The present disclosure relates to a control system for a continuum robot including a bendable portion configured to be bent by driving of a wire, a control method for the continuum robot, and a storage medium storing a program for causing a computer to function as the control system.
In recent years, a minimally invasive medical treatment for reducing a burden on a patient and improving the quality of life (QOL) after treatment or examination has been attracting attention. Typical examples of the minimally invasive medical treatment include surgery or examination using an endoscope. For example, laparoscopic surgery enables a surgical wound to be made smaller than in the case of conventional laparotomy surgery, and is thus advantageous not only in that the hospitalization period required after surgery can be shortened, but also in that the laparoscopic surgery is cosmetically superior.
A flexible endoscope is known as an example of the endoscope used for the minimally invasive medical treatment. Such a flexible endoscope includes an insertion portion functioning as a bendable portion formed of a bendable member. The flexible endoscope can thus reach a deep portion of the body without pressuring the tissue of a tortuous organ, such as an esophagus, a large intestine, or a lung, which makes it possible to reduce the burden on the patient. In addition, it can be expected that the burden on the patient can be further reduced, for example, by using a drive unit such as an actuator to drive the bendable portion serving as the insertion portion, and automatically controlling the attitude of the bendable portion along a path in the body. Accordingly, the search and development of a mechanism and a control method for a continuum robot that can be used as the flexible endoscope have been actively conducted.
Many of such continuum robots adopt a method in which a drive unit such as an actuator for driving a wire is installed in a base, and the wire is used as a driving force transmission mechanism for bending the bendable portion, thereby decreasing the diameter of the bendable portion. This method enables a continuum robot to reach a deep portion of the body. However, the rigidity of the bendable portion of the continuum robot decreases as the diameter of the bendable portion is decreased. Accordingly, if the bendable portion of the continuum robot comes into contact with an inner wall of a body cavity or the like, the continuum robot (bendable portion) may be twisted about a central axis of the continuum robot. Due to the occurrence of the twist, the correspondence between the amount of driving of the wire and the attitude of the continuum robot (bendable portion) deviates from a designed value, which may lead to deterioration in the accuracy of the control performance of the continuum robot (bendable portion). In this regard, for example, Japanese Patent Application Laid-Open No. 2019-122491 discusses a technique in which, even when the bendable portion of the continuum robot is twisted, the driving displacement amount of the wire is controlled based on the torsional amount of the bendable portion, so that the attitude of the bendable portion is matched with a target attitude.
According to the technique discussed in Japanese Patent Application Laid-Open No. 2019-122491, in order to compensate for a control error due to the twist of the bendable portion, the length of the wire that passes through the bendable portion is calculated assuming that a value of the phase angle of the wire that passes through the position (proximal end) of the bendable portion closest to the base, which is obtained considering the torsional amount, is a new phase angle. In the technique discussed in Japanese Patent Application Laid-Open No. 2019-122491, it is assumed that the wire moves linearly from the proximal end of the bendable portion to a wire guide located at the position (distal end) of the bendable portion farthest from the base. However, in the actual continuum robot, if the bendable portion is twisted, the wire moves in a spiral along the central axis of the continuum robot (bendable portion). Thus, in the technique discussed in Japanese Patent Application Laid-Open No. 2019-122491, the length of the wire in the bendable portion (the length of the wire that passes through the bendable portion) cannot be accurately calculated when the bendable portion of the continuum robot is twisted. As a result, it is difficult to improve the control performance of the continuum robot.
The present disclosure is directed to providing a mechanism that can achieve an improvement in the control performance of a continuum robot even when a bendable portion of the continuum robot is twisted.
According to an aspect of the present disclosure, a control system for a continuum robot including a bendable portion configured to be bent by driving of a wire, and a drive unit configured to drive the wire includes a torsional angle acquisition unit configured to acquire a torsional angle of the bendable portion, and a kinematics calculation unit configured to calculate a length of the wire in the bendable portion based on the torsional angle acquired by the torsional angle acquisition unit. The kinematics calculation unit includes a wire length calculation unit configured to calculate, for each of a plurality of minute sections obtained by dividing the bendable portion in a longitudinal direction thereof, a length of the wire in the minute section based on a bending angle, a turning angle, and a torsional angle of the minute section, and an addition unit configured to add the lengths of the wire in the plurality of minute sections obtained by the wire length calculation unit to calculate the length of the wire in the bendable portion.
The present disclosure also includes a control method for the continuum robot using the above-described control system, and a storage medium storing a program for causing a computer to function as the above-described control system.
