The present disclosure relates to a technology for improving performance of cooling a semiconductor device.
A semiconductor chip constituting a semiconductor device that functions as a Central Processing Unit (CPU), a Graphics Processing Unit (GPU), or the like is thermally connected to and cooled by a radiator such as a heat sink or a heat pipe. There are many electronic apparatuses using grease as a thermally conductive material provided between the semiconductor chip and the radiator.
[Citation List] [Patent Literature]
[PTL 1] Japanese Patent Laid-Open No. 2012-69902 [PTL 2] Japanese Patent Laid-Open No. 2007-335742
However, when an amount of heat generated by the semiconductor chip is increased, it becomes difficult to cool the semiconductor chip sufficiently due to a thermal resistance possessed by the grease. In a semiconductor device of PTL 2, a metal that is liquefied by heat at the time of operation of the semiconductor chip is used as a thermally conductive material between the semiconductor chip and the radiator in place of the grease. The use of such a metal decreases a thermal resistance between the semiconductor chip and the radiator, and can therefore improve the performance of cooling the semiconductor chip.
In a structure using a metal having fluidity as the thermally conductive material, it is important to limit a range over which the thermally conductive material spreads even in a case where a change in attitude of the semiconductor device or vibration occurs in order to fully exert the cooling performance. In addition, when the radiator is pressed to the semiconductor chip, it is important for a pressing force to act fully on the semiconductor chip. That is, adhesion between the semiconductor chip and the radiator is also important.
An example of an electronic apparatus proposed in the present disclosure includes a semiconductor chip, a substrate that is disposed on a lower side of the semiconductor chip and has a first region as a region in which the semiconductor chip is mounted and a second region as a region in which a conductor element including at least one of a circuit pattern and an electric part is disposed, a radiator disposed on an upper side of the semiconductor chip, and a thermally conductive material present between the radiator and the semiconductor chip. The electronic apparatus further includes a seal member surrounding the thermally conductive material and an insulating portion covering the conductor element. The thermally conductive material has electric conductivity and has fluidity at least at a time of operation of the semiconductor chip. According to this electronic apparatus, the seal member and the insulating portion can limit a range over which the thermally conductive material spreads. Incidentally, in this electronic apparatus, the insulating portion is, for example, a part obtained by curing an insulating material, a sheet formed by an insulating material, or the like.
Another example of the electronic apparatus proposed in the present disclosure includes a semiconductor chip, a substrate that is disposed on a lower side of the semiconductor chip and has a first region as a region in which the semiconductor chip is mounted and a second region as a region in which a conductor element including at least one of a circuit pattern and an electric part is disposed, a radiator disposed on an upper side of the semiconductor chip, and a thermally conductive material present between the radiator and the semiconductor chip. The electronic apparatus further includes an insulating portion covering the conductor element. The thermally conductive material has electric conductivity and has fluidity at least at a time of operation of the semiconductor chip. A distance from at least a part of an upper surface of the insulating portion to a lower surface of the radiator is larger than a distance from an upper surface of the semiconductor chip to the lower surface of the radiator. According to this electronic apparatus, a range over which the thermally conductive material spreads can be limited to a region in which the conductor element is not present. In addition, adhesion between the radiator and the semiconductor chip can be secured.
An example of a semiconductor device proposed in the present disclosure includes a semiconductor chip, a substrate that is disposed on a lower side of the semiconductor chip and has a first region as a region in which the semiconductor chip is mounted and a second region as a region in which a conductor element including at least one of a circuit pattern and an electric part is disposed, and an insulating sheet covering the conductor element. According to this semiconductor device, a range over which a thermally conductive material spreads can be limited to a region in which the conductor element is not present.
Another example of the semiconductor device proposed in the present disclosure includes a semiconductor chip, a substrate that is disposed on a lower side of the semiconductor chip and has a first region as a region in which the semiconductor chip is mounted and a second region as a region in which a conductor element including at least one of a circuit pattern and an electric part is disposed, and an insulating portion covering the conductor element. A height of at least a part of an upper surface of the insulating portion with respect to the substrate is smaller than a height of the upper surface of the semiconductor chip with respect to the substrate. According to this semiconductor device, a range over which a thermally conductive material spreads can be limited to a region in which the conductor element is not present. In addition, adhesion between a radiator and the semiconductor chip can be secured.
