Embodiments of the present invention generally relate to a gas distribution plate for a chemical vapor deposition (CVD) system designed to compensate for deposition non-uniformity.
Plasma enhanced chemical vapor deposition (PECVD) is a deposition method that has long been used to deposit may films onto semiconductors substrates. PECVD has recently been used to deposit films on large area substrates such as solar panel substrates, flat panel display substrates, and large area thin film transistor substrates. Market forces continue to drive down the cost of flat panel displays while increasing the size of the substrate. Substrate sizes greater than 1 square meter are not uncommon in flat panel display processes.
Gas distribution plates may be used to ensure an even distribution of the deposition plasma throughout the processing chamber. An even distribution of plasma may aid in film uniformity across the substrate. With increasing substrate size, however, obtaining an even distribution of plasma within the processing chamber can be a challenge.
Therefore, there is a need in the art for an improved gas distribution plate.
The present disclosure generally relates to a gas distribution plate for ensuring deposition uniformity. In one embodiment, the plate comprises a diffuser body has an upstream surface, a downstream surface, four sides and four corners, the diffuser body having a plurality of gas passages extending from the upstream surface to the downstream surface, each gas passage includes a hollow cathode cavity: a center hollow cathode cavity is disposed near the center of the diffuser body; a corner hollow cathode cavity is disposed near the corner of the diffuser body, the corner hollow cathode cavity is larger than the center hollow cathode cavity; a first hollow cathode cavity is disposed at a location between the center hollow cathode cavity and the corner hollow cathode cavity, the first hollow cathode cavity is greater in size than the center hollow cathode cavity and less in size than the corner hollow cathode cavity; and a second hollow cathode cavity is disposed at a location between the corner hollow cathode cavity and the first hollow cathode cavity, the second hollow cathode cavity is less in size than the corner hollow cathode cavity and less in size than the first hollow cathode cavity.
In another embodiment, a gas distribution plate comprises a diffuser body having an upstream surface, a downstream surface, four sides and four corners, the diffuser body having a plurality of gas passages extending from the upstream surface to the downstream surface, each gas passage includes a hollow cathode cavity: a center hollow cathode cavity is disposed near the center of the diffuser body; a side hollow cathode cavity is disposed near the side of the diffuser body, the side hollow cathode cavity is larger than the center hollow cathode cavity; a first hollow cathode cavity is disposed at a location between the center hollow cathode cavity and the side hollow cathode cavity, the first hollow cathode cavity is greater in size than the center hollow cathode cavity and less in size than the side hollow cathode cavity; and a second hollow cathode cavity is disposed at a location between the side hollow cathode cavity and the first hollow cathode cavity, the second hollow cathode cavity is less in size than the side hollow cathode cavity and less in size than the first hollow cathode cavity.
In another embodiment, plasma processing chamber comprises a chamber body; a substrate support disposed within the chamber body; and a gas distribution plate disposed within the chamber body and facing the substrate support, the gas distribution plate comprising: a diffuser body having an upstream surface, a downstream surface, four sides and four corners, the diffuser body having a plurality of gas passages extending from the upstream surface to the downstream surface, each gas passage includes a hollow cathode cavity: a center hollow cathode cavity is disposed near the center of the diffuser body; a corner hollow cathode cavity is disposed near the corner of the diffuser body, the corner hollow cathode cavity is larger than the center hollow cathode cavity; a first hollow cathode cavity is disposed at a location between the center hollow cathode cavity and the corner hollow cathode cavity, the first hollow cathode cavity is greater in size than the center hollow cathode cavity and less in size than the corner hollow cathode cavity; and a second hollow cathode cavity is disposed at a location between the corner hollow cathode cavity and the first hollow cathode cavity, the second hollow cathode cavity is less in size than the corner hollow cathode cavity and less in size than the first hollow cathode cavity.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only exemplary embodiments and are therefore not to be considered limiting of its scope, may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements and features of one embodiment may be beneficially incorporated in other embodiments without further recitation.
The present disclosure will be illustratively described below in reference to a PECVD system configured to process large area substrates such as a PECVD system available from AKT, a division of Applied Materials, Inc., Santa Clara, Calif. However, it is to be understood that the disclosure has utility in other system configurations such as those utilized to process small or round substrates. The disclosure also has utility in processing systems manufactured by other manufacturers.
Gas may be introduced to an area between the gas distribution plate 110 and the lid 102 called the plenum 114. The gas may be evenly distributed within the plenum 114 due to the presence of gas passages 112 that extend from an upstream side 118 of the diffuser plate through to the downstream side 120.
The HCC 210 may be cone or cylinder shaped or a combination of both. The HCC 210 is sized to permit ignition of plasma within the HCC 210. In other words, a plasma may be ignited within the gas distribution plate 110 itself in addition to within the processing space 116. By igniting the plasma within the HCC 210, the shape of the plasma may be controlled because the shape and/or size of the HCC 210 affect the shape and/or intensity of the plasma within the chamber 100.