According to exemplary embodiments of the present disclosure, the length of a wire in a bendable portion of a continuum robot can be accurately calculated even when the bendable portion is twisted, which leads to an improvement in the control performance of the continuum robot.
Further features of the present disclosure will become apparent from the following description of exemplary embodiments with reference to the attached drawings.
Various exemplary embodiments, features, and aspects of the present disclosure will be described below with reference to the drawings. The exemplary embodiments described below illustrate examples assuming that a continuum robot uses a wire as a driving force transmission mechanism for bending a bendable portion. Furthermore, a control system and a control method according to an exemplary embodiment of the present disclosure are applied to the continuum robot. In the exemplary embodiments described below, the length of a wire in the bendable portion is calculated assuming that the wire moves in a spiral along a central axis of the continuum robot (the bendable portion), thereby improving the control performance of the continuum robot.
A first exemplary embodiment of the present disclosure will be described.
The bendable portion 110 is a component configured to be bent three-dimensionally by driving of at least one of the wires 1a to 1c. In the present exemplary embodiment, a configuration in which the continuum robot 100-1 includes a single bendable portion (the bendable portion 110) configured to be bent three-dimensionally is assumed and described. A distal end 111 (see
The long portion 120 is a component that includes the wires 1a to 1c and is configured to be bent passively by, for example, an external force. In the example illustrated in
The actuators 130-1a to 130-1c are drive units that drive the wires 1a to 1c. More specifically, the actuator 130-1a drives the wire 1a, the actuator 130-1b drives the wire 1b, and the actuator 130-1c drives the wire 1c.
The wires 1a to 1c are guided by a plurality of wire guides 112 illustrated in
The following is definitions of symbols used in the present exemplary embodiment.
θ1: Absolute bending angle of the first bendable portion 110
ζ1: Absolute turning angle of the first bendable portion 110
τ1: Absolute torsional angle of the first bendable portion 110
l1a1: Length of the wire 1a in the first bendable portion 110
l1b1: Length of the wire 1b in the first bendable portion 110
l1c1: Length of the wire 1c in the first bendable portion 110
rg: Distance from the central axis 113 of the bendable portion 110 to each of the wires 1a to 1c
l10: Length of each of the wires 1a to 1c in the first bendable portion 110 having a bending angle of 0 degree
Δθ1,j: Bending angle of the j-th minute section of the first bendable portion 110
Δl1,j: Length of the j-th minute section of the first bendable portion 110
In
In the model for the bendable portion 110 illustrated in
When the bendable portion 110 of the continuum robot 100-1 is not twisted, the wires 1a to 1c move on a plane parallel to a W1-Z1 plane. Accordingly, the length of each of the wires 1a to 1c can be easily calculated even when the wires 1a to 1c are treated as a continuum.
On the other hand, when the bendable portion 110 of the continuum robot 100-1 is twisted, as illustrated in
As illustrated in
In the present exemplary embodiment, the following assumptions are made to derive the model for the bendable portion 110 of the continuum robot 100-1.
Assumption 1: Each of the wires 1a to 1c has a linear shape in each minute section.
Assumption 2: The bendable portion 110 is deformed with a constant curvature.
Assumption 3: The torsional angle continuously changes at a constant rate regardless of a frictional force acting between the wire guides 112 and each of the wires 1a to 1c, and without being influenced by the wire guides 112.
Assumption 4: The expansion and contraction of the wires 1a to 1c is not taken into consideration.
First, a length l1a1,j of the wire 1a that passes through the j-th minute section of the bendable portion 110 is derived. Based on Assumption 1, the length l1a1,j of the wire 1a corresponds to the length of a line segment P1a1,j-P1a1,j+1 illustrated in
p
1a1,j=[rg cos(τ1,j)rg sin(τ1,j)O]T (1)
A vector p′1a1,j from the origin O1,j to the point P′1a1,j is represented by the following expression (2).
p
1a1,j=[rg cos(τ1,j+1)rg sin(τ1,j+1)O]T (2)
A vector t1,j from the origin O1,j to the point T1,j is represented by the following expression (3).
If the bendable portion 110 is divided into minute sections each having the same length, the length Δl1,j of the j-th minute section is represented by the following expression (4).
In this case, based on Assumption 2 and Assumption 3, the bending angle Δθ1,j, a turning angle ζ1,j, and the torsional angle τ1,j of the j-th minute section are respectively represented by the following expressions (5), (6), and (7) using the bending angle θ1, the turning angle ζ1, and the torsional angle ζ1 of the bendable portion 110.