An insulating sheet proposed in the present disclosure is an insulating sheet for attachment to a semiconductor device including a semiconductor chip and a substrate disposed on a lower side of the semiconductor chip, the substrate having a first region as a region in which the semiconductor chip is mounted and a second region as a region in which a conductor element including at least one of a circuit pattern and an electric part is disposed. The insulating sheet includes a housing portion configured to cover the conductor element, the housing portion having a top wall located on an upper side of the conductor element and an inner wall that is located on an inside of the top wall and descends from the top wall, and an attachment target portion connected to the inner wall and located at a position lower than the top wall. According to this insulating sheet, a range over which a thermally conductive material spreads can be limited to a region in which the conductor element is not present. In addition, the insulating sheet can be attached to the substrate relatively easily even in a case where a difference in height between the conductor element and the semiconductor chip is small.
An example of a semiconductor device manufacturing method proposed in the present disclosure includes a step of preparing a substrate that is disposed on a lower side of the semiconductor chip and has a first region as a region in which the semiconductor chip is mounted and a second region as a region in which a conductor element including at least one of a circuit pattern and an electric part is disposed, and a step of covering the conductor element by an insulating portion. In the step of covering the conductor element by the insulating portion, a height of an upper surface of the insulating portion with respect to the substrate is made smaller than a height of an upper surface of the semiconductor chip with respect to the substrate. According to this method, a range over which a thermally conductive material spreads can be limited to a region in which the conductor element such as the electric part is not present. In addition, adhesion between a radiator and the semiconductor chip can be secured.
A semiconductor device and an electronic apparatus proposed in the present disclosure will hereinafter be described. In the present specification, a semiconductor device 10 and an electronic apparatus 1 will be described as an example of the semiconductor device and the electronic apparatus proposed in the present disclosure. The electronic apparatus proposed in the present disclosure is, for example, applicable to a game machine, a development machine for executing various programs (for example, game programs) under development, and an information processing device (for example, a personal computer, a server apparatus, or a control device of a transportation vehicle) different from a game machine.
In the following description, a direction indicated by X1-X2 in
[Basic Configuration] As illustrated in
The semiconductor device 10 includes a semiconductor chip 11 and a substrate (package substrate) 17 located on the lower side of the semiconductor chip 11. The semiconductor chip 11 functions as a CPU, a GPU, or the like. The semiconductor chip 11 is, for example, flip-chip mounted on an upper surface 17a (see
In addition to the semiconductor chip 11, a plurality of electric parts are mounted on the upper surface 17a of the substrate 17. In the example illustrated in
The stiffener 14 is a square frame formed by a metal. The stiffener 14 is attached to the peripheral edge of the substrate 17. Usable as a material for the stiffener 14 is, for example, aluminum, copper, or the like. An adhesive or solder may be used for the attachment of the stiffener 14 to the substrate 17. The stiffener 14 can reduce a warp in the substrate 17. The first region A1 and the second region A2 are defined on the inside of the stiffener 14.
As illustrated in
The radiator 50 is, for example, a heat sink. As illustrated in
[Thermally Conductive Material] As illustrated in
The thermally conductive material 31 is a material having fluidity. More specifically, the thermally conductive material 31 is a material having fluidity at least at the time of operation of the semiconductor chip 11. Preferably, the thermally conductive material 31 is in a liquid or paste form at least at the time of operation of the semiconductor chip 11. The thermally conductive material 31 may be a material that does not have fluidity at the time of non-operation of the semiconductor chip 11 (in other words, at room temperature (for example, 20° C.)) though generating fluidity at the time of operation of the semiconductor chip 11. That is, the thermally conductive material 31 may be a material that generates fluidity by heat generated by the operation of the semiconductor chip 11. The time of non-operation of the semiconductor chip 11 is, for example, the time of manufacturing, the time of transportation, or a time during which power to the electronic apparatus is in an off state. Unlike this, the thermally conductive material 31 may be a material having fluidity also at the time of non-operation of the semiconductor chip 11. That is, the thermally conductive material 31 may be in any state such as a liquid form, a paste form, a powder form, a plate form, or a block form at the time of non-operation of the chip.
