Deposition of TiN films in a batch reactor

Information

  • Patent Grant
  • 7966969
  • Patent Number
    7,966,969
  • Date Filed
    Thursday, March 31, 2005
    19 years ago
  • Date Issued
    Tuesday, June 28, 2011
    13 years ago
Abstract
Titanium nitride (TiN) films are formed in a batch reactor using titanium chloride (TiCl4) and ammonia (NH3) as precursors. The TiCl4 is flowed into the reactor in temporally separated pulses. The NH3 can also be flowed into the reactor in temporally spaced pulses which alternate with the TiCl4 pulses, or the NH3 can be flowed continuously into the reactor while the TiCl4 is introduced in pulses. The resulting TiN films exhibit low resistivity and good uniformity.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates generally to semiconductor fabrication and, more particularly, to forming titanium nitride films.


2. Description of the Related Art


For various reasons, including low electrical resistivity, good thermal stability and good diffusion barrier properties, there are numerous applications for titanium nitride (TiN) in the fabrication of integrated circuits. Exemplary applications include use as a contact or barrier layer and as an electrode in electrical devices, such as transistors.


The properties of TiN, however, are closely dependent on processing and deposition parameters. Thus, the suitability and desirability of deposited TiN for a particular application can depend on the availability of a deposition process able to form TiN with desired properties, e.g., high uniformity and low resistivity. As a result, research into the development of new TiN deposition processes is on-going.


For example, the Low Pressure Chemical Vapor Deposition (LPCVD) of TiN films in a hot wall furnace has recently been described by N. Ramanuja et al. in Materials Letters, Vol. 57 (2002), pp. 261-269. The reach of Ramanuja et al. is limited, however, as Ramanuja et al. investigated 100 mm wafers, rather than industry standard 200 mm and 300 mm wafers. Given the sensitivity of TiN films to deposition conditions, a need still remains for a process that is able to deposit TiN films with good uniformity and low resistivity on industry size wafers, such as 200 mm or 300 mm wafers.


In addition to being able to form acceptable TiN films, it is desirable for the deposition temperature of the TiN deposition process to be relatively low, thereby increasing flexibility for integrating the deposition process with other processes and structures. For example, reducing deposition temperatures to the 400-500° C. range would allow the films to be used in conjunction with multi-level aluminum or copper metallization.


It has been found, however, that a reduction in the deposition temperature results in the incorporation of significant amounts of chlorine in the TiN film and results in a substantial increase in resistivity, which is undesirable. See J. T. Hillman, Microelectronic Engineering, Vol. 19 (1992), pp. 375-378. To reduce the resistivity and the chlorine content of the film, Hilman discloses a single wafer deposition process followed by a post-deposition anneal. Undesirably, however, such a process requires an additional process step and also limits throughput by using single wafer processing.


Accordingly, there is a need for an economical, relatively high throughput process for depositing TiN films having good uniformity and low resistivity.


SUMMARY OF THE INVENTION

According to one aspect of the invention, a method is provided for forming a titanium nitride film. The method comprises providing a plurality of semiconductor substrates in a reaction chamber of a vertical furnace which can accommodate 25 or more substrates. A titanium precursor is flowed into the chamber in temporally separated pulses and a nitrogen precursor is flowed into the chamber.


According to another aspect of the invention, a process for depositing a titanium nitride film is provided. The process comprises chemical vapor depositing titanium nitride on a substrate in a reaction chamber by exposing the substrate to a nitrogen precursor and to a titanium precursor. One of the nitrogen precursor and the titanium precursor is flowed into the chamber in temporally spaced pulses, while the other of the nitrogen precursor and the titanium precursor is continuously flowed into the chamber during and between the temporally spaced pulses.


According to another aspect of the invention, a batch reactor is provided. The reactor comprises a reaction chamber configured to accommodate 25 or more semiconductor substrates. The reaction chamber has a gas inlet. The reactor also comprises a gas delivery system programmed to deliver titanium chloride through the inlet and into the reaction chamber in temporally separated pulses.


According to another aspect of the invention, a batch reactor is provided. The reactor comprises a vertically extending reaction chamber configured to accommodate a plurality of vertically spaced semiconductor substrates. The chamber has a top end and a bottom end. The reactor also comprises a purge gas injector accommodated inside the chamber. The purge gas injector extends upwardly from proximate the bottom end of the reactor and has an opening to the reaction chamber proximate the top end of reaction chamber. The purge gas injector is connected to a feed for purge gas and is configured to expel substantially all purge gas flowing through the purge gas injector out of the opening. At least one reactant gas injector is accommodated in the reaction chamber. The reactant gas injector extends substantially over a height of the chamber and is connected to a process gas delivery system. The process gas delivery system is configured to deliver two process gases to the reaction chamber, one process gas through the at least one injector. The reactor also comprises a gas exhaust proximate the bottom end of the reaction chamber.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be better understood from the Detailed Description of the Preferred Embodiments and from the appended drawings, which are meant to illustrate and not to limit the invention, and wherein:



FIG. 1 illustrates an exemplary furnace for use with preferred embodiments of the invention;



FIG. 2 illustrates an exemplary liquid delivery system for use with preferred embodiments of the invention;



FIG. 3 is a graph showing film thickness results at different vertical substrate positions for a batch of semiconductor substrates processed at two different temperatures in accordance with one preferred embodiment of the invention;



FIG. 4 is a graph showing film resistivity results at different vertical substrate positions for the semiconductor substrates of FIG. 3;



FIG. 5 is a graph illustrating the timing of the flow of reactants, in accordance with another embodiment of the invention;



FIG. 6 is a graph showing film thicknesses and resistivities as a function of the duration of the flow of TiCl4 for each TiCl4 pulse into a reaction chamber; and



FIG. 7 illustrates another exemplary furnace for use with preferred embodiments of the invention; and



FIG. 8 illustrates an additional exemplary furnace for use with preferred embodiments of the invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

It has been found that uniform and low resistivity TiN films can be deposited in a batch reactor by periodically introducing, or pulsing, one or more precursors into the reaction chamber of the reactor. Preferably, the TiN films are formed using stable titanium and nitrogen precursors, i.e., precursors which are not radicals or a plasma. More preferably, titanium tetrachloride (TiCl4) and ammonia (NH3) are used as the titanium and nitrogen precursors, respectively. Both precursors (e.g., TiCl4 and NH3) are alternately pulsed into the reaction chamber or only one precursor is pulsed while the other precursor is flowed continuously into the reaction chamber. In some preferred embodiments, the titanium precursor, e.g., TiCl4, is pulsed into the reaction chamber while the nitrogen precursor, e.g., NH3, is flowed continuously into the chamber.


The deposition advantageously can be performed at a temperature of less than about 600° C. and, more preferably, at less than about 500° C., e.g., about 450-500° C. Thus, the deposition is compatible with other processes such as multi-level aluminum or copper metallization. In addition, the deposition can advantageously be used to deposit films on industry standard 200 mm and 300 mm wafers.


Preferably, the deposition is performed in a batch reactor configured or programmed to deliver one or more precursors in temporally separated pulses. The batch reactor preferably has a vertically extending reaction chamber which accommodates substrates vertically separated from each other, with major faces of the substrates oriented horizontally. Preferably, the reaction chamber accommodates 25 or more and, more preferably, 50 or more substrates. The illustrated vertical furnace, discussed below, is adapted to support 100-125 substrates.


In some preferred embodiments of the invention, a stack of vertically-spaced substrates, e.g., semiconductors wafers, is accommodated in a batch reaction chamber and temporally separated pulses of the titanium and nitrogen precursors, such as TiCl4 and NH3, are supplied to the reaction chamber alternatingly and sequentially in an atomic layer deposition of TiN. The deposition rate of the TiN has been found to be particularly sensitive to variations in the gas partial pressure of NH3. As a result, NH3 is preferably flowed into the chamber using a gas injector having vertically distributed holes to allow an even distribution of the NH3. Preferably, each reactant is removed, e.g., by purging with an inert gas or evacuating the reaction chamber, before introduction of the other reactant. The duration of each of the pulses is about 60 seconds or less and, more preferably, about 30 seconds or less and, most preferably, about 15 seconds or less.


In other preferred embodiments, the nitrogen precursor, e.g., NH3, is continuously supplied to the reaction chamber and only the titanium precursor, e.g., TiCl4, is supplied pulse-wise. Advantageously, such a deposition scheme allows an increased deposition rate per reactant pulse without losing film quality, in comparison to a scheme in which both TiCl4 and NH3 are alternately pulsed. By continuously flowing one precursor, more than one monolayer of TiN is typically deposited per TiCl4 pulse. In addition, where the titanium precursor pulses are relatively short, the deposited titanium-containing films are effectively nitrided by the nitrogen precursor flow between the titanium precursor pulses. Thus, high quality, low resistivity and uniform TiN films can be obtained at relatively low deposition temperatures of preferably less than about 600° C., and, more preferably, less than about 500° C., e.g., about 450° C. Preferably, the pulse duration is about 60 seconds or less, more preferably, about 30 seconds or less and, most preferably, about 15 seconds or less.


Advantageously, high quality titanium nitride films can be formed in accordance with the preferred embodiments. For example, the thicknesses of deposited titanium nitride films can vary by less than about 3 nm between substrates in a batch of substrates, and the resistivity can vary by less than about 5 μOhm•cm. Moreover, the films can be formed having a low resistivity of about 220 μOhm•cm or less.


Reference will now be made to the Figures, in which like numerals refer to like parts throughout.