The point P1a1,j+1 is a point obtained by rotating the point P′1a1,j about an axis that passes through the point T1,j and is orthogonal to a W1,j-Z1,j plane, by the amount corresponding to the bending angle Δθ1,j. Accordingly, assuming that a rotation matrix for rotating the point about the Z1,j-axis by the amount corresponding to the turning angle ζ1,j with the origin O1,j+1 as a center is represented by Rz(ζ1,j) and a rotation matrix for rotating the point about the Y1,j-axis by the amount corresponding to the bending angle Δθ1,j is represented by Ry(Δθ1,j), a vector p1a1,j+1 from the origin O1,j to the point P1a1,j+1 is represented by the following expression (8) using the vector p′1a1,j and the vector t1,j.
p
1a1,j+1
=R
z(ζ1,j)Ry(Δθ1,j)RZ(p′1a1,j−t1,j)+t1,j (8)
In this case, the matrix Rz(ζ1,j) and the matrix Ry(Δθ1,j) are obtained by the following expressions (9) and (10), respectively.
As described above, the length l1a1,j of the wire 1a that passes through the j-th minute section corresponds to the length of the line segment P1a1,j-P1a1,j+1. Accordingly, the length l1a1,j of the wire 1a is represented by the following expression (11).
l
1a1,j
=|p
1a1,j+1
−p
1a1,j| (11)
Based on Assumption 4, the length l1a1 of the wire lain the bendable portion 110 (i.e., the overall length of the wire 1a that passes through the bendable portion 110) is the sum of the lengths of the wire 1a in the respective minute sections of the bendable portion 110. Accordingly, the length l1a1 of the wire 1a in the bendable portion 110 is represented by the following expression (12).
Next, the wires 1b and 1c will be described, similarly to the case of the wire 1a described above. Assuming that an intersection between the wire 1b and a plane closer to the front end face 1201 in the j-th minute section is defined as a point P1b1,j and an intersection between the wire 1c and a plane closer to the front end face 1201 in the j-th minute section is defined as a point P1c1,j, a vector p1b1,j from the origin O1,j to the point P1b1,j is represented by the following expression (13) and a vector p1c1,j from the origin O1,j to the point P1c1,j is represented by the following expression (14).
A vector p′1b1,j from the origin O1,j to a projected point P′1b1,j and a vector p′1c1,j from the origin O1,j to a projected point P′1c1,j are represented by the following expressions (15) and (16), respectively.
A vector p1b1,j+1 from the origin O1,j to an intersection P1b1,j+1 between the wire 1b and a plane closer to the distal end 111 in the j-th minute section, and a vector p1c1,j+1 from the origin O1,j to an intersection P1c1,j+1 between the wire 1c and a plane closer to the distal end 111 in the j-th minute section are represented by the following expressions (17) and (18), respectively.
p
1b1,j+1
R
z(ζ1,j)Ry(Δθ1,j)Rz(−ζ1,j)(p′1b1,j−t1,j)+t1,j (17)
p
1c1,j+1
R
z(ζ1,j)Ry(Δθ1,j)Rz(−ζ1,j)(p′1c1,j−t1,j)+t1,j (18)
Accordingly, the length l1b1 of the wire 1b in the bendable portion 110 and the length l1c1 of the wire 1c in the bendable portion 110 are represented by the following expressions (19) and (20), respectively.
As illustrated in
The input device 310 inputs information to the continuum robot control device 200, and includes an input unit 311 and a magnetic sensor unit 312. The input unit 311 is a component that inputs the bending angle (target bending angle) θ1 of the bendable portion 110 and the turning angle (target turning angle) ζ1 of the bendable portion 110 to the continuum robot control device 200. The magnetic sensor unit 312 is a component that measures the torsional angle τ1 about the central axis 113 of the bendable portion 110 based on the intensity and attitude of a magnetic field obtained by the sensor coil 1111 provided at the distal end 111 of the bendable portion 110, and inputs the measured torsional angle as the torsional angle τ1 of the bendable portion 110 to the continuum robot control device 200. In the present exemplary embodiment, the magnetic sensor unit 312 and the sensor coil 1111 constitute a “torsional angle acquisition unit” that acquires the torsional angle τ1 of the bendable portion 110.
