The present invention relates to a data processing apparatus, and data processing method. In particular, the present invention relates to a data processing apparatus, and data processing method which supports condition determining work and analysis for confirming apparatus performance in an apparatus for detecting particles and pattern defects on the surface of a semiconductor wafer, a photomask, a magnetic disk, a liquid crystal substrate or the like, and an observation apparatus for observing defects such as particles.
In the semiconductor manufacturing process, particles and pattern defects on the wafer surface cause defects in products. Therefore, it is necessary to quantify the particles and pattern defects (hereafter referred to as visual defects) and always monitor whether there is a problem in a manufacturing apparatus and a manufacturing environment. In addition, it is necessary to confirm whether a visual defect exerts a fatal influence upon products by observing the shape of the visual defect.
Conventionally, such observation work has been conducted by human visualization. This results in problems that there is a bias in positions or kinds of defects of observation subject according to the observing person and defects to be observed are not definite. Recently, an apparatus automatically makes a decision as to the size, shape and kind of a defect by using an image processing technique in order to solve the problems.
Techniques of automatic defect review (ADR) and automatic defect classification (ADC) begin to be introduced. For example, a system which efficiently conducts work while reducing the load placed on the operator when observing, i.e., reviewing a part under inspection (for example, a pattern formed on a wafer) by using an SEM (Scanning Electron Microscopy) observation apparatus is proposed (see, for example, Patent Document 1).
In recent years, defects have become fine as the working dimensions of semiconductor devices become fine. On the other hand, defects caused by the device layout (hereafter referred to as systematic defects) begin to attract attention because of decrease in the focus depth of the aligner or the process margin. As for this systematic defect, a method of executing simulation based on an optical theory by using device layout information, i.e., CAD (Computer Assisted Drawing) information, presuming where is a hot spot, and conducting verification is proposed (see, for example, Patent Document 2).
As described above, work for detecting visual defects and adhering particles (hereafter referred to as defects) is very important in improving the yield. On the other hand, inspection apparatuses are required to have ability and performance which makes it possible to detect finer defects as the semiconductor devices become finer. As a result, inspection apparatuses capable of detecting defects with high sensitivity are appearing. However, it is gradually becoming difficult to detect the above-described systematic defects with high sensitivity by using a conventional inspection apparatus.
As a result, fixed point observation using the SEM is proposed recently. A system which compares the hot spot found from simulation with design data, observes the place, compares an actual pattern image with design data, and evaluates completion of the pattern is proposed (see, for example, Patent Document 3).
When running the system which compares a pattern image at an image pickup position determined from design data with a system image representing design data as described above in an actual semiconductor manufacture site, the required time is proportionate to the number of acquired images and in general enormous time is needed. Therefore, there is a demand for optimization of detection sensitivity at the hot spot found by simulation in the conventional semiconductor pattern inspection apparatus. However, there are no tools which link design data to the pattern inspection apparatus. Furthermore, even if it is attempted to execute the optimization, it takes enormous time. Therefore, it is unreasonable to run the system in the actual semiconductor manufacture site.
There is no means for optimizing the inspection condition of the semiconductor pattern inspection apparatus for the hot spot found by simulation. Thus, it is difficult to implement such running.
The present invention has been made in view of the above-described problems, and an object thereof is to provide means for comparing the hot spots found by simulation with inspection data of a semiconductor pattern inspection apparatus, and an inspection work support system having a function capable of improving the convenience in use and early displaying a clue to clearing up the cause as an apparatus for outputting coordinate data of the hot spots to a review SEM, automatically arranging SEM images and images output from various inspection apparatuses, and determining inspection conditions or analyzing the instrumental error between apparatuses.
The object can be achieved by a data processing method comprising the steps of causing a visual inspection apparatus to acquire a plurality of pieces of defect information including defect location coordinates which indicate locations of defects and defect attributes which indicate attributes of the defects obtained by inspecting an inspection subject a plurality of times; causing a pattern hot spot simulator to calculate coordinate data of the hot spots by using a pattern layout stored in a CAD server; causing the pattern hot spot simulator to output the defect location coordinates, the defect attributes, and the coordinate data of the hot spots to a review apparatus; causing the review apparatus to acquire review image information of regions including the defect location coordinates; extracting pattern layout data corresponding to regions including the hot spots on the basis of the coordinate data of the hot spots; storing the plurality of pieces of defect information, the review image information, and the pattern layout data in a data processing apparatus; causing a data processing apparatus to arrange and store each of the defect information, the review image information, and the pattern layout data so as to associate it with the defect location coordinates; and displaying the arranged and stored data on a screen.
In other words, the object can be achieved by a data processing apparatus which takes in a plurality of inspection, image and feature quantity data output from the inspection apparatus, a review SEM image, coordinate information of the hot spots found by simulation, and CAD information in the hot spots, and displays these kinds of information side by side as a result of coordinate comparison.
