The invention relates to a device for evaluating crystallinity, and a method of evaluating crystallinity.
A thin-film transistor (“TFT”) is a type of field effect transistors, which is produced by depositing thin films of semiconductor on an insulative supporting substrate. Similarly to other field effect transistors, a TFT has three terminals, i.e., a gate terminal, a drain terminal and a source terminal. One of main functionalities of a TFT is switching operation. A TFT is used in sensors, memories, optical devices, etc. In flat display devices, a TFT is used as a pixel switching element or a driving switching element.
As displays become larger and have increased quality, such elements are also required to have increased performance. Accordingly, a technology to produce a high-performance TFT having higher electron mobility than an amorphous silicon TFT having an electron mobility from 0.5 cm2/Vs to 1 cm2/Vs. In this regard, a polycrystalline silicon TFT (poly-Si TFT) exhibits much higher performance than existing amorphous silicon TFTs. As a polycrystalline silicon TFT has an electron mobility ranging from several tens cm2/Vs to several hundreds cm2/Vs, it enables a data driving circuit or other peripherals requiring high electron mobility to be incorporated in a substrate. Further, the size of a polycrystalline silicon TFT is small, and thus the aperture ratio of a screen may be increased. In addition, since a driving circuit is incorporated in a substrate, there is no limit on line pitch for connecting the driving circuits as more pixels are disposed. As a result, high resolution may be achieved, driving voltage and power consumption may be saved, and deterioration of elements may be greatly suppressed.
As a technology to produce a polycrystalline silicon TFT, excimer laser crystallization (“ELC”) technique that crystallizes amorphous silicon to form polycrystalline silicon is under development. In this regard, in order to control a polycrystalline silicon TFT produced through such a crystallization process, it is important to check when the crystallization direction is uniform and when there is a bump such as a protrusion or a bank.
Unfortunately, it is difficult to observe crystallinity of polycrystalline silicon with the naked eyes and there is a limit on an error margin, and thus it is necessary to determine the crystalline direction of polycrystalline silicon. Under the circumstances, what is required is a device for evaluating crystallinity.
It is difficult to observe crystallinity of polycrystalline silicon with the naked eyes and there is a limit on an error margin, and thus it is necessary to determine the crystalline direction of polycrystalline silicon. Under the circumstances, what is required is a device for evaluating crystallinity.
In order to determine crystallization direction by measuring the amount of light having passed a gap between crystals of polycrystalline silicon, a polarizing plate is commonly used. Typically, a polarizing plate is smaller than a test target, i.e., a polycrystalline silicon substrate, and thus there may be a missing area from which crystallization direction of the polycrystalline silicon cannot be determined even by moving the polarizing plate.
Exemplary embodiments of the invention provide a device for evaluating crystallinity of polycrystalline silicon including a polarizing plate which may reduce time for evaluation, and a method of evaluating crystallinity.
Exemplary embodiments of the invention also provide a device for evaluating crystallinity capable of precisely determining an error in a crystal of polycrystalline silicon by carrying out both white noise and black noise tests, and a method of evaluating crystallinity.
Exemplary embodiments of the invention also provide a device for evaluating crystallinity capable of identifying a location of polycrystalline silicon where an error takes place to thereby determine a cause of the error during a manufacturing processing of the polycrystalline silicon, and a method of evaluating crystallinity.
According to an exemplary embodiment of the invention, a device for evaluating crystallinity is provided. A device for evaluating crystallinity, comprising a substrate holder configured to fix a polycrystalline silicon substrate thereon, a light source disposed below the substrate holder, a circular polarizing plate disposed above the polycrystalline silicon substrate, and a camera disposed above the polarizing plate and configured to capture an image transmitted through the polarizing plate, where the substrate holder includes a transparent material and transmits light emitted from the light source disposed below the substrate holder, where the light source is a laser light source, and where the device further comprises a beam expander for expanding light emitted from the laser light source, where the polarizing plate is rotatable on its center, and the camera is configured to measure a rotation angle of the polarizing plate when a captured image is brightest among images captured as the polarizing plate rotates, where the polarizing plate is rotatable on its center, and the camera is configured to measure a rotation angle of the polarizing plate when a captured image is darkest among images captured as the polarizing plate rotates, where it is determined that crystallization is abnormal when the rotation angle of the polarizing plate is out of an error margin for a predetermined crystallization direction.