The continuum robot control device 200 controls the continuum robot 100 (more specifically, the continuum robot 100-1 illustrated in
As illustrated in
The angle calculation unit 610 calculates, for each of a plurality of minute sections obtained by dividing the bendable portion 110 in the longitudinal direction as described above with reference to
The wire length calculation unit 620 calculates, for each of the plurality of minute sections obtained by dividing the bendable portion 110 in the longitudinal direction, the length l1a1 (l1a1,j−1, l1a1,j, l1a1,j+1, and . . . ) of the wire 1a in the minute section, based on the bending angle Δθ, the turning angle ζ, and the torsional angle τ of the minute section. More specifically, the wire length calculation unit 620 calculates the lengths l1a1,j−1, l1a1,j, l1a1,j+1, and . . . of the wire 1a in the respective minute sections based on the bending angle Δθ, the turning angle ζ, and the torsional angle τ of each of the minute sections, which are obtained by the angle calculation unit 610. In this case, the wire length calculation unit 620 illustrated in
The addition unit 630 calculates the length l1a1 of the wire 1a in the bendable portion 110 by adding the lengths l1a1,j−1, l1a1,j, l1a1,j+1, and . . . of the wire 1a in the respective minute sections, which are obtained by the wire length calculation unit 620. In the present exemplary embodiment, the addition unit 630 calculates the length l1a1 of the wire 1a in the bendable portion 110 (i.e., the length of the wire 1a that passes through the bendable portion 110) by using the expression (12).
A simulation has been performed using the model for the continuum robot 100-1 derived in the above-described <1-1. Modeling>, and using the continuum robot control system 10-1 presented in the above-described <1-2. Control System>. In the present exemplary embodiment, it is assumed that the number m1 of minute sections is 20, the length l10 of the bendable portion 110 is 0.03 m, and the distance rg from the central axis 113 of the bendable portion 110 to each of the wires 1a to 1c is 0.002 m.
First, the reason that the length of each of the wires 1a to 1c in the bendable portion 110 can be accurately calculated by application of the continuum robot control system 10-1 according to the present exemplary embodiment even when the bendable portion 110 of the continuum robot 100-1 is twisted will be described.
In
As illustrated in
As illustrated in
In the continuum robot control system 10-1 according to the present exemplary embodiment, the wire length calculation unit 620 calculates the lengths l1a1,j−1, l1a1,j, l1a1,j+1, and . . . of the wire 1a in the respective plurality of minute sections obtained by dividing the bendable portion 110 in the longitudinal direction, based on the bending angle Δθ, the turning angle ζ, and the torsional angle τ of each of the plurality of minute sections. Then, the addition unit 630 calculates the length l1a1 of the wire 1a in the bendable portion 110 by adding the lengths l1a1,j−1, l1a1,j, l1a1,j+1, and . . . of the wire 1a in the respective minute sections, which are obtained by the wire length calculation unit 620.
With the above-described configuration, even when the bendable portion 110 of the continuum robot 100-1 is twisted, the length l1a1 of the wire 1a in the bendable portion 110 can be accurately calculated. Processing similar to that for the wire 1a is performed on the other wires 1b and 1c for bending the bendable portion 110, thereby making it possible to accurately calculate the length l1b1 of the wire 1b and the length l1c1 of the wire 1c in the bendable portion 110 even when the bendable portion 110 is twisted. As a result, an improvement in the control performance of the continuum robot 100-1 can be achieved. Furthermore, the above-described configuration of the continuum robot control system 10-1 according to the present exemplary embodiment makes it possible to reduce an error between the target attitude of the bendable portion 110 and the actual attitude of the bendable portion 110 even when the bendable portion 110 is twisted, which leads to an improvement in the safety and operability of the bendable portion 110.
Next, a second exemplary embodiment of the present disclosure will be described. In the present exemplary embodiment, descriptions of components in common with those according to the first exemplary embodiment will be omitted, and only differences from the first exemplary embodiment will be described.
While in the first exemplary embodiment, the configuration in which the continuum robot 100-1 includes the single bendable portion 110 configured to be bent three-dimensionally has been assumed and described, in the present exemplary embodiment, a configuration in which the continuum robot 100 includes a plurality of the bendable portions 110 (two bendable portions 110-1 and 110-2) will be assumed and described.