With reference to FIG. 1, the illustrated reactor 10 is a vertical furnace reactor, which accommodates substrates 40 vertically separated from one another and which has benefits for efficient heating and loading sequences. Examples of suitable vertical furnaces are the A400™ and A412™ vertical furnaces, commercially available from ASM International, N.V. of Bilthoven, the Netherlands. It will be understood, however, that while preferred embodiments are presented in the context of a vertical batch furnace, the principles and advantages disclosed herein will have application to other types of reactors, some of which are further discussed below.


With continued reference to FIG. 1, a tube 12 defines a reaction chamber 20 in the interior of the vertical furnace or reactor 10. The lower end of the tube 12 terminates in a flange 90, which mechanically seals the chamber 20 by contact with a lower support surface 14. Process gases can be fed into the reaction chamber 20 through a gas inlet 22 at the top of the chamber 20 and evacuated out of the chamber 20 through a gas outlet 24 at the bottom of the chamber 20. The reaction chamber 20 accommodates a wafer boat 30 holding a stack of vertically spaced substrates or wafers 40. A controller 41 controls process parameters for the reaction chamber 20. Deposition programming can be resident in the controller 41, as known in the art.


The process tube flange 90 can be maintained at an elevated temperature to avoid condensation of process gases on it. It will be appreciated that the elevated temperature can vary from process to process and is preferably chosen based upon the identities of the process gases. Regulation of the temperature of the flange 90 can be achieved by providing it with electrical heaters and a water-cooling system. The water-cooling is desired primarily to avoid overheating of the flange 90 during unloading of a batch of hot wafers 40.


Various systems can be used to supply reactants or precursors to the reaction chamber 20 (FIG. 1). For example, where the precursor is a gas, it can be flowed directly from a gas source to the chamber 20. The timing and rate of the flow of the gas can be controlled by, e.g., mass flow controllers, as known in the art.


Where the precursor, such as TiCl4, is stored as a liquid, a bubbler can be used to supply the precursor to the chamber 20 in gaseous form. The timing and rate of flow of such a precursor can be regulated by controlling the flow of carrier gas through the liquid in the bubbler and by controlling the temperature of the liquid. It will be appreciated that the quantity of the liquid precursor carried by the carrier gas increases with increasing temperature.


Another exemplary system for controlling the flow of liquid precursors, such as TiCl4, is shown schematically in FIG. 2. The liquid precursor is stored in a container 50. Liquid flow control is used to regulate the amount of the liquid precursor flowing into the reactor 10 by regulating the flow of the liquid into an evaporator or vaporizer 60. After being vaporized, well-separated pulses of a precursor can be generated and flowed into the reaction chamber 20 using a valve system 70 comprising valves 80, shown in the upper section of FIG. 2. Preferably, the valves 80 of the valve system 70 are operated at elevated temperatures and have no or minimal dead volume, to provide good separation between the flow of different reactants. Such a valve system is described in further detail in U.S. patent application Ser. No. 10/864,260, filed Jun. 9, 2004, the entire disclosure of which is incorporated herein by reference.


With reference to FIGS. 3-6, the deposition results of various deposition schemes discussed above were investigated using TiCl4 and NH3 as reactants. The depositions were performed in an A400™ or A412™ vertical furnace from ASM International, N.V., of Bilthoven, the Netherlands, schematically illustrated in FIG. 1. Wafers 40 having a diameter of 200 mm were supported on the wafer boat 30 in the furnace 10.


The wafer spacing on the wafer boat 30 was varied depending upon the precursor pulse scheme. For experiments in which TiCl4 and NH3 were alternately pulsed into the reaction chamber 20, the vertical spacing of the 200 mm diameter wafers was about 4.76 mm and the total number of wafers was 125. It will be appreciated that wafers 40 at the top and bottom of the wafer boat 30 are typically not used for further processing. Rather, they may be used for testing and/or are not further processed due to sub-optimal deposition results at the extremes of the reaction chamber 20. Thus, out of a total of 125 wafers, 100 wafers are typically “product wafers” which are to be further processed for completion of integrated circuits.


For experiments in which one precursor was pulsed while a continuous flow of the other precursor was maintained, the spacing of the 200 mm wafers 40 was twice as large as in experiments where both precursors were alternately pulsed. Thus, the spacing was about 9.54 mm. This resulted in a total load size of 63 wafers and a 50 wafer product load size.


In some experiments a bubbler was used to deliver TiCl4 vapor to the reaction chamber 20. The flow of TiCl4 vapor to the reaction chamber 20 was controlled by controlling the temperature of the TiCl4 container (not shown) connected to the inlet 22 (FIG. 1). A flow of 250 sccm N2 carrier gas was bubbled through the TiCl4 container. In most experiments the TiCl4 container was controlled at about 28° C. In other experiments, the system schematically shown in FIG. 2 was used for controlling the flow of liquid TiCl4 through an evaporator 60 and for pulsing the TiCl4.


