1. Field of the Invention
The present invention is directed to the field of sample preparation and analysis. In particular the invention is directed to the field of manipulating samples.
2. Description of the Related Technology
U.S. Pat. Nos. 7,053,383; 7,115,882; 7,126,132; and 7,126,133 discuss methods and apparatuses for sample preparation for TEM, the disclosures of which are hereby incorporated by reference in their entirety.
The use of focused ion-beam (FIB) microscopes has become common for the preparation of specimens for later analysis in a transmission electron microscope (TEM). The use of the FIB requires little preliminary mechanical preparation of the sample. In using FIB, techniques for cutting out lift-out specimens for examination are employed. These lift-out techniques include an ex-situ method that is performed outside the FIB microscope chamber, and in-situ methods performed inside the FIB microscope chamber.
An obstacle to handling, lifting and transferring objects (e.g. devices, structures, materials, etc.) with dimensions between 10-10,000 nm is the grabbing and handling of the objects. Omniprobe™ invented a single-probe lift-out method back in 1996, however it has several drawbacks. For instance, the final sample may not represent the bulk properties due to the use of materials employed during releasing (e.g. gallium) of the sample and during attaching (e.g. tungsten) of the sample. The probe also has limited motion accuracy, no force control and a different viewing angle than that of the electron beam. Moreover, there is no reliable tool to precisely transfer an object, such as nanotube, and place it at a desired location.
The process of in-situ lift-out can be broken down into three successive steps. The first is the excision of the sample using focused ion-beam milling and extraction of the sample from its trench.
The second is the holder-attach step, during which the sample is translated on the probe-tip point to the TEM sample holder. Then it is attached to the TEM sample holder, typically with ion beam-induced metal deposition. Later the sample is detached from the probe-tip point.
The third and final step is the thinning of the sample into an electron-transparent thin section using FIB milling. The relative amount of time involved in preparing the sample depends on the amount of time required to first mechanically isolate the lift-out sample from the initial bulk sample. This is controlled by the ion beam milling rate. The milling rate will typically constitute from 30% to 60% of the total time involved in the sample preparation.
In order to address the issues noted above as well as eliminate the holder-attach step, it would be desirable to directly join the probe-tip point with the sample attached to the material that will form the TEM sample holder.
The present invention is directed to an apparatus for the manipulation of sample objects on the nanometer to micrometer scale.
An aspect of the present invention is a device for manipulating sample objects having dimensions between about 10 nm and 10,000 nm. The device comprises attachment means for attaching the device to a microscope, wherein the microscope has a top plate moveable along a Z-axis. The device further comprises first and second arms attachable to the top plate, wherein when attached the first and second arms are positioned relative to one another to grasp a sample object, and each of the first and second arms are adapted to move along an X-axis and a Y-axis; and a controller adapted to control movement of the first and second arms.
For illustrative purposes, the principles of the present disclosure are described by referencing various exemplary embodiments. Although certain embodiments are specifically described herein, one of ordinary skill in the art will readily recognize that the same principles are equally applicable to, and can be employed in other systems and methods.
Before explaining the disclosed embodiments of the present disclosure in detail, it is to be understood that the disclosure is not limited in its application to the details of any particular embodiment shown. Additionally, the terminology used herein is for the purpose of description and not of limitation. Furthermore, although certain methods are described with reference to steps that are presented herein in a certain order, in many instances, these steps may be performed in any order as may be appreciated by one skilled in the art; the novel methods are therefore not limited to the particular arrangement of steps disclosed herein.
It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. Furthermore, the terms “a” (or “an”), “one or more” and “at least one” can be used interchangeably herein. The terms “comprising”, “including”, “having” and “constructed from” can also be used interchangeably.
In order to address the problems discussed above an improved method and apparatus for manipulating objects is provided. Sample manipulator 100, shown in
As shown in
Controller 101 can also control the amount of force used to grab a sample object. Controlling the force used to grab a sample object can prevent damage that may be caused through use of excessive force. Controlling the force can further prevent premature and/or unwanted sample release.
Sample manipulator 100 may also have an extra degree of freedom by providing the ability to rotate the sample, in addition to having the ability to grasp and place the sample at the same angle. This enables the sample manipulator 100 to grasp a sample object from any given direction and/or location and to place the sample object from any given direction and/or location as well. For example, in electrical measurement experiments, a sample object such as a nanowire or cross-section lift-out, needs to be accurately placed between two contacts.
The sample manipulator 100 has first and second arms 103 that are used to grab and manipulate sample objects. The arms 103 are attached to a top plate 104. The arms 103 may be attached to an SEM microscope by way of welding or other means for attachment, such as clips, fasteners, screws, etc. The arms 103 are controlled by the controller 101 using two sets of transducers 107. One set of the transducers 107 is for coarse movement along the X-axis and Y-axis as referenced in
By fine movement it is meant movement on a scale below 100 nm. Movement of the arms 103 along the Z-axis occurs via movement of the top plate 104 along the top plate support structure 105 though use of servo motors or mechanical controls since arms 103 are attached to top plate 104. Top plate 104 also permits rotation of arms 103 along the Y-axis. Operation and movement of arms 103 along any of the three axes may be controlled by the controller 101. The arms 103 are initially moved to a particular position in order to grasp sample object 106 that is located on the stage 102. In the embodiment shown in
Referring to
Turning to
Microscale tip 200 and nanoscale tip 300 may be attached to the arms 103 at separate times or may alternatively be integrally formed with the arms. It is also contemplated that in some embodiments the arms may comprise both microscape tip 200 and nanoscale tip 300.
Referring back to
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the method, composition and function of the invention, the disclosure is illustrative only, and changes may be made in detail, within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
This application claims priority to International Application No. PCT/US14/38172, filed May 15, 2014, and U.S. Provisional Application No. 61/824,719, filed May 17, 2013, the contents of which are hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/038172 | 5/15/2014 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61824719 | May 2013 | US |