More specifically, the continuum robot 100-2 illustrated in
The first bendable portion 110-1 is a component configured to be bent three-dimensionally by the driving of at least one of the wires 1a to 1c. The distal end 111 of the first bendable portion 110-1 is provided with the small sensor coil 1111 for detecting the torsional angle τ1 indicating the torsional amount about the central axis 113 of the first bendable portion 110-1. The wires 1a to 1c illustrated in
The second bendable portion 110-2 is a component configured to be bent three-dimensionally by driving of at least one of wires 2a, 2b, and 2c. A distal end 121 of the second bendable portion 110-2 is provided with a small sensor coil 1211 for detecting a torsional angle 12 indicating a torsional amount about a central axis of the second bendable portion 110-1. The wires 2a to 2c illustrated in
As illustrated in
In
According to the present exemplary embodiment, in the wire 2a, a length l2a1 of a portion that passes through the first bendable portion 110-1 and a length l2a2 of a portion that passes through the second bendable portion 110-2 are calculated using a method similar to that used in the first exemplary embodiment. In the present exemplary embodiment, an overall length l2a of the wire 2a in the first bendable portion 110-1 and the second bendable portion 110-2 is calculated by adding the length l2a1 and the length l2a2.
First, the length l2a1 of the wire 2a in the first bendable portion 110-1 (i.e., the length of the wire 2a that passes through the first bendable portion 110-1) is derived. A length l2a1,j of the wire 2a in the j-th minute section of the first bendable portion 110-1 corresponds to the difference between a vector p2a1,j from the origin O1,j to the front end face 1201 corresponding to the proximal end and a vector p2a1,j+1 from the origin O1,j to the distal end 111. Accordingly, similarly to the expression (11) according to the first exemplary embodiment, the length l2a1,j is represented by the following expression (21).
l
2a1,j
=|p
2a1,j+1
−p
2a1,j| (21)
Assuming that the phase of the wire 2a with respect to the wire 1a is represented by ξ2, the vector p2a1,j is represented by the following expression (22), similarly to the expression (1).
p
2a1,j=[rg cos(τ1,j+ξ2)rg sin(τ1,j+ξ2)O]T (22)
Similarly to the expression (8), the vector p2a1,j+1 is represented by the following expression (23) using a vector p′2a1,j from the origin O1,j to a point P′2a1,j obtained by projecting a point P2a1,j+1 onto the X1,j-Y1,j plane.
p
2a1,j+1
=R
z(ζ1,j)Ry(Δθ1,j)Rz(−ζ1,j)(p′2a1,j−t1,j)+t1,j (23)
Similarly to the expression (2), the vector p′2a1,j is represented by the following expression (24).
p′
2a1,j=[rg cos(τ1,j+1+ξ2)rg sin(τ1,j+1+ξ2)O]T (24)
The length l2a1 is obtained by adding the lengths l2a1,j in all minute sections by using the following expression (25).
Next, the length l2a2 of the wire 2a in the second bendable portion 110-2 (i.e., the length of the wire 2a that passes through the second bendable portion 110-2) is derived. A length l2a2,k of the wire 2a in the k-th (k=1, 2, . . . , m2) minute section of the second bendable portion 110-2 corresponds to the difference between a vector p2a2,k from an origin O2,k of the minute section to the proximal end (the distal end 111 of the first bendable portion 110-1) and a vector p2a2,k+1 from the origin O2,k to the distal end 121. Accordingly, the length l2a2,k is represented by the following expression (26), similarly to the expression (11).
l
2a2,k
=|p
2a2,k+1
−p
2a2,k| (26)
Similarly to the expression (1), the vector p2a2,k is represented by the following expression (27) using a torsional angle τ2,k of the k-th minute section.
p
2a2,k=[rg cos(τ2,k+ξ2)rg sin(τ2,k+ξ2)O]T (27)
Similarly to the expression (8), the vector p2a2,k+1 is represented by the following expression (28) using a bending angle ˜θ2,k and a vector p′2a2,k from the origin O2,k to a point P′2a2,k obtained by projecting a point P2a2,k+1 onto an X2,k—Y2,k plane.
p
2a2,k+1
=R
Z(ζ2,k)Ry(Δ{tilde over (θ)}2,k)Rz(−ζ2,k)(p′2a2,k−t2,k)+t2,k (28)
Similarly to the expression (2), the vector p′2a2,k is represented by the following expression (29).
p′
2a2,k=[rg cos(τ2,k+1+ξ2)rg sin(τ2,k+1+ξ2)O]T (29)
Similarly to the expressions (3) to (7) according to the first exemplary embodiment, t2,k,Δl2,k, Δ˜θ2,k, ˜ζ2,k and τ2,k are obtained by using the following expressions (30) to (34), respectively, in the present exemplary embodiment.
The length l2a2 is obtained by adding the lengths l2a2,k in all minute sections by using the following expression (35).