In an exemplary embodiment, where the polarizing plate has slits defined in a predetermined crystallization direction, where the device further comprises a first guide line disposed at a first side of the substrate holder, a second guide line connected to and moving along the first guide line, and a movement guide moving along the second guide line and connecting the polarizing plate with the camera vertically, and where the movement guide moves along the second guide line and the second guide line moves along the first guide line, such that the polarizing plate and the camera are movable throughout an entire area of the polycrystalline silicon substrate, where the movement guide allows the polarizing plate to rotate at its current location, and where the device further comprises a control unit configured to determine a crystallization direction based on an intensity of light changing as the polarizing plate is rotated.
In an exemplary embodiment, where it is determined that the crystallinity is abnormal when an intensity measured by the camera is out of an error margin of a predetermined intensity of light.
In an exemplary embodiment, where an image captured by the camera covers an entire area of the polarizing plate.
In an exemplary embodiment, where the camera is configured to divide the captured image into a grid of cells to calculate an intensity of light in each of the cells, and it is determined that a crystallinity in a cell is abnormal when a calculated intensity of light of the cell is out of an error margin of a predetermined intensity of light.
In an exemplary embodiment, where the light source comprises a plurality of light sources disposed below the polycrystalline silicon substrate at a regular spacing, and the polarizing plate has such an area that it covers the polycrystalline silicon substrate.
According to an exemplary embodiment of the other invention, a method of evaluating crystallinity is provided. A method of evaluating crystallinity, the method comprising irradiating light from below a polycrystalline silicon substrate, allowing the irradiated light to pass through the polycrystalline silicon substrate and a polarizing plate disposed above the polycrystalline silicon substrate, measuring an intensity of light having passed through the polarizing plate at a location vertically above the polarizing plate, and notifying that there is an error in a crystallinity of the polycrystalline silicon substrate when the measured intensity of the light is out of an error margin of a predetermined criterion intensity of light.
In an exemplary embodiment, the method comprising when it is notified that there is an error in crystallinity of the polycrystalline silicon substrate, rotating the polarizing plate and measuring a rotation angle of the polarizing plate when a measured intensity of light is within the error margin of the predetermined criterion intensity of the light.
In an exemplary embodiment, the method comprising when the measured intensity of light is within the error margin of the predetermined criterion intensity of light, repeating moving the polarizing plate on the polycrystalline silicon substrate to measure crystallinity, where the predetermined criterion intensity of light comprises a white noise criterion and a black noise criterion, and where the method further comprises measuring an intensity of transmitted light from the polarizing plate at a location vertically above the polarizing plate in terms of the white noise criterion, measuring an intensity of transmitted light from the polarizing plate at a location vertically above the polarizing plate in terms of the black noise criterion when the measured intensity of light is within an error margin of a predetermined white noise criterion, and determining that crystallinity of the polycrystalline silicon substrate is normal when the measured intensity of light is within an error margin of a predetermined black noise criterion.
In an exemplary embodiment, where the notifying the error in crystallinity of the polycrystalline silicon substrate comprises dividing the measured intensity of light into a grid of cells, calculating an intensity of light in each of the cells, identifying a location of the polycrystalline silicon substrate where an error in crystallinity has taken place based on the intensity of light, and providing the location of the polycrystalline silicon substrate.
According to another exemplary embodiment of the invention, a method of evaluating crystallinity is provided. A method of evaluating crystallinity, the method comprising irradiating light from below a polycrystalline silicon substrate, receiving a criterion value for an amount of light having passed through the polycrystalline silicon substrate, rotating a polarizing plate above the polycrystalline silicon substrate to measure a rotation angle of the polarizing plate when the criterion value is obtained, and determining whether the rotation angle of the polarizing plate is within a normal range from a crystallization direction of the polycrystalline silicon substrate.