During processing, as discussed above, the process tube flange 90 (FIG. 1) can be maintained at an elevated temperature, preferably above 120° C., preferably about 180-200° C., to avoid condensation of material on the flange 90.


In atomic layer deposition experiments where both precursors were alternately pulsed, the pulse sequence and timing was as follows:


















TiCl4 pulse
15 sec.



N2 purge
17 sec./5 slm



NH3 pulse
30 sec./1 slm



N2 purge
17 sec./5 slm










The cycle time was 79 seconds and the total recipe time was 18 hours and 30 minutes. Accounting for 1 hour of the recipe time as overhead in which deposition did not occur, the deposition time was 17 hours and 30 minutes. A total of 795 cycles of deposition by alternating precursor flows was performed. The depositions were performed at substrate temperatures of 450° C. and 600° C. At a deposition temperature of 450° C., about 0.029 nm of TiN was deposited per cycle, resulting in a deposited film thickness of about 23 nm. Notably, the deposited thickness per cycle is less than 1 Å/cycle (0.1 nm/cycle), which is typical of atomic layer deposition (ALD) processes.


The thickness results are shown in FIG. 3 and the resistivity results are shown in FIG. 4. Advantageously, at the lower 450° C. deposition temperature, the average film thickness across a wafer was found to be exceptionally uniform from wafer to wafer, varying less than about 3 nm among the various wafers of a batch of wafers. At this temperature, the average resistivity of the films was also found to be advantageously uniform, varying less than about 5 μOhm•cm among the various wafers in the batch.


In other experiments, pulsed CVD process runs, in which a continuous flow of NH3 was fed into the reaction chamber and TiCl4 was pulsed, were performed. FIG. 5 shows the tube pressure, flow rate and pulse timing for each precursor. The deposition temperature was 450° C., the TiCl4 bubbler temperature was 28° C. and the time between TiCl4 pulses was 4 minutes. The number of pulses was chosen such that the total TiCl4 exposure time amounted to 15 minutes. Thus, for a 60 second TiCl4 pulse time the total number of pulses was 15, for a 30 second pulse time the total number of pulses was 30, and for a 15 second pulse time the total number of pulses was 60. The NH3 flow was constant at about 0.2 slm during processing.


For the deposition scheme of FIG. 5, FIG. 6 shows the effects of pulse time on film thickness and resistivity. While longer pulse times would be expected to increase or possibly not affect the thickness of the deposited film in cases where the total TiCl4 exposure time was unchanged, it was unexpectedly found that pulse times longer than about 30 seconds actually caused a decrease in average film thickness from about 23.5 nm to about 23 nm. Even more unexpectedly, the average resistivity of the deposited film was strongly dependent on pulse times. In particular, film resistivity increased from about 220 μOhm•cm for TiCl4 pulse durations of about 15 seconds to about 520 μOhm•cm for TiCl4 pulse durations of about 60 seconds. Thus, shorter pulse times advantageously allowed deposition of TiN films with reduced resistivity, e.g., about 220 μOhm•cm or less.


In addition, the cycle duration can be selected to give a desired TiN film resistivity. For example, resistivities of about 520 μOhm•cm to about 220 μOhm•cm can be achieved by appropriately adjusting the TiCl4 pulse time between about 15 seconds and about 60 seconds, or the duration of each cycle of process gases can be adjusted between about 1 minute and about 10 minutes. In the exemplary process of FIG. 5, the cycle duration was about 5 minutes (60 second TiCl4 pulse time+4 minutes between TiCl4 pulses).


As noted above, process gases can be introduced into the chamber 20 in various ways. For example, in the reactor illustrated in FIG. 1, all gases are introduced into the interior 20 of the reactor 10 at the top, via the top inlet 22, and exhausted at the bottom of the reactor 10, via the exhaust 24.


In other embodiments, a more even distribution of the process gases can be achieved over the length of the tube by using multiple hole injectors for introduction of process gases into the reactor. Suitable multiple hole injectors are disclosed in U.S. Pat. No. 6,746,240, issued Jun. 8, 2004, and U.S. patent application Publication No. 2003/0111013 A1, the entire disclosures of which are incorporated by reference herein. Alternatively, less spacious and cylindrical multiple hole injectors can be used. Such injectors can have, e.g., a diameter of about 25 mm and holes of about 1 mm diameter. In some preferred embodiments, multiple hole injectors are preferably mounted on or beneath the flange 90 at the lower end of the reaction chamber 20 and point upwardly.


A multiple hole injector is preferably not used to introduce a purge gas, however, because the top part of the reaction chamber 20 may be not effectively purged by an injector that only extends part way up the height of the chamber 20. Preferably, a purge gas is introduced into the chamber 20 at the chamber end that is opposite to the exhaust end, so that the purge gas flows through all regions of the reaction chamber 20 after entry and before being exhausted.