The overall length l2a of the wire 2a in the first bendable portion 110-1 and the second bendable portion 110-2 is calculated by using the following expression (36).
l
2a
=l
2a1
+l
2a2 (36)
Similarly to the case of the wire 2a, also for each of the other wires 2b and 2c, the length of a portion that passes through the first bendable portion 110-1 and the length of a portion that passes through the second bendable portion 110-2 are calculated separately and added together, so that the overall length l2b of the wire 2b and the overall length l2c of the wire 2c in the first bendable portion 110-1 and the second bendable portion 110-2 can be calculated.
As illustrated in
The continuum robot control system 10-2 illustrated in
The input unit 311 of the input device 310 is a component that inputs the bending angle (target bending angle) θ1 of the first bendable portion 110-1 and the turning angle (target turning angle) ζ1 of the first bendable portion 110-1 to the continuum robot control device 200. The magnetic sensor unit 312 of the input device 310 is a component that measures the torsional angle τ1 about the central axis 113 of the first bendable portion 110-1 based on the intensity and attitude of a magnetic field obtained by the sensor coil 1111 provided at the distal end 111 of the first bendable portion 110-1, and inputs the measured torsional angle as the torsional angle τ1 of the first bendable portion 110-1 to the continuum robot control device 200. In the present exemplary embodiment, the magnetic sensor unit 312 and the sensor coil 1111 constitute the “torsional angle acquisition unit” that acquires the torsional angle τ1 of the bendable portion 110.
The input device 320 inputs information to the continuum robot control device 200, and includes an input unit 321 and a magnetic sensor unit 322. The input unit 321 is a component that inputs a bending angle (target bending angle) θ2 of the second bendable portion 110-2 and a turning angle (target turning angle) ζ2 of the second bendable portion 110-2 to the continuum robot control device 200. The magnetic sensor unit 322 is a component that measures the torsional angle τ2 about the central axis 113 of the second bendable portion 110-2 based on the intensity and attitude of a magnetic field obtained by the sensor coil 1211 provided at the distal end 121 of the second bendable portion 110-2, and inputs the measured torsional angle as the torsional angle τ2 of the second bendable portion 110-2 to the continuum robot control device 200. In the present exemplary embodiment, the magnetic sensor unit 322 and the sensor coil 1211 constitute the “torsional angle acquisition unit” that acquires the torsional angle τ2 of the bendable portion 110.
The continuum robot control device 200 illustrated in
The kinematics calculation unit 212 is a component that calculates lengths l2a1, l2b1, and l2c1 of the wires 2a, 2b, and 2c in the first bendable portion 110-1 by using the expression (25), respectively, based on the bending angle θ1, the turning angle ζ1, and the torsional angle τ1 of the first bendable portion 110-1 that are information input from the input device 310. The kinematics calculation unit 213 is a component that calculates lengths l2a2, l2b2, and l2c2 of the wires 2a, 2b, and 2c in the second bendable portion 110-2 by using the expression (35), respectively, based on the bending angle θ2, the turning angle ζ2, and the torsional angle τ2 of the second bendable portion 110-2 that are information input from the input device 320.
The addition unit 231 calculates the overall lengths l2a to l2c of the wires 2a to 2c in the first bendable portion 110-1 and the second bendable portion 110-2, respectively by adding the lengths l2a1, l2b1, and l2c1 of the wires 2a, 2b, and 2c in the first bendable portion 110-1 calculated by the kinematics calculation unit 212 and the lengths l2a2, l2b2, and l2c2 of the wires 2a, 2b, and 2c in the second bendable portion 110-2 calculated by the kinematics calculation unit 213, respectively.
The position control unit 222 is a component that outputs drive commands f2a, f2b, and f2c to the actuators 130-2a, 130-2b, and 130-2c of the continuum robot 100-2, respectively so that the lengths of the wires 2a, 2b, and 2c in the second bendable portion 110-2 match the lengths l2a, l2b, and l2c calculated by the addition unit 231, respectively. In other words, the position control unit 222 controls the actuators 130-2a to 130-2c to drive the wires 2a to 2c, respectively, based on the lengths l2a1, l2b1, and l2c1 of the wires 2a, 2b, and 2c in the first bendable portion 110-1 and the lengths l2a2, l2b2, and l2c2 of the wires 2a, 2b, and 2c in the second bendable portion 110-2, which are obtained by the kinematics calculation unit 212 and the kinematics calculation unit 213.
While in the present exemplary embodiment, the example where the continuum robot 100-2 includes the two bendable portions 110-1 and 110-2 has been assumed and described, in general, a continuum robot including “n” (three or more) bendable portions may also be used similarly. More specifically, the overall length of each wire for bending the i-th (i=1, 2, . . . , n) bendable portion is derived using “i” kinematics calculation units configured to calculate the respective lengths of the wire in the first to the i-th bendable portions, and using an addition unit configured to add the lengths output therefrom.