In an exemplary embodiment, where the determining comprises rotating the polarizing plate by ninety degrees to measure the amount of the light again when the measured rotation angle of the polarizing plate is within the normal range in the crystallization direction of the polycrystalline silicon substrate.
According to an exemplary embodiment of the invention, it is possible to reduce a time for evaluating crystallinity by using a different shape of polarizing plate.
In addition, according to an exemplary embodiment of the invention, both of white noise and black noise tests may be carried out in a single test device by rotating a polarizing plate.
Moreover, according to an exemplary embodiment of the invention, it is possible to determine a location of a substrate where crystallization is not normal and provide data that may be used a subsequent process of manufacturing polycrystalline silicon.
The above and other exemplary embodiments and features of the invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings, in which:
The invention now will be described more fully hereinafter with reference to the accompanying drawings, in which various embodiments are shown. This invention may, however, be embodied in many different forms, and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this invention will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like reference numerals refer to like elements throughout.
It will be understood that when an element is referred to as being “on” another element, it can be directly on the other element or intervening elements may be therebetween. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present.
It will be understood that, although the terms “first,” “second,” “third” etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, “a first element,” “component,” “region,” “layer” or “section” discussed below could be termed a second element, component, region, layer or section without departing from the teachings herein.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms, including “at least one,” unless the content clearly indicates otherwise. “Or” means “and/or.” As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items. It will be further understood that the terms “comprises” and/or “comprising,” or “includes” and/or “including” when used in this specification, specify the presence of stated features, regions, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, regions, integers, steps, operations, elements, components, and/or groups thereof.
Furthermore, relative terms, such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another element as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. In an exemplary embodiment, when the device in one of the figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower,” can therefore, encompasses both an orientation of “lower” and “upper,” depending on the particular orientation of the figure. Similarly, when the device in one of the figures is turned over, elements described as “below” or “beneath” other elements would then be oriented “above” the other elements. The exemplary terms “below” or “beneath” can, therefore, encompass both an orientation of above and below.
“About” or “approximately” as used herein is inclusive of the stated value and means within an acceptable range of deviation for the particular value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the particular quantity (i.e., the limitations of the measurement system). For example, “about” can mean within one or more standard deviations, or within ±30%, 20%, 10%, 5% of the stated value.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and the invention, and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Exemplary embodiments are described herein with reference to cross section illustrations that are schematic illustrations of idealized embodiments. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments described herein should not be construed as limited to the particular shapes of regions as illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. In an exemplary embodiment, a region illustrated or described as flat may, typically, have rough and/or nonlinear features. Moreover, sharp angles that are illustrated may be rounded. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region and are not intended to limit the scope of the claims.
Referring to
Referring to
The device 100 may be used for evaluating crystallinity of crystallized amorphous silicon to determine whether there is a fault. The device 100 may further include an element for bringing/taking a polycrystalline silicon substrate 110 inside or outside of a chamber in the device 100.
In an exemplary embodiment, the substrate holder 135 may have a large quadrangular shape secured to the chamber in the device 100, for example. While the first guide rail 141 and the second guide rail 140 move, the substrate holder 135 may be stationary during the evaluation of crystallinity. The substrate holder 135 is larger than the polycrystalline silicon substrate 110 so that the substrate holder 135 overlaps an entirety of the polycrystalline silicon substrate 110 in a plan view. In the device 100, light is irradiated from below the polycrystalline silicon substrate 110 and the amount of light having passed through the polycrystalline silicon substrate 110 are measured. Accordingly, the substrate holder 135 may include a transparent and rigid material to support the polycrystalline silicon substrate 110.
The first guide rail 141 may be disposed under the substrate holder 135 in a cross section, and may be spaced apart from a first side of the substrate holder 135 by a predetermined distance and parallel to the first side of the substrate holder 135 in a plan view. In an exemplary embodiment, the first guide rail 141 has a rail-like shape, for example, and a groove is defined in a center of the first guide rail 141 so that the second guide rail 140 moves along the first guide rail 141. The second guide rail 140 is engaged with the groove so that it may move along the first guide rail 141.