Another exemplary reactor set-up is shown in FIG. 7. In this design, the process tube 100 is closed at the top. An advantage of this design is that the process tube 100 is simpler in construction and eventual problems with the gas-tightness and the thermal isolation of the top inlet 22 (FIG. 1) can be prevented. All gases in this set-up are introduced through gas injectors 110, of which two are shown. Preferably, separate injectors 110 are used for each gas. In the case of TiN deposition with TiCl4 and NH3, one injector 110 is used for each of the process gases. These injectors 110 are preferably multiple hole gas injectors having holes distributed over the height of the tube 100, as discussed above.


An additional injector 110 can be used for a purge gas, preferably an inert gas such as nitrogen gas. The injector 110 for the purge gas is preferably a tube with an open end at the top and without gas discharge holes in its sidewall, so that all the purge gas is discharged at the top of the reaction chamber 120. FIG. 8 illustrates a reactor 10 having three vertically extending injectors, 110a, 110b and 110c. The injectors 110a, 110b and 110c each have an inlet 140a, 140b, and 140c, respectively, for connecting to one or more gas feeds. The injector 110b opens at its top end 112 to allow purge gas to flow downward through the reactor 10 and to exit out the exhaust 24 at the bottom of the reactor 10. In other embodiments, the exhaust 24 can be at the top of the reaction chamber 120 and the purge gas can be discharged at the bottom of the reaction chamber 120. In yet other embodiments, a reaction chamber configuration having an outer process tube and an inner liner can be used. Gas flows in an upward direction inside the liner to the top of the chamber and flows in a downward direction toward an exhaust in a space between the outer surface of the liner and an inner surface of the process tube. The multiple hole injectors are placed inside the liner and a purge gas injector may not be needed. An example of such a reaction chamber configuration is disclosed in U.S. patent application Publication No. 2003/0111013 A1, the entire disclosure of which is incorporated herein by reference.


Advantageously, using such multiple hole gas injectors, the evenness of gas distribution into the reaction chamber can be improved, thereby improving the uniformity of deposition results.


For example, in experiments in which TiN films were formed by continuous CVD, by continuously flowing TiCl4 and NH3 into a reaction, it was found that the deposition rate of the TiN films did not vary significantly with the partial pressure of the TiCl4. On the other hand, the deposition rate appeared to be approximately proportional to the partial pressure of the NH3. For depositing uniform films, these experiments indicate that the mode of introduction and distribution of NH3 inside the reaction chamber is more important than that for TiCl4, whether or not NH3 is pulsed into the chamber, e.g., whether or not NH3 is used in an ALD or pulsed CVD process. As a result, NH3 is preferably discharged into the reaction chamber in a manner that maximizes the evenness of the distribution of the gas into the chamber. NH3 is preferably discharged into the vertical furnace reaction chamber in a vertically distributed manner, e.g., through a multiple hole injector having a plurality of vertically spaced apart holes, such as those discussed above. The injector preferably extends substantially over a height of the chamber, such that the holes of the injector span the vertical height occupied by the substrates. TiCl4 can also be discharged using the multiple hole injector, or it can be discharged at a feed end of the reaction chamber (FIG. 1).


EXAMPLE

An exemplary process for pulsed CVD of TiN films using the reactor hardware configuration of FIGS. 7 and 8 and a TiCl4 liquid flow control and evaporation unit according to FIG. 2 will now be given. A liquid flow of 0.35 g/min. TiCl4 into the evaporator was applied. Upstream of the evaporator, a flow of 200 sccm N2 was added to the liquid and downstream of the evaporator an additional flow of 100 sccm N2 was added to the evaporated TiCl4. The TiCl4 pulse time was 1 minute. The TiCl4/N2 mixture was discharged into the reaction chamber through a multiple hole injector having 30 vertically spaced holes with a diameter of 1 mm or less. During the TiCl4 pulse a mixture of 187 sccm NH3 and 200 sccm N2 was discharged into the reaction chamber through a second multiple hole injector having similar design. After the TiCl4 pulse a purge of 1 slm N2 was applied to the TiCl4 injector for 30 seconds, leaving the NH3 and N2 flows through the NH3 injector unchanged. Then, in an NH3 flush step, the NH3 flow was increased to 1 slm for 2 minutes. After the NH3 flush step the NH3 flow was reduced to 187 sccm again and once again the TiCl4 was purged with 1 slm for 30 seconds. After this the cycle starts again with a TiCl4 pulse. During all steps, a purge flow of 100 sccm N2 was discharged through the purge gas injector opening proximate a top end of the reaction chamber. The pressure inside the reaction chamber during the TiCl4 pulses was about 500 mTorr and the reaction chamber temperature was about 500° C. Through 16 cycles, a film having a thickness of 21 nm and a resistivity of 185 μOhm•cm was deposited.


It will be appreciated that the hardware set-up of FIGS. 1, 2, 7 and 8, although described here in the context of pulsed CVD and ALD, is equally suitable for use in the context of low pressure chemical vapor deposition (LPCVD). Further, such a hardware set-up can also be utilized for other deposition chemistries such as Al2O3 deposition using trimethyl aluminum (TMA) and H2O as precursors and the deposition of hafnium oxide (HfO2) using hafnium chloride and water as precursors.