According to the present exemplary embodiment, even when the plurality of bendable portions 110 of the continuum robot 100-2 is twisted, the length of each wire in each of the plurality of bendable portions 110 can be accurately calculated. Thus, an improvement in the control performance of the continuum robot 100-2 can be achieved. Furthermore, even when the plurality of bendable portions 110 of the continuum robot 100-2 is twisted, it is possible to reduce an error between the target attitude and the actual attitude of each of the plurality of bendable portions 110, which leads to an improvement in the safety and operability of the bendable portions 110.
Next, a third exemplary embodiment of the present disclosure will be described. In the present exemplary embodiment, descriptions of components in common with those according to the first and second exemplary embodiments described above will be omitted, and only differences from the first and second exemplary embodiments will be described.
In the present exemplary embodiment, a control system for the continuum robot 100 in which the distribution of each of the bending angle θ, the turning angle ζ, and the torsional angle τ of the bendable portion 110 is not uniform is applied.
In the first and second exemplary embodiments, as indicated by the expressions (7) and (34), the torsional angle τ of each minute section is derived assuming that the torsional angle τ indicating the torsional amount of the bendable portion 110 is uniformly distributed. Similarly, in the first and second exemplary embodiments, as indicated by the expressions (5) and (32), the bending angle Δθ of each minute section is derived assuming that the bendable portion 110 is bent with a constant curvature. However, a path in an organ, such as a large intestine or a lung, is bent in a complicated manner. Accordingly, the above-described assumptions are not always satisfied in the bendable portion 110 that enters into such an organ. In this case, the bending angle θ, the turning angle ζ, and the torsional angle τ of each minute section are obtained so as to correspond to the shape of the path into which the bendable portion 110 enters, and the length of each wire in the bendable portion 110 is calculated based on the obtained angles, so that the control performance of the continuum robot 100 can be improved. Thus, the control system according to the present exemplary embodiment first stores the bending angle θ, the turning angle ζ, and the torsional angle τ of when the distal end 111 of the bendable portion 110 of the continuum robot 100 passes through a certain point on a narrow space. Then, when the minute section of the bendable portion 110 reaches the point, the stored angles are read out and used to calculate the length of each wire in the bendable portion 110.
In the following description, only differences from the first exemplary embodiment will be described.
The continuum robot control system 10-3 illustrated in
The actuator/control system built-in box 1210 is a component that incorporates, for example, the actuators 130-1a to 130-1c illustrated in
The direct-acting guide mechanism portion 1220 is a component that guides the actuator/control system built-in box 1210, which is provided with the long portion 120 and the bendable portion 110, in a direct-acting manner. More specifically, the actuator/control system built-in box 1210 moves forward or backward in the longitudinal direction of the bendable portion 110.
The position sensor portion 1230 detects a position Zb in the forward/backward direction of the bendable portion 110 of the continuum robot 100. More specifically, the position sensor portion 1230 detects a displacement Zb from an initial position of the bendable portion 110.
The continuum robot control system 10-3 according to the present exemplary embodiment is similar to the continuum robot control system 10-1 according to the first exemplary embodiment illustrated in
The kinematics calculation unit 211 according to the present exemplary embodiment illustrated in
When the actuator/control system built-in box 1210 provided with the long portion 120 and the bendable portion 110 moves forward or backward on the direct-acting guide mechanism portion 1220, the angle calculation unit 610 acquires from the position sensor portion 1230 the displacement Zb from the initial position of the bendable portion 110 and stores the acquired displacement Zb, and also acquires from the input device 310 the bending angle θ1, the turning angle ζ1, and the torsional angle τ1 of the bendable portion 110 corresponding to the displacement Zb, and stores the acquired angles.
When the actuator/control system built-in box 1210 moves to a certain position from the initial position of the direct-acting guide mechanism portion 1220 and the displacement Zb is detected, a position Zb1,j at the proximal end side of the j-th minute section of the bendable portion 110 is represented by the following expression (37).
Z
b1,j
=Z
b−(m1−j+1)Δl1,j (37)
Accordingly, the angle calculation unit 610 calculates the bending angle Δθ1,j, the turning angle ζ1,j, and the torsional angle τ1,j of the j-th minute section of the bendable portion 110 by the following expressions (38) to (40).