The second guide rail 140 may include arms extending above and under the substrate holder 135, and a support for supporting the arms and being connected to the first guide rail 141. The arms of the second guide rail 140 extending above and under the substrate holder 135 may be disposed at the same location on the vertical line passing through the substrate holder 135. Accordingly, the camera 151 and the polarizing plate 167 connected to the upper arm of the second guide rail 140 and the light source 136 and the beam expander 130 connected to the lower arm of the second guide rail 140 may be disposed on the same vertical line.
A groove is defined in the center of each of the upper arm and the lower arm of the second guide rail 140. The movement guide 150 is connected to the grooves such that it may move along the second guide rail 140. A lower end of the support of the second guide rail 140 protrudes and is connected to the groove of the first guide rail 141 such that the second guide rail 140 may move along the first guide rail 141.
An area of the movement guide 150 protrudes to be connected to the grooves in the arms of the second guide rail 140. The movement guide 150 includes the camera 151 and the polarizing plate 167 attached to an upper part of the movement guide 150, and further includes the light source 136 and the beam expander 130 attached to a lower part of the movement guide 150. The movement guide 150 aligns the camera 151, the polarizing plate 167, the light source 136 and the beam expander 130 on a vertical line in a vertical cross-section of the device 100. In order to move the camera 151, the polarizing plate 167, the light source 136 and the beam expander 130 in a direction parallel to a second side of the substrate holder 135 which is substantially perpendicular to the first side of the substrate holder 135 in a plan view to evaluate crystallinity, the movement guide 150 may move along the second guide rail 140. In addition, in order to move the camera 151, the polarizing plate 167, the light source 136 and the beam expander 130 in a direction perpendicular to the first side of the substrate holder 135 to evaluate crystallinity, the second rail 140 may move along the first guide rail 141.
Slits are defined in the polarizing plate 167 so that only some of light transmitted from the polycrystalline silicon substrate 110 that has a particular optical axis pass through the polarizing plate 167. As the polarizing plate 167 rotates above the polycrystalline silicon substrate 110, the amount of transmitted light changes depending on the rotation angle, so that the measured intensity of light changes. The measured intensity of light becomes the maximum when the direction in which the slits of the polarizing plate 167 are provided is parallel to the crystallization direction of the polycrystalline silicon substrate 110. On the contrary, the measured intensity of light becomes the minimum when the direction in which the slits of the polarizing plate 167 are provided is perpendicular to the crystallization direction of the polycrystalline silicon substrate 110. Therefore, it is possible to determine the crystallization direction of the polycrystalline silicon substrate 110 based on the direction in which the slits of the polarizing plate 167 are provided by measuring the intensity of transmitted light from the polarizing plate 167.
The crystallinity may be evaluated by aligning the slits of the polarizing plate 167 in the direction in which the polycrystalline silicon substrate 110 has to be crystallized. The above described process is referred to as evaluating crystallinity in terms of white noise. On the contrary, the crystallinity may be evaluated by aligning the slits of the polarizing plate 167 in the direction perpendicular to the direction in which the polycrystalline silicon substrate 110 has to be crystallized. The above described process is referred to as evaluating crystallinity in terms of black noise. In the device 100 shown in
In an exemplary embodiment, the polarizing plate 167 may have a circular shape, for example. Accordingly, the area in which the transmitted light from the polarizing plate 167 is captured by the camera 151 may also be circular, for example. The distance between a lens of the camera 151 and the polarizing plate 167 may be adjusted so that the polarizing plate 167 is included in an image captured by the camera 151.
The camera 151 measures the intensity of light above the polarizing plate 167. The camera 151 captures an image of the intensity of light. The control unit of the camera 151 divides the captured image into a grid of cells, and calculates the intensity of light in each of the cells. The control unit may compare the intensity of light in each of cells with a predetermined amount of transmitted light and may determine that crystallization is abnormal when the intensity of light in a cell is out of an error margin of the predetermined amount of transmitted light.