The fluidity of the thermally conductive material 31 reduces a thermal resistance between the upper surface 11a of the semiconductor chip 11 and the lower surface 50c of the radiator 50, the thermal resistance being caused by a slight warp in the upper surface 11a of the semiconductor chip 11 or microscopic unevenness of the lower surface 50c of the radiator 50. The fluidity of the thermally conductive material 31 can therefore improve the performance of cooling the semiconductor chip 11. Further, when the thermally conductive material 31 has fluidity at room temperature, the radiator 50 can be separated from the semiconductor chip 11. As a result, at the time of repairing the electronic apparatus 1, for example, repair work can be performed after the radiator 50 is removed from the semiconductor device 10. In addition, the thermally conductive material 31 is a material having electric conductivity, or in other words, a material having high thermal conductivity.
A liquid metal, which is a liquid at room temperature, for example, can be used as the thermally conductive material 31. Usable as the liquid metal are, for example, one or more kinds of low melting point metals selected from a group including Ga (melting point: 29.8° C., thermal conductivity: 40.6 W/mk), In (melting point: 156.4° C., thermal conductivity: 81.6 W/mk), and Sn (melting point: 231.97° C., thermal conductivity: 66.6 W/mk) or alloys containing the one or more kinds of low melting point metals. Concrete examples of the alloys include In—Ag, Sn—Ag—Cu, In—Sn—Bi, and the like. An electrically conductive paste may be used as another example of the thermally conductive material 31. A silver paste obtained by dispersing silver powder in a resin can be used as the electrically conductive paste.
The thermally conductive material 31 is preferably applied to an entire region of the upper surface 11a of the semiconductor chip 11. The thermally conductive material 31 may be in contact with a part of a side surface 11b (see
[Seal Member and Insulating Portion] Because the thermally conductive material 31 has fluidity, a range over which the thermally conductive material 31 spreads needs to be limited in order to exert cooling performance. In addition, because the thermally conductive material 31 has electric conductivity, the range over which the thermally conductive material 31 spreads needs to be limited so as to prevent the thermally conductive material 31 from touching the capacitors 16 and the circuit pattern provided in the second region A2. In addition, it is undesirable for the thermally conductive material 31 to come into contact with another part of the electronic apparatus 1 which part is located on the outside of the semiconductor device 10 (outside of the stiffener 14). Accordingly, the electronic apparatus 1 has the following structure.
[Insulating Portion] As illustrated in
The insulating portion 15 is, for example, a resin. More specifically, the insulating portion 15 is a part obtained by curing a resin in a liquid or gel form. An ultraviolet curable resin, for example, can be used as the insulating portion 15. The resin is applied so as to cover the conductor elements in the second region A2 (that is, the capacitors 16 and the circuit pattern), and is thereafter cured by receiving ultraviolet rays to form the insulating portion 15. The insulating portion 15 can prevent the thermally conductive material 31 from touching the conductor elements present in the second region A2.
As illustrated in
As illustrated in
In addition, as illustrated in
In a case where the conductor elements such as the circuit pattern and the capacitors 16 or the like exposed to the upper surface 17a of the substrate 17 are formed only in a part of the second region A2, the insulating portion 15 may be formed only in this part of the second region A2. For example, as illustrated in
[Seal Member] The electronic apparatus 1 has a seal member 33 that surrounds the thermally conductive material 31 (see
The seal member 33 is, for example, disposed between the upper surface 15a of the insulating portion 15 and the lower surface 50c of the radiator 50, and is sandwiched by the two surfaces 15a and 50c. The seal member 33 may be attached to the lower surface 50c of the radiator 50. The seal member 33 may, for example, be bonded to the lower surface 50c of the radiator 50. Conversely, the seal member 33 may be attached to the upper surface 15a of the insulating portion 15. The seal member 33 may, for example, be bonded to the upper surface 15a of the insulating portion 15.
In addition, the seal member 33 may have a part located above the capacitors 16 covered by the insulating portion 15. That is, the seal member 33 may have a part overlapping the capacitors 16 as viewed in plan of the semiconductor device 10. The semiconductor device 10 having such a positional relation makes it possible to adopt the seal member 33 having a large width in the horizontal direction, and thereby improve a sealing property. A space S in which air is present is formed on the inside of the seal member 33.