Δθ1,j=θ1(Zb1,j+1)−θ1(Zb1,j) (38)
ζ1,j=ζ1(Zb1,j) (39)
τ1,j=τ1(Zb1,j) (40)
With this configuration, the wire length calculation unit 620 can calculate the length of the wire in each minute section based on the bending angle Δθ, the turning angle ζ, and the torsional angle τ of the bendable portion 110 that passes through the position Zb1,j along a narrow space. Therefore, the control performance of the continuum robot 100 can be improved even when the bendable portion 110 enters into a narrow space that is bent in a complicated manner.
While in the present exemplary embodiment, the example where an external force from a narrow space is taken into consideration as a factor for non-uniform distribution of the torsional angle τ has been described, the length of each wire can also be calculated by taking into consideration factors other than the external force. For example, for the continuum robot 100 in which the torsional rigidity of the bendable portion 110 is non-uniformly distributed, the torsional angle τ1,j is calculated by using the following expression (41) with a coefficient α1,j corresponding to the torsional rigidity of the j-th minute section, so that the length of each wire can be calculated considering the rigidity distribution.
This can also be applied to the bending angle θ and the turning angle ζ.
While in the above-described first to third exemplary embodiments, the configuration of the continuum robot control system 10 in which the bending angle, the turning angle, and the torsional angle of the bendable portion 110 are acquired using the input unit and the magnetic sensor unit included in the input device. However, the configuration is not limited thereto. For example, a configuration in which these angles are acquired using a displacement sensor for measuring the amount of deformation of the bendable portion 110 and image information obtained by capturing an image of the shape of the bendable portion 110 may also be used. Alternatively, a configuration in which the bending angle, the turning angle, and the torsional angle of the bendable portion 110 are calculated and acquired based on the shape of a narrow space into which the bendable portion 110 enters may be used.
While in the above-described first to third exemplary embodiments, the configuration where three wires for bending a single bendable portion 110 are pushed or pulled to bend the bendable portion 110 has been described, the configuration is not limited thereto. More specifically, while in the above-described first to third exemplary embodiments, the example of the continuum robot 100 that three-dimensionally drives a single bendable portion 110 has been described, continuum robots to be bent on a plane and continuum robots with a different number of wires may also be used.
The exemplary embodiments of the present disclosure can also be implemented by processing in which a program for implementing one or more functions according to the above-described exemplary embodiments is supplied to a system or an apparatus via a network or a storage medium, and one or more processors in a computer of the system or the apparatus read out and execute the program. The exemplary embodiments can also be implemented by a circuit (e.g., an application specific integrated circuit (ASIC)) for implementing one or more functions according to the above-described exemplary embodiments.
The program and a computer-readable storage medium storing the program are also included in the exemplary embodiments of the present disclosure.
All the above-described exemplary embodiments of the present disclosure merely illustrate examples embodying the present disclosure, and the technical scope of the present disclosure should not be interpreted limitedly by the exemplary embodiments. The present disclosure can be implemented in various forms without departing from the technical idea and main features of the present disclosure.
Embodiment(s) of the present disclosure can also be realized by a computer of a system or apparatus that reads out and executes computer executable instructions (e.g., one or more programs) recorded on a storage medium (which may also be referred to more fully as a ‘non-transitory computer-readable storage medium’) to perform the functions of one or more of the above-described embodiment(s) and/or that includes one or more circuits (e.g., application specific integrated circuit (ASIC)) for performing the functions of one or more of the above-described embodiment(s), and by a method performed by the computer of the system or apparatus by, for example, reading out and executing the computer executable instructions from the storage medium to perform the functions of one or more of the above-described embodiment(s) and/or controlling the one or more circuits to perform the functions of one or more of the above-described embodiment(s). The computer may comprise one or more processors (e.g., central processing unit (CPU), micro processing unit (MPU), or the like), circuitry, or combinations thereof, and may include a network of separate computers or separate processors to read out and execute the computer executable instructions. The computer executable instructions may be provided to the computer, for example, from a network or the storage medium. The storage medium may include, for example, one or more memories of a hard disk, a random-access memory (RAM), a read only memory (ROM), a storage of distributed computing systems, an optical disk (such as a compact disc (CD), digital versatile disc (DVD), or Blu-ray Disc (BD)™), a flash memory device, a memory card, and the like.
While the present disclosure has been described with reference to exemplary embodiments, it is to be understood that the disclosure is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.
This application claims the benefit of priority from Japanese Patent Application No. 2020-128130, filed Jul. 29, 2020, which is hereby incorporated by reference herein in its entirety.
Number | Date | Country | Kind |
---|---|---|---|
2020-128130 | Jul 2020 | JP | national |