When it is determined that the crystallization of the polycrystalline silicon substrate 110 is abnormal, it is important to identify in which part of the crystallization process an error has taken place. In order to identify the cause of an error, it is important to find out the location where the polycrystalline silicon substrate 110 is abnormally crystallized. An abnormally crystallized polycrystalline silicon substrate 110 is frequently produced when the intensity or wavelength of laser is changed during the process of crystallizing an amorphous silicon substrate by irradiating laser onto it. Accordingly, in order to stop producing an abnormally crystallized polycrystalline silicon substrate 110, it is necessary to identify the location where the polycrystalline silicon substrate 110 has been abnormally crystallized and to estimate an error in laser at the location to adjust the intensity or wavelength of the laser.
In an exemplary embodiment, the light source 136 may be a laser light source emitting a short-wavelength laser, for example. The laser light source emits single-phase light and thus it has high resolution for identifying a location where the polycrystalline silicon substrate 110 is abnormally crystallized in the image captured by the camera 151. As single-phase light is output, the intensity of light reaching the camera increases. In addition, the laser light source reduces influence by interference or diffraction of light during the process of evaluating crystallinity compared to an LED light source, and thus accuracy in evaluating crystallinity may be increased.
Despite such advantages of employing a laser light source, the laser light source is a point light source, and thus it is necessary to increase the illumination area of the laser source. This is because it takes too long time to evaluate crystallinity using a point light source. For this reason, the beam expander 130 is employed for expanding the illumination area of the laser light source. The beam expander 130 includes a couple of a concave lens and a convex lens and expands the illumination area of a laser light source without changing the phase of light emitted from the laser light source.
Hereinafter, evaluating crystallinity by the device 100 shown in
Initially, the polarizing plate 167 is located at a corner of a first side of the polycrystalline silicon substrate 110. The camera 151 may be disposed vertically above the polarizing plate 167. The light source 136 may be disposed under the polycrystalline silicon substrate 110 vertically below the center of the polarizing plate 167. As the polarizing plate 167 moves along the paths shown in
In an exemplary embodiment, the center of the polarizing plate 167 is located above the first side of the polycrystalline silicon substrate 110. When the polarizing plate 167 is located such a start position, a part of the polarizing plate 167 is not involved in evaluating crystallinity. Despite such a part, the center of the polarizing plate 167 is located above the first side of the polycrystalline silicon substrate 110 in order to prevent any portion of the polycrystalline silicon substrate 110 from not being evaluated. When the center of the polarizing plate 167 is located more to the outside than the first side of the polycrystalline silicon substrate 110, it takes longer time to evaluate crystallinity than when it is located as shown in
Referring to
The polarizing plate 167 may move in the direction indicated by arrow {circle around (1)} until the center of the polarizing plate 167 passes the second side of the polycrystalline silicon substrate 110 opposed to the first side. After the polarizing plate 167 moves in the direction indicated by arrow {circle around (1)}, the polarizing plate 167 may move in the direction indicated by arrow {circle around (2)}. The direction indicated by arrow {circle around (1)} may be perpendicular to the direction indicated by arrow {circle around (2)}. The polarizing plate 167 moves in the direction indicated by arrow {circle around (2)} until the distance between the center of the polarizing plate 167 located at the end of the direction indicated by arrow {circle around (1)} and the center of the polarizing plate 167 having moved in the direction indicated by arrow {circle around (2)} becomes twice (2r) the radius of the polarizing plate 167.
After the polarizing plate 167 has moved in the direction indicated by arrow {circle around (2)}, it moves in the direction indicated by arrow {circle around (3)} which is the opposite direction to the direction indicated by arrow {circle around (1)}. The polarizing plate 167 moves in the direction indicated by arrow {circle around (3)} in the same manner as it moves in the direction indicated by arrow {circle around (1)}, evaluating crystallinity continuously.
