oxide by titanium. Native oxides degrade interface stability, and often cause device failure if not removed.
There is a need to decrease the overall resistivity of a word line stack. One way that this needs to be accomplished is by preventing silicidation at the interface between the bottom silicon layer and the conductor layer in such a stacked structure. While diffusion barrier layers are one attempt to alleviate this problem, additional methods are needed to further decrease the resistivity. One way of preventing silicidation at the interface between the two layers in a word line stack is by forming a thin nitride layer at the interface. Conventionally, this is done by implanting nitrogen at the interface and annealing. However, implantation is not a preferred way of forming such layers, particularly in shallow junctions.
A method for forming a word line, which is used in ultra-large scale integrated (ULSI) circuits, produces lower resistivity word lines than those formed using prior art techniques. In one embodiment of the invention, a thin nitride layer is formed at the interface between a bottom silicon layer and a conductor layer in a word line stack. The nitride layer improves high temperature stability of the conductor layer. Thermal stability of the conductor layer is improved because the nitride layer inhibits uncontrollable, massive silicidation, which results from pin holes, or other defect sites at the interface between the conductor layer and the bottom silicon layer. Furthermore, leakage currents are reduced due to the nitride layer. Using the method of the invention for nitriding the conductor layer/bottom silicon layer interface is preferable to using prior art methods of implanting nitrogen at the interface. Implanted nitrogen is plagued by straggle, which causes problems in shallow junction applications.
A method of lightly nitriding the TiSi2/Si (or polysilicon) interface through “thin snow-plow” metallization improves high temperature stability of TiSi2. As illustrated in
Then, the film 240 is annealed in an N2O, NH3, or NO, ambient, using rapid thermal nitridation (RTN) or plasma nitridation, resulting in a thin film 242, having an increased nitrogen concentration, as shown in
The key to obtaining a low resistivity TiSi2 film using this approach, is to have a flat, thin “snow-plow,” as described below. A “snow plow” starts with a nitrogen-doped silicon oxide film 242 (approximately less than 20 to 50 angstroms), having a low nitrogen concentration (approximately 1013 ions/cm2) primarily at the SiO2/Si (or polysilicon) interface 244, as shown in FIG. 1B. When the RTN step is performed at a temperature of approximately 800 to 1,050 degrees Celsius, the concentration of nitrogen atoms at the SiO2/Si interface 244 is approximately 1.4% N atoms by volume when using a N2O ambient and approximately 5.4% N atoms by volume when using a NO ambient. The nitrogen concentration in the film 242 can be determined by a film reflex index. A lower nitrogen content is obtained by varying the annealing temperature and ambient gas used. A higher nitrogen content is achievable by annealing in an ammonia, NH3 ambient. However, usually only a very low nitrogen concentration is needed at the SiO2/Si interface 244 because too much nitrogen content can inhibit subsequent silicidation.
Subsequently, a TiSi2 film is grown by depositing a titanium layer 228, as shown in
Thermal stability of TiSi2 218 is greatly improved by forming a light nitride layer 252 in accordance with this embodiment of the invention, as shown in FIG. 1D. Word lines formed in accordance with this method are thermally stable, up to 200 to 300 degrees Celsius more so than those formed using prior art techniques. However, there is a trade off for improving the thermal stability of a word line using a thin nitride layer 252. The nitride layer 252 increases the resistivity of the word line. However, resistivity of the resulting conductor layer 218 is usually no more than a factor of two larger than conventional silicided TiSi2. Furthermore, this method effectively lowers leakage currents. This method is highly advantageous over implanting nitrogen into the silicon substrate to form a nitride layer. Since nitrogen is a light element, projected straggle during implantation is quite large, even at shallow implantations (i.e., approximately 200 angstroms for a 20 keV implant). Light nitridation using implantation occurs at least in a range of several hundred angstroms. This potentially causes problems for future shallow junction applications.