In addition, while the illustrated reactors are shown holding substrates in a vertically-separated manner, the methods described herein can be applied to any batch reactor including, e.g., reactors which hold substrates in a horizontally separated manner.


Where both reactants are pulsed, it will be appreciated that pulse times for both reactants can be the same or each can have a different pulse duration. Moreover, whether one or both reactants are pulsed, the duration of the pulses can remain the same throughout a deposition, or can vary over the course of the deposition.


Accordingly, it will be appreciated by those skilled in the art that various other omissions, additions and modifications may be made to the methods and structures described above without departing from the scope of the invention. All such modifications and changes are intended to fall within the scope of the invention, as defined by the appended claims.

Claims
  • 1. A batch reactor, comprising: a vertically extending reaction chamber configured to accommodate a plurality of vertically spaced semiconductor substrates, the chamber having a top end and a bottom end;a purge gas injector accommodated inside the chamber, wherein the purge gas injector extends upwardly from proximate the bottom end of the reactor and has an opening to the reaction chamber proximate the top end of reaction chamber, wherein the purge gas injector is connected to a feed for purge gas and is configured to expel substantially all purge gas flowing through the purge gas injector out of the opening;a titanium precursor gas injector and a nitrogen precursor gas injector accommodated in the reaction chamber, the titanium precursor and nitrogen precursor gas injectors extending substantially a height of the chamber and connected to a process gas delivery system, the process gas delivery system configured to deliver titanium and nitrogen precursor gases to the reaction chamber, each precursor gas through a different one of the gas injectors;a controller programmed to perform a plurality of titanium nitride chemical vapor deposition cycles, each chemical vapor deposition cycle performed at a deposition temperature of less than about 500° C. and comprising the steps of: a. exposing the plurality of substrates to the titanium and nitrogen precursors by flowing a pulse of the titanium precursor into the reaction chamber simultaneously with flowing the nitrogen precursor into the reaction chamber;b. after step a, stopping a flow of the titanium precursor into the reaction chamber; andc. while the flow of the titanium precursor is stopped, exposing the plurality of substrates to the nitrogen precursor by flowing the nitrogen precursor into the reaction chamber at an increased flow rate relative to a flow rate of the nitrogen precursor into the reaction chamber during step a,wherein titanium nitride films formed by performing the plurality of chemical vapor deposition cycles have resistivities that vary by less than about 5 μOhm·cm from substrate to substrate within the plurality of substrates; anda gas exhaust proximate the bottom end of the reaction chamber.
  • 2. The batch reactor of claim 1, wherein the purge gas injector only opens proximate a top of the reaction chamber.
  • 3. The batch reactor of claim 1, wherein the reaction chamber has a closed top end and a bottom end which can be opened for introduction of the substrates.
  • 4. The batch reactor of claim 1, wherein the nitrogen precursor gas injector is a multiple hole injector having a plurality of vertically spaced-apart holes for discharging gas into the reaction chamber in a vertically distributed manner.
  • 5. The batch reactor of claim 4, wherein the nitrogen precursor gas injector is in gas communication with a source of NH3 and wherein the gas delivery system is configured to deliver NH3 through the nitrogen precursor gas injector.
  • 6. The batch reactor of claim 5, wherein the titanium precursor gas injectoris in gas communication to a source of TiCI4.
  • 7. The batch reactor of claim 6, wherein the titanium precursor gas injector is a multiple hole injector having a plurality of vertically spaced-apart holes to discharge gas into the reaction chamber in a vertically distributed manner.
  • 8. The batch reactor of claim 1, wherein the reaction chamber is configured to accommodate 25 or more substrates.
  • 9. The batch reactor of claim 8, wherein the reaction chamber is configured to accommodate 50 or more substrates.
  • 10. The batch reactor of claim 9, wherein the reaction chamber is configured to accommodate 100 or more substrates.
REFERENCE TO RELATED APPLICATION

This application claims the priority benefit under 35 U.S.C. §119(e) of U.S. provisional Application No. 60/612,332, filed Sep. 22, 2004.