The seal member 33 is, for example, formed by a material having a cushioning characteristic. That is, the seal member 33 is formed by a material that allows a change in the thickness of the seal member 33 in a direction in which the upper surface 11a of the semiconductor chip 11 and the lower surface 50c of the radiator 50 face each other, that is, an upward-downward direction. A material for the seal member 33 is, for example, a rubber, a sponge, a resin having a foam forming property, silicone, or the like. This can reduce a load acting on the semiconductor device 10 through the seal member 33 even in a case where the radiator 50 is pressed toward the semiconductor chip 11 by an elastic member.
The position of the seal member 33 is not limited to the example illustrated in
In still another example, as illustrated in
As described above, the insulating portion 15 may be formed at the position of the capacitors 16 and separated from the side surface 11b of the semiconductor chip 11. In this case, as illustrated in
That is, it suffices for an inner peripheral surface 33a of the seal member 33 (surface surrounding the semiconductor chip 11) to be located outward of the outer edge of the semiconductor chip 11 and not to coincide with the semiconductor chip 11. It suffices for an outer peripheral surface 33b of the seal member 11 (surface facing an opposite side from the inner peripheral surface 33a) to be located inward of the outer edge of the semiconductor device 10 (outer edge of the stiffener 14 in the example of the semiconductor device 10).
[Manufacturing Method] An example of a method of manufacturing the electronic apparatus 1 and the semiconductor device 10 will be described.
First, the semiconductor chip 11, the capacitors 16, and the stiffener 14 are mounted on the substrate 17. The underfill 23 is filled between the semiconductor chip 11 and the substrate 17. An ultraviolet curable resin in a liquid or gel form is supplied to the peripheries of the capacitors 16. That is, the ultraviolet curable resin is accumulated between the stiffener 14 and the semiconductor chip 11. An amount of resin is such that the upper surfaces 16a of the capacitors 16 are buried in the resin. The resin is cured by irradiating the resin with ultraviolet rays. The insulating portion 15 is thereby obtained. Incidentally, in a case of manufacturing a structure in which the insulating portion 15 is formed between the seal member 33 and the stiffener 14 as illustrated in
Next, as illustrated in
In addition, the seal member 33 is affixed to the lower surface 50c of the radiator 50. Then, the radiator 50 is attached to the semiconductor chip 11. The radiator 50 is pressed to the semiconductor chip 11 by using an elastic member such as a spring. Consequently, the lower surface 50c of the radiator 50 closely adheres to the upper surface 11a of the semiconductor chip 11.
Incidentally, in a method of applying the thermally conductive material 31 to only one of the upper surface 11a of the semiconductor chip 11 and the lower surface 50c of the radiator 50, the thermally conductive material 31 does not readily spread on the other surface when the radiator 50 is attached to the semiconductor chip 11, and thus a thermal resistance between the semiconductor chip 11 and the radiator 50 becomes larger. Such a problem can be solved by applying the thermally conductive material 31 to the upper surface 11a of the semiconductor chip 11 and the lower surface 50c of the radiator 50 as illustrated in
[Modifications]
The semiconductor device 110 has an insulating sheet 115 (see
As illustrated in
[Height of Housing Portion] As illustrated in
As illustrated in
Incidentally, a metallic plate having a size adapted to the size of the semiconductor chip 11 may be welded to the lower surface 50c of the radiator 50. In this case, the height H4 of the upper surface of the insulating sheet 115 may be higher than the height H1 of the upper surface 11a of the semiconductor chip 11. According to this structure, the distance from the upper surface of the insulating sheet 115 to the lower surface 50c of the radiator 50 can be made larger than the distance from the upper surface 11a of the semiconductor chip 11 to the lower surface of the radiator 50 (lower surface of the metallic plate) by adjusting the thickness of the metallic plate. As a result, sufficient adhesion between the radiator 50 and the semiconductor chip 11 can be secured without interference occurring between the insulating sheet 115 and the lower surface 50c of the radiator 50.