The polarizing plate 167 may move in the directions indicated by arrows {circle around (1)}, {circle around (2)}, {circle around (3)}, {circle around (4)}, {circle around (5)}, {circle around (6)}, {circle around (7)}, {circle around (8)} and {circle around (9)} in the same manner, evaluating crystallinity of the polycrystalline silicon substrate 110 continuously. When the polarizing plate 167 moves in the directions indicated by arrows {circle around (2)}, {circle around (4)}, {circle around (6)} and {circle around (8)}, crystallinity may be evaluated only before and after the movement, and not while the polarizing plate 167 is moving. However, when the polarizing plate 167 moves in the directions indicated by arrows {circle around (1)}, {circle around (3)}, {circle around (5)}, {circle around (7)} and {circle around (9)}, crystallinity has to be evaluated continuously, in order to evaluate crystallinity throughout the entire area of the polycrystalline silicon substrate 110.
The center of the polarizing plate 167 may located at a position distant from the corner of the polycrystalline silicon substrate 110 by a value defined by r divided by square root of two (r/√{square root over (√)}2) in the first side direction and the second side direction, respectively. The polarizing plate 167 may start evaluation from the position distant from the corner of the polycrystalline silicon substrate 110 by r/√{square root over (√)}2 in the first side direction and the second side direction, respectively, and may move in the directions indicated by arrows {circle around (1)}, {circle around (2)}, {circle around (3)}, {circle around (4)}, {circle around (5)}, {circle around (6)}, {circle around (7)}, {circle around (8)} and {circle around (9)} in the same manner as in
Referring back to
Even when it is determined that the polycrystalline silicon substrate 110 is normal with reference to white noise in
Referring to
The criterion values for the white noise and the black noise may be determined from sampling data as in
Accordingly, it may be determined that crystallinity is normal when the measured value α is within a predetermined error margin, and it may be determined that crystallinity is abnormal otherwise.
A method of determining a location of the polycrystalline silicon substrate 110a where crystallization is abnormal when the crystallinity is abnormal will be described with reference to
When there is an abnormal crystallization direction 112a, the measured intensity of the light in terms of black noise is above a predetermined intensity of light. When there is an area 112b not normally crystallized 112b, the measured intensity of the light in terms of white noise is below the predetermined intensity of light.
If there is a non-measured area b as shown in
Referring to
Referring to
The locations of the camera 151 and the polarizing plate 167 are adjusted so that they are disposed above the light source 136. The camera 151 and the polarizing plate 167 are attached to the movement guide 150 to move left and right along the second guide rail 140. In doing so, the control unit adjusts the locations of the movement guide 150 and the light source 136 so that the vertical center axis of the light source 136 is in line with the vertical center axis of the camera 150 and the polarizing plate 167.
The camera 151 may capture an image of light transmitted from the polycrystalline silicon substrate 110 at the current location and then may move aside. The movement guide 150 including the camera 151 may move to the right until the left side of the current location reaches the right side. The camera 151 may capture the polycrystalline silicon substrate 110 after it has moved to the next location. Such moving and capturing may be repeated until the camera 151 captures the images of the entire area of the polycrystalline silicon substrate 110.
Referring to
The plurality of light sources 136 may be spaced apart from one another at a regular spacing. Each of the beam expanders 131 includes a concave lens at its lower portion and a convex lens at its upper portion aligned with the vertical center axis of the respective lights 136. According to the example shown in
In contrast, in the example shown in
If the intensity of the transmitted light 113 measured by the camera 151 above the polarizing plate 167 in operation S120 is within the error margin (No in operation S130), it is determined whether there is any area of the polycrystalline silicon substrate 110 to be evaluated (operation S150). When so, the location of the camera is moved for capturing the area (operation S160). The camera may move, for example, along the paths according to the exemplary embodiment shown in
If the intensity of the transmitted light 113 measured by the camera 151 above the polarizing plate 167 (operation S120) is out of an error margin (Yes in operation S130), the polarizing plate 167 may be rotated (operation S1301) and the intensity of light may be measured (operation S1302). When the measured intensity of light is with the error margin of the criterion value (Yes in operation S1303), the rotation angle of the polarizing plate 167 is measured (operation S1304). Since the rotation angle of the polarizing plate 167 may be the crystallization direction 112 of the polycrystalline silicon substrate 110, the rotation angle of the polarizing plate 167 may be notified together when the error is notified in operation S140.