US Referenced Citations (161)
Number Name Date Kind
2865791 Ruppet et al. Dec 1958 A
4188444 Landau Feb 1980 A
4262631 Kubacki Apr 1981 A
4277320 Beguwala et al. Jul 1981 A
4279947 Goldman et al. Jul 1981 A
4298629 Nozaki et al. Nov 1981 A
4363828 Brodsky et al. Dec 1982 A
4389973 Suntola et al. Jun 1983 A
4402997 Hogan et al. Sep 1983 A
4413022 Suntola et al. Nov 1983 A
4428975 Dahm et al. Jan 1984 A
4495218 Azuma et al. Jan 1985 A
4535000 Gordon Aug 1985 A
4570328 Price et al. Feb 1986 A
4585671 Kitagawa et al. Apr 1986 A
4684542 Jasinski et al. Aug 1987 A
4699805 Seelbach et al. Oct 1987 A
4715937 Moslehi et al. Dec 1987 A
4720395 Foster Jan 1988 A
4803127 Hakim Feb 1989 A
4828224 Crabb et al. May 1989 A
4834020 Bartholomew May 1989 A
4851095 Scobey et al. Jul 1989 A
4855254 Eshita et al. Aug 1989 A
4935661 Heinecke et al. Jun 1990 A
5015330 Okumura et al. May 1991 A
5111266 Furumura et al. May 1992 A
5214002 Hayashi et al. May 1993 A
5221556 Hawkins et al. Jun 1993 A
5227329 Kobayashi et al. Jul 1993 A
5246881 Sandhu et al. Sep 1993 A
5279857 Eichman et al. Jan 1994 A
5287205 Yamazaki et al. Feb 1994 A
5308655 Eichman et al. May 1994 A
5356673 Schmitt et al. Oct 1994 A
5356821 Naruse et al. Oct 1994 A
5389398 Suzuki et al. Feb 1995 A
5389570 Shiozawa Feb 1995 A
5453858 Yamazaki Sep 1995 A
5471330 Sarma Nov 1995 A
5591494 Sato et al. Jan 1997 A
5607724 Beinglass et al. Mar 1997 A
5614257 Beinglass et al. Mar 1997 A
5648293 Hayama et al. Jul 1997 A
5656531 Thakur et al. Aug 1997 A
5672385 Jimba et al. Sep 1997 A
5695819 Beinglass et al. Dec 1997 A
5698771 Shields et al. Dec 1997 A
5700520 Beinglass et al. Dec 1997 A
5741330 Brauker et al. Apr 1998 A
5769950 Takasu et al. Jun 1998 A
5786027 Rolfson Jul 1998 A
5789030 Rolfson Aug 1998 A
5837580 Thakur et al. Nov 1998 A
5849601 Yamazaki Dec 1998 A
5874129 Beinglass et al. Feb 1999 A
5876797 Beinglass et al. Mar 1999 A
5885869 Turner et al. Mar 1999 A
5907792 Droopad et al. May 1999 A
5916365 Sherman Jun 1999 A
5925188 Oh Jul 1999 A
5959326 Aiso et al. Sep 1999 A
6015590 Suntola et al. Jan 2000 A
6027705 Kitsuno et al. Feb 2000 A
6056823 Sajoto et al. May 2000 A
6083810 Obeng et al. Jul 2000 A
6087229 Aronowitz et al. Jul 2000 A
6103600 Ueda et al. Aug 2000 A
6136654 Kraft et al. Oct 2000 A
6159828 Ping et al. Dec 2000 A
6161498 Toraguchi et al. Dec 2000 A
6171662 Nakao Jan 2001 B1
6197669 Twu et al. Mar 2001 B1
6197694 Beinglass Mar 2001 B1
6200893 Sneh Mar 2001 B1
6203613 Gates et al. Mar 2001 B1
6228181 Yamamoto et al. May 2001 B1
6252295 Cote et al. Jun 2001 B1
6271054 Ballantine et al. Aug 2001 B1
6294399 Fukumi et al. Sep 2001 B1
6326311 Ueda et al. Dec 2001 B1
6373112 Murthy et al. Apr 2002 B1
6385020 Shin et al. May 2002 B1
6390753 De Ridder May 2002 B1
6391803 Kim et al. May 2002 B1
6436820 Hu et al. Aug 2002 B1
6455892 Okuno et al. Sep 2002 B1
6468924 Lee et al. Oct 2002 B2
6503846 Niimi et al. Jan 2003 B1
6524650 Shimahara et al. Feb 2003 B1
6528530 Zeitlin et al. Mar 2003 B2
6537910 Burke et al. Mar 2003 B1
6551893 Zheng et al. Apr 2003 B1
6573184 Park Jun 2003 B2
6585823 Van Wijck Jul 2003 B1
6613695 Pomarede et al. Sep 2003 B2
6638879 Hsieh et al. Oct 2003 B2
6656282 Kim et al. Dec 2003 B2
6663332 Sluijk et al. Dec 2003 B1
6814572 Okabe Nov 2004 B2
6821825 Todd et al. Nov 2004 B2
6824816 Aaltonen et al. Nov 2004 B2
6825134 Law et al. Nov 2004 B2