[Attachment Target Portion] As illustrated in
As illustrated in
As illustrated in
In the structure illustrated in
The attachment target portions 115h and 115i are provided to the whole of edges of the housing portion 115a, and the inside of the housing portion 115a is sealed. As illustrated in
The shape of the insulating sheet 115 is not limited to the example illustrated in
In the structure illustrated in
In yet another example, the insulating sheet 115 may not have the attachment target portions 115i and 115h. For example, as illustrated in
[Seal Member] In the examples illustrated in
[Manufacturing Method] An example of a method of manufacturing the semiconductor device 110 and the electronic apparatus 1 including the semiconductor device 110 will be described. First, the semiconductor chip 11, the capacitors 16, and the stiffener 14 are mounted on the substrate 17. The underfill 23 is filled between the semiconductor chip 11 and the substrate 17. Next, the capacitors 16 are covered by the insulating sheet 115. Then, an adhesive is applied to the attachment target portions 115h and 115i and is cured. The inside of the housing portion 115a is thereby sealed. An ultraviolet curable resin can be used as the adhesive. The following processes may be the same as processes for manufacturing the semiconductor device 10 and the electronic apparatus 1 including the semiconductor device 10.
[Further Modification]
The semiconductor device 210 has an insulating sheet 215 (see
[Liquid Gasket] As illustrated in
The liquid gasket has fluidity at room temperature. The liquid gasket dries or becomes uniform after a certain time from application thereof to a bonding surface, and consequently forms an elastic or adhesive thin layer. Materials for the liquid gasket include, for example, a phenol type, a modified ester type, a silicone type, an acrylic type, and the like. The use of such a liquid gasket can ensure a high sealing property between the attachment target portion 215h of the insulating sheet 215 and the substrate 17.
The attachment target portion 215h formed at a lower edge of the inner wall 215c is bent with respect to the inner wall 215c and is along the upper surface 17a of the substrate 17. The liquid gasket E2 is, for example, disposed between the upper surface 17a of the substrate 17 and the attachment target portion 215h. This can prevent the liquid gasket E2 from being mounted on the upper side of the semiconductor chip 11 in a process of assembling the semiconductor device 210, and consequently affecting thermal conductivity between the semiconductor chip 11 and the radiator 50.
[Double Insulating Sheet] As illustrated in
A space housing conductor elements such as the capacitors 16 and the circuit pattern or the like is formed between the lower sheet 225 and the substrate 17. Hence, this space is partitioned from a space in which the thermally conductive material 31 is present by the double sheet. That is, the upper sheet 215 forms a space (inside of the housing portion 215a) partitioned from the space in which the thermally conductive material 31 is present, and the lower sheet 225 forms, within the housing portion 215a, a space partitioned from a space outside the lower sheet 225.
The lower sheet 225 is attached to the substrate 17 by a material different from the liquid gasket. The attachment target portion 225h of the lower sheet 225 is bent with respect to the inner wall 225c and is along the upper surface 17a of the substrate 17. The lower sheet 225 is, for example, attached to the substrate 17 by an adhesive tape (tape having both surfaces coated with an adhesive) disposed between the attachment target portion 225h and the substrate 17. A method of attaching the lower sheet 225 to the substrate 17 is not limited to the method using the adhesive tape. For example, the attachment target portion 215h of the lower sheet 225 may be attached by an adhesive applied to the substrate 17.
As described above, the thermally conductive material 31 having fluidity is disposed between the lower surface 50c of the radiator 50 and the upper surface 11a of the semiconductor chip 11. Because the thermally conductive material 31 has fluidity, it is possible that the thermally conductive material 31 comes out from between the lower surface 50c of the radiator 50 and the upper surface 11a of the semiconductor chip 11 and adheres to the liquid gasket E2. In a case where the radiator 50 and the upper sheet 215 need to be removed in order to repair the electronic apparatus or replace a faulty part, caution is necessary in handling so as to prevent the liquid gasket E2 to which the thermally conductive material 31 adheres from scattering. In the semiconductor device 210, the lower sheet 225 is disposed on the lower side of the upper sheet 215, and further covers the capacitors 16 within the housing portion 215a. Thus, even when the liquid gasket E2 scatters at the time of removing the radiator 50 and the upper sheet 215, a range over which the liquid gasket E2 scatters can be limited to a region in which the capacitors 16 are not present.
The lower sheet 225 and the upper sheet 215 may be formed by different materials. For example, the lower sheet 225 may be formed by a material having lower stiffness than the upper sheet 215. In addition, in the example of the semiconductor device 210, the lower sheet 225 is a sheet thinner than the upper sheet 215. An example of a material for the lower sheet 225 is polyethylene terephthalate. The lower sheet 225 may have flexibility. This can reduce a cost increase due to the lower sheet 225.