According to the method illustrated in
Referring to
A method of evaluating crystallinity of the polycrystalline silicon substrate 110 according to another exemplary embodiment of the invention will be described with reference to
The amount of transmitted light is sampled from at least one areas of the polycrystalline silicon substrate 110 of the device 101 shown in
Number | Date | Country | Kind |
---|---|---|---|
10-2015-0128703 | Sep 2015 | KR | national |
This application is a divisional of U.S. patent application Ser. No. 15/097,514, filed on Apr. 13, 2016, which claims priority to Korean Patent Application No. 10-2015-0128703, filed on Sep. 11, 2015, and all the benefits accruing therefrom under 35 U.S.C. § 119, the content of which in its entirety is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3164662 | Grosjean | Jan 1965 | A |
3972619 | Stevens | Aug 1976 | A |
4450542 | Kritz | May 1984 | A |
6046448 | Sato | Apr 2000 | A |
6128084 | Nanbu et al. | Oct 2000 | A |
6373614 | Miller | Apr 2002 | B1 |
6515745 | Vurens et al. | Feb 2003 | B2 |
6753961 | Norton et al. | Jun 2004 | B1 |
6798511 | Zhan et al. | Sep 2004 | B1 |
6829054 | Stanke | Dec 2004 | B2 |
7289211 | Walsh, Jr. et al. | Oct 2007 | B1 |
7339676 | Maris | Mar 2008 | B2 |
7411677 | Kawakami et al. | Aug 2008 | B2 |
7505134 | Johs et al. | Mar 2009 | B1 |
7522288 | De Groot | Apr 2009 | B2 |
7527200 | Tsikos et al. | May 2009 | B2 |
7605976 | Wolleschensky | Oct 2009 | B1 |
7839506 | Straaijer et al. | Nov 2010 | B2 |
7859661 | Ossikovski et al. | Dec 2010 | B2 |
7889339 | Flock et al. | Feb 2011 | B1 |
7897406 | Pinet et al. | Mar 2011 | B2 |
8004675 | Lefaudeux | Aug 2011 | B2 |
8179530 | Levy | May 2012 | B2 |
8279439 | Gomi | Oct 2012 | B2 |
8334977 | Fukazawa et al. | Dec 2012 | B2 |
8792096 | Straaijer | Jul 2014 | B2 |
8830481 | Hall et al. | Sep 2014 | B2 |
8873054 | Kandel et al. | Oct 2014 | B2 |
9019498 | Sakai | Apr 2015 | B2 |
9347832 | Bodkin et al. | May 2016 | B2 |
20030019931 | Tsikos et al. | Jan 2003 | A1 |
20040150821 | Shibata | Aug 2004 | A1 |
20040156051 | Takeuchi et al. | Aug 2004 | A1 |
20040207836 | Chhibber | Oct 2004 | A1 |
20040207845 | Opsal et al. | Oct 2004 | A1 |
20040235205 | Levy et al. | Nov 2004 | A1 |
20080002184 | Toda | Jan 2008 | A1 |
20080170227 | Schimming | Jul 2008 | A1 |
20090262350 | Abbott | Oct 2009 | A1 |
20100004875 | Urano et al. | Jan 2010 | A1 |
20100103417 | Otani et al. | Apr 2010 | A1 |
20100231911 | Fischer et al. | Sep 2010 | A1 |
20110109906 | Liphardt et al. | May 2011 | A1 |
20110194101 | Tachizaki | Aug 2011 | A1 |
20110227558 | Mannion et al. | Sep 2011 | A1 |
20120274931 | Otani | Nov 2012 | A1 |
20130021609 | Lo et al. | Jan 2013 | A1 |
20130265576 | Acher | Oct 2013 | A1 |
20150377857 | Grimberg | Dec 2015 | A1 |
20160103062 | Shribak | Apr 2016 | A1 |
20160154156 | Ichihashi et al. | Jun 2016 | A1 |
20170276597 | Emoto et al. | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
101273739 | Sep 2011 | KR |
Number | Date | Country | |
---|---|---|---|
20190120773 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15097514 | Apr 2016 | US |
Child | 16216389 | US |