According to the present invention, tuning of inspection conditions in the inspection apparatus is facilitated from a view point of the detection rate of the hot spots. In addition, it is made possible to easily implement a fixed point observation function in a conventional review SEM by outputting coordinate data which can be read by the review SEM. As a result, cooperation among simulation data, the inspection apparatus, and the review SEM can be facilitated.
According to the present invention, selection of an inspection condition under which the detection rate of the hot spots is high is facilitated by arranging the CAD information and the SEM images side by side and comparing coordinates of inspection data under a plurality of inspection conditions at the same time. As a result, time required until the inspection condition in the inspection apparatus is optimized from a viewpoint of optimization of the detection rate of the hot spots can be reduced remarkably. Eventually, the yield on the line can be improved in a short period of time.
Other objects, features and advantages of the invention will become apparent from the following description of the embodiments of the invention taken in conjunction with the accompanying drawings.
Hereafter, an embodiment of the present invention will be described in detail with reference to the drawings.
Defect information 21 obtained when the visual inspection is conducted is managed in the data processing apparatus 3 by using a product name, a lot number, a wafer number, an inspection process, and inspection date and hour.
As shown in
Defect information 21 output from the visual inspection apparatus 1 is enormous data. Therefore, defect information 22b or 23b extracted by the data processing apparatus 3 using a plurality of filter functions is sent to an optical review apparatus 24 or a SEM review apparatus 25 through the communication line 4. In general, the defect information 22b and 23b have the same format as that of the defect information 21.
An image of a detected defect part is acquired in the optical review apparatus 24 or the SEM review apparatus 25 on the basis of the extracted defect information 22b or 23b. Defect classification is conducted by using the image and an ADC (automatic defect classification) function mounted on each review apparatus. The information is sent to the data processing apparatus 3 through the communication line 4 as ADR/ADC information 22a or 23a.
On the other hand, a CAD server 13 shown in
How the inspection and defect feature quantity, image data and a hot spot information output from the visual inspection apparatus 1 are displayed and processed on the data processing apparatus 3 according to the present invention will now be described.
First, how the inspection and defect attribute and image data output from the visual inspection apparatus 1, the ADR/ADC information output from an observation apparatus, and the hot spot information and CAD information output from the pattern hot spot simulator 12 are displayed on the data processing apparatus 3 will now be described with reference to
If an icon on a desktop of the data processing apparatus is double-clicked to start the data processing apparatus 3, a view 50 shown in
Each of a plurality of inspection data displayed in the view 50 has a defect ID 52 provided in each inspection. When a result of comparison is output as a review file, it is hard to associate a defect with a defect in the view 50. In the present data processing apparatus 3, therefore, a serial number 57 is provided automatically. As a result, all information taken in the present data processing apparatus 3 is managed by using the serial number 51.
As shown in
By checking a defect selection part 56 and pressing a review data output button 65, a defect contained in a review file transmitted to the review SEM can be selected arbitrarily.
As for hot spot data, there is only coordinate data corresponding to one shot supplied from the pattern hot spot simulator 12. When taken in the present data processing apparatus 3, the coordinate data corresponding to one shot is automatically developed over the whole surface of the wafer. Coordinate data corresponding to the whole surface of the wafer are stored in the present data processing apparatus 3.
By watching the SEM image displayed in the view 50 shown in
First, the user outputs desired CAD layout data from the CAD server 13 to the pattern hot spot simulator 12 (70 in
The pattern hot spot simulator 12 outputs hot spot coordinate data described in a predetermined format (
ADR/ADC information from a review apparatus is transmitted to the data processing apparatus 3 after reviewing (77).
Thereafter, inspection is conducted under a plurality of inspection conditions considered to include optimum conditions, in the visual inspection apparatus 1 (78). The visual inspection apparatus 1 outputs a set of inspection data (the coordinates, image and attribute) to the data processing apparatus 3 (79). The set of inspection data is input to the data processing apparatus 3 (80). Thereupon, comparison in coordinate between the set of inspection data and the hot spot information already taken in the data processing apparatus 3 is automatically conducted (81).
As occasion demands, a review file of random defects other than the hot spots already reviewed is output (82). It is also possible to execute ADR/ADC by using a review apparatus (83).
According to the present invention, a data processing apparatus takes in a plurality of inspection, image and attribute data output from the inspection apparatus, a review SEM image, coordinate information of hot spots found by simulation, and CAD information in the hot spots, and displays these kinds of information side by side as a result of coordinate comparison. Tuning of inspection conditions in the inspection apparatus is facilitated from a view point of the detection rate of the hot spots. In addition, it is made possible to easily implement a fixed point observation function in a conventional review SEM by outputting coordinate data which can be read by the review SEM. As a result, cooperation among simulation data, the inspection apparatus, and the review SEM is facilitated.
Eventually, time required until the inspection condition for detecting hot spots is optimized can be reduced remarkably.
It should be further understood by those skilled in the art that although the foregoing description has been made on embodiments of the invention, the invention is not limited thereto and various changes and modifications may be made without departing from the spirit of the invention and the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2007-145756 | May 2007 | JP | national |