In a further embodiment, subsequent to deposition of titanium 228 and prior to annealing to form TiSi2 218, a titanium nitride (TiN) cap 254 is formed, as shown in FIG. 1E. Such a layer 254 is typically approximately 25 nanometers thick, deposited using physical vapor deposition (PVD). As the TiSi2 218 boundary advances, reduced oxygen atoms 250 (i.e., TiOx) are “snow-plowed” towards the outer TiSi2 218 surface due to more favorable TiSi2 218 formation, as shown in FIG. 1F. This “thin snow-plow” phenomenon produces a high quality TiSi2 film 218. Only a light nitridation layer 252 remains at the TiSi2/Si (or polysilicon) interface. The TiN cap 254 remains interposed on the outside surface of the word line stack. The TiN cap 254 and the TiOx layer 250 can then be stripped away with a suitable acid. Subsequent process steps comprise depositing a cap dielectric 220, such as silicon oxide or silicon nitride, and etching to define a word line stack 236 and forming oxide spacers 222 alongside the word line stack 236, as shown in FIG. 1G. The line width 234 of a word line is equal to the width 234 of the word line stack 236. Conventional source/drain implantation forms implanted regions 260 self-aligned with the oxide spacers 222.
In still further embodiments of the invention, a nitride layer is formed on a second diffusion barrier layer interposed between the bottom silicon layer and the conductor layer in a word line stack. Such diffusion barrier layers are well known to one skilled in the art. Further variations will be apparent to one skilled in the art.
This application is a Continuation of U.S. application Ser. No. 10/231,758, filed Aug. 29, 2002, U.S. Pat. No. 6,798,026 which is Continuation of U.S. application Ser. No. 09/131,993, filed Aug. 11, 1998, now U.S. Pat. No. 6,525,384, which is a Divisional of U.S. application Ser. No. 08/802,861, filed Feb. 19, 1997, now U.S. Pat. No. 5,926,730, all of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4682407 | Wilson et al. | Jul 1987 | A |
4755865 | Wilson et al. | Jul 1988 | A |
4774204 | Havemann | Sep 1988 | A |
4784973 | Stevens et al. | Nov 1988 | A |
4788160 | Havemann et al. | Nov 1988 | A |
4897368 | Kobushi et al. | Jan 1990 | A |
4912542 | Suguro | Mar 1990 | A |
4923822 | Wang et al. | May 1990 | A |
4935804 | Ito et al. | Jun 1990 | A |
5210043 | Hosaka | May 1993 | A |
5234794 | Sebald et al. | Aug 1993 | A |
5313087 | Chan et al. | May 1994 | A |
5381302 | Sandhu et al. | Jan 1995 | A |
5384485 | Nishida et al. | Jan 1995 | A |
5395787 | Lee et al. | Mar 1995 | A |
5397744 | Sumi et al. | Mar 1995 | A |
5534713 | Ismail et al. | Jul 1996 | A |
5541131 | Yoo et al. | Jul 1996 | A |
5545574 | Chen et al. | Aug 1996 | A |
5545581 | Armacost et al. | Aug 1996 | A |
5557567 | Bergemont et al. | Sep 1996 | A |
5569947 | Iwasa et al. | Oct 1996 | A |
5624869 | Agnello et al. | Apr 1997 | A |
5633177 | Anjum | May 1997 | A |
5633200 | Hu | May 1997 | A |
5637533 | Choi | Jun 1997 | A |
5650648 | Kapoor | Jul 1997 | A |
5656546 | Chen et al. | Aug 1997 | A |
5665646 | Kitano | Sep 1997 | A |
5668394 | Lur et al. | Sep 1997 | A |
5682055 | Huang et al. | Oct 1997 | A |
5710438 | Oda et al. | Jan 1998 | A |
5723893 | Yu et al. | Mar 1998 | A |
5726479 | Matsumoto et al. | Mar 1998 | A |
5728625 | Tung | Mar 1998 | A |
5736455 | Iyer et al. | Apr 1998 | A |
5739064 | Hu et al. | Apr 1998 | A |
5776815 | Pan et al. | Jul 1998 | A |
5776823 | Agnello et al. | Jul 1998 | A |
5796151 | Hsu et al. | Aug 1998 | A |
5856698 | Hu et al. | Jan 1999 | A |
5874351 | Hu et al. | Feb 1999 | A |
5874353 | Lin et al. | Feb 1999 | A |
5925918 | Wu et al. | Jul 1999 | A |
5945719 | Tsuda | Aug 1999 | A |
5998290 | Wu et al. | Dec 1999 | A |
6291868 | Weimer et al. | Sep 2001 | B1 |
6362086 | Weimer | Mar 2002 | B2 |
Number | Date | Country |
---|---|---|
0746015 | Dec 1996 | EP |
Number | Date | Country | |
---|---|---|---|
20040238845 A1 | Dec 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08802861 | Feb 1997 | US |
Child | 09131993 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10231758 | Aug 2002 | US |
Child | 10881630 | US | |
Parent | 09131993 | Aug 1998 | US |
Child | 10231758 | US |