Silicon nitride is one film that may be deposited in a PECVD chamber using silane gas. Silicon nitride can be used as a passivation layer, a gate insulator layer, a buffer layer, an interlayer and even as a barrier layer for amorphous silicon thin film transistors (TFTs), low temperature polysilicon TFTs and active matrix organic light emitting diode (OLED) displays. Additionally, silicon nitride may be used as a barrier layer in thin film encapsulation applications. The thickness and uniformity of the nitride layer has a significant effect on the device performance, such as the uniformity of the drain current (i.e., mobility) and the threshold voltage in the TFTs.
Because the TFT device performance is sensitive to film thickness variations, thickness uniformity control has gained interest among engineers. Uniformity expectations can range from up to 3 percent for amorphous silicon to 4 percent for silicon oxides to as much as 5 percent for silicon nitride.
Uniformity within a substrate is not the only area of concern through. run to run uniformity is also closely monitored. Processing chambers are periodically cleaned, and run to run uniformity of 2 percent to 3 percent is expected in most scenarios with as many as eight processed occurring prior to cleaning.
Silicon nitride deposition can be challenging in large area substrate processing chambers. The deposition rate of silicon nitride films can be higher at the corners of the substrate and edges of the substrate within a single cycle prior to cleaning because the silicon nitride film can accumulate at the corner and edge of the gas distribution plate. The accumulation of the silicon nitride may be referred to as the dielectric effect and enhances the local plasma density by changing the surface electron emission conditions and thus increases the deposition rate of the dielectric film in the next deposition due to the locally enhanced plasma. The dielectric effect deteriorates the uniformity of the silicon nitride process, for examples from about 3 percent to about 6 percent mainly from the corner high deposition rate peaks and changes the average deposition rate up to 6 percent. If the gas distribution plate is used for longer term production, the situation may become worse with additional dielectric accumulation occurring due to the interaction of the cleaning gas with the gas distribution plate to produce aluminum fluoride.
Many attempts to correct for the deposition uniformity have occurs such as reducing the plasma power (leads to compromised film quality), refurbishing the gas distribution plate more frequently, adjusting the deposition time within one clean cycle, and inserting conductive seasoning (such as amorphous silicon), but no option to date can solve the within clean cycle variation and the uniformity variation from the corner of the gas distribution plate to the center. Anodization has been used in the past, but simply adding an anodized layer to a bare aluminum gas distribution plate results in silicon nitride non-uniformity at the corners because the silicon nitride coating is a dielectric coating at the corner.
To solve the uniformity issues, a permanent dielectric layer (i.e., an anodization layer) of material such as A12O3, Y2O3 or other dielectric material can survive a fluorine based cleaning environment, is formed over all exposed surfaces of the gas distribution plate 110. The anodization layer 212 can avoid additional dielectric effect in subsequent depositions and thus run to run uniformity degradation due to the dielectric effect can be prevented. The anodization layer 212 may be formed to a surface roughness of about 1 μm to about 20 μm with a total thickness of about 1 μm to about 20 μm to reduce the absorption of fluorine atoms during cleaning and to minimize the risk of the anodization layer 212 cracking and peeling. Additionally, a hollow cathode gradient (HCG) not only at the center of the gas distribution plate, but also at the edges and corner areas pushes down the high deposition rate peaks and the corners and edges.
The anodization and corner HCG improves the thickness uniformity of the initial deposition by pushing down the corner high deposition rate peaks, and the run to run deposition rate uniformity deterioration is pushed down as well by providing a permanent high quality dielectric film (i.e., the anodization layer 212). The corner HCG and anodization does not compromise the process conditions for better uniformity, does not require frequent refurbishment (which would be needed for base aluminum gas distribution plates to recover silicon nitride uniformity), does not require an adjustment of the deposition time from one deposition to the next, does not require conductive seasoning that would affect substrate throughput, and does not add initial thick silicon nitride seasoning that would impact particle performance.
It has surprisingly found that corner HCG along with anodization controls the deposition rate variation in silicon nitride processes to below 1 percent within an eight substrate cycle, and a thickness uniformity of about 2.9 percent to about 3.5 percent, which is significantly better than a bare aluminum gas distribution plate. There is also a 6 percent deposition rate increase within a 9 substrate clean cycle and around 3.8 percent to about 6.3 percent uniformity. It is to be understood that the anodization and corner HCG may be applicable to other film deposition processed such as silicon oxynitride.
The other half of the cross section of
The other half of the cross section of
The other half of the cross section of
In referring to the “size” of the various HCCs 210, it is to be understood that the “size” may refer to the volume of the HCC 210 or to the diameter of the HCC at the downstream surface 206.
When referring to the various concave portions shown along the cross sectional lines for
By utilizing multiple HCGs on the downstream side of a gas distribution plate, uniform deposition is possible within a single substrate deposition process. With the addition of an anodized coating on the gas distribution plate, the uniform deposition may be extended to not only a single substrate, but to all of the substrates within a cycle. As such, the number of substrate that may be processed within a single cleaning cycle may be increased and substrate throughput increased. The multiple HCG gradients and the anodization coating compensates for deposition non-uniformity not only in a single substrate, but within an entire cycle of substrates.
While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.