6828218 Kim et al. Dec 2004 B2
6924223 Yamasaki et al. Aug 2005 B2
6962859 Todd et al. Nov 2005 B2
6991684 Kannan et al. Jan 2006 B2
7005392 Baum et al. Feb 2006 B2
7125582 McSwiney et al. Oct 2006 B2
7172792 Wang et al. Feb 2007 B2
7192626 Dussarrat et al. Mar 2007 B2
7297641 Todd et al. Nov 2007 B2
7629267 Wan et al. Dec 2009 B2
7732350 Hasper et al. Jun 2010 B2
20010025605 Nagakura Oct 2001 A1
20020047151 Kim et al. Apr 2002 A1
20020055270 Narwankar et al. May 2002 A1
20020073925 Noble et al. Jun 2002 A1
20020098627 Pomarede et al. Jul 2002 A1
20020121242 Minami et al. Sep 2002 A1
20020124800 Moriyama Sep 2002 A1
20020160605 Kanzawa et al. Oct 2002 A1
20020168868 Todd Nov 2002 A1
20020197831 Todd et al. Dec 2002 A1
20030003686 Boyle et al. Jan 2003 A1
20030022528 Todd Jan 2003 A1
20030059535 Luo et al. Mar 2003 A1
20030082300 Todd et al. May 2003 A1
20030111013 Oosterlaken et al. Jun 2003 A1
20030134038 Paranjpe Jul 2003 A1
20030143328 Chen et al. Jul 2003 A1
20030143841 Yang et al. Jul 2003 A1
20030148605 Shimogaki et al. Aug 2003 A1
20030176047 Doan et al. Sep 2003 A1
20040025786 Kontani et al. Feb 2004 A1
20040096582 Wang et al. May 2004 A1
20040121596 Pan et al. Jun 2004 A1
20040129212 Gadgil et al. Jul 2004 A1
20040221807 Verghese et al. Nov 2004 A1
20040224504 Gadgil Nov 2004 A1
20040235191 Hasegawa et al. Nov 2004 A1
20040235314 Takimoto Nov 2004 A1
20040250765 Ishizaka et al. Dec 2004 A1
20050039680 Beaman et al. Feb 2005 A1
20050042373 Kraus et al. Feb 2005 A1
20050045102 Zheng et al. Mar 2005 A1
20050064684 Todd et al. Mar 2005 A1
20050079692 Samoilov et al. Apr 2005 A1
20050080286 Wang et al. Apr 2005 A1
20050118837 Todd et al. Jun 2005 A1
20050250302 Todd et al. Nov 2005 A1
20050287806 Matsuura Dec 2005 A1
20060060137 Hasper et al. Mar 2006 A1
20060068104 Ishizaka et al. Mar 2006 A1
20060084283 Paranjpe et al. Apr 2006 A1
20060088985 Haverkort et al. Apr 2006 A1
20060189168 Sato et al. Aug 2006 A1
20060193980 Hasegawa et al. Aug 2006 A1
20070077775 Hasper et al. Apr 2007 A1
20070084404 Verghese et al. Apr 2007 A1
20080003838 Haukka et al. Jan 2008 A1
Foreign Referenced Citations (50)
Number Date Country
101 32 882 Dec 2002 DE
0 368 651 May 1990 EP
0442490 Aug 1991 EP
0 486 047 May 1992 EP
0526779 Feb 1993 EP
0 747 974 Dec 1996 EP
1 065 728 Jan 2001 EP
2 332 564 Jun 1999 GB
59078919 Jan 1982 JP
57209810 Dec 1982 JP
59078918 May 1984 JP
60043485 Mar 1985 JP
S60-43485 Mar 1985 JP
60-245233 Dec 1985 JP
61153277 Jul 1986 JP
62076612 Apr 1987 JP
63003414 Jan 1988 JP
63003463 Jan 1988 JP
64-081311 Mar 1989 JP
01217956 Aug 1989 JP
01268064 Oct 1989 JP
02155225 Jun 1990 JP
H 02-155225 Jun 1990 JP
03091239 Apr 1991 JP
H3-91239 Apr 1991 JP
03185817 Aug 1991 JP
03187215 Aug 1991 JP
H3-185817 Aug 1991 JP
H3-187215 Aug 1991 JP
03292741 Dec 1991 JP
04323834 Nov 1992 JP
05021378 Jan 1993 JP
05-062811 Mar 1993 JP
05062911 Mar 1993 JP
H5-62911 Mar 1993 JP
07249618 Sep 1995 JP
08242006 Sep 1996 JP
11317530 Nov 1999 JP
2002-367992 Dec 2002 JP
2003-077864 Mar 2003 JP
2003-297818 Oct 2003 JP
2004-23043 Jan 2004 JP
2004-096060 Mar 2004 JP
593736 Jun 2004 TW
WO 02064853 Aug 2002 WO
WO 03008663 Jan 2003 WO
WO 2004008491 Jan 2004 WO
WO 2004008491 Jan 2004 WO
WO 2004009861 Jan 2004 WO
WO 2004074543 Sep 2004 WO
Related Publications (1)
Number Date Country
20060060137 A1 Mar 2006 US
Provisional Applications (1)
Number Date Country
60612332 Sep 2004 US