In the example illustrated in
The semiconductor device 210 has a sealant 33 formed by a material having a cushioning characteristic. In the example illustrated in
In the example illustrated in
Unlike this, the outer walls 215d and 225d may be attached to the stiffener 14 or the substrate 17. For example, the outer wall 215d of the upper sheet 215 may be attached to the substrate 17 by a liquid gasket, and the outer wall 225d of the lower sheet 225 may be attached to the substrate 17 or the stiffener 14 by means different from the liquid gasket (for example, an adhesive or a double-faced sheet).
The structures of the sheets 215 and 225 are not limited to the example illustrated in these figures. For example, as in the example illustrated in
[Manufacturing Method] An example of a method of manufacturing the semiconductor device 210 and the electronic apparatus 1 including the semiconductor device 210 will be described. First, the semiconductor chip 11, the capacitors 16, and the stiffener 14 are mounted on the substrate 17. The underfill 23 is filled between the semiconductor chip 11 and the substrate 17. Next, the capacitors 16 are covered by the insulating sheet (lower sheet) 225. Then, the attachment target portion 225h is attached to the substrate 17 by an adhesive sheet. Next, the liquid gasket E2 is applied onto the substrate 17, and thereafter the lower sheet 225 is covered by the insulating sheet (upper sheet) 215. Then, the attachment target portion 215h of the upper sheet 215 is attached to the substrate 17 by the liquid gasket. The following processes may be the same as processes for manufacturing the semiconductor device 10 and the electronic apparatus 1 including the semiconductor device 10.
[Summary] In the electronic apparatus 1 described above, the thermally conductive material 31 is disposed between the radiator 50 and the semiconductor chip 11. The thermally conductive material 31 has electric conductivity and has fluidity at least at the time of operation of the semiconductor chip 11. The seal member 33 surrounds the thermally conductive material 31, and conductor elements such as a circuit pattern and electric parts or the like are covered by an insulating portion (the insulating portion 15 or the insulating sheets 115, 215, and 225). According to this structure, the seal member 33 and the insulating portion can limit a range over which the thermally conductive material 31 spreads.
In addition, in the electronic apparatus 1, the thermally conductive material 31 is disposed between the radiator 50 and the semiconductor chip 11. The thermally conductive material 31 has electric conductivity and has fluidity at least at the time of operation of the semiconductor chip 11. The conductor elements such as the circuit pattern and the electric parts or the like are covered by an insulating portion (the insulating portion 15 or the insulating sheets 115, 215, and 225). A distance from at least a part of the upper surface of the insulating portion to the lower surface 50c of the radiator 50 is larger than a distance from the upper surface 11a of the semiconductor chip 11 to the lower surface 50c of the radiator 50. According to this structure, the range over which the thermally conductive material spreads can be limited to a region in which the conductor elements such as the electric parts are not present. In addition, adhesion between the radiator and the semiconductor chip can be secured.
The semiconductor devices 110 and 210 have the insulating sheets 115, 215, and 225 that cover the conductor elements such as the circuit pattern and the electric parts or the like. According to the semiconductor devices 110 and 210, the range over which the thermally conductive material 31 spreads can be limited to the region in which the conductor elements are not present.
The semiconductor devices 10, 110, and 210 have an insulating portion (the insulating portion 15 or the insulating sheets 115, 215, and 225) that covers the conductor elements such as the circuit pattern and the electric parts or the like. The height of at least a part of the upper surface of the insulating portion with respect to the substrate 17 is smaller than the height of the upper surface 11a of the semiconductor chip 11 with respect to the substrate 17. According to this structure, adhesion between the radiator 50 and the semiconductor chip 11 can be secured while the range over which the thermally conductive material 31 spreads is limited to the region in which the conductor elements such as the electric parts are not present.
The insulating sheets 115 and 215 include the housing portions 115a and 215a having the top walls 115b and 215b located on the upper side of the conductor elements and the inner walls 115c and 215c located on the inside of the top walls 115b and 215b and descending from the top walls 115b and 215b. In addition, the insulating sheets 115 and 215 include the attachment target portions 115h and 215h connected to the inner walls 115c and 215c and located at a position lower than the top walls 115b and 215b. According to the insulating sheets 115 and 215, the range over which the thermally conductive material 31 spreads can be limited to the region in which the conductor elements are not present. In addition, even in a case where a difference in height between the conductor elements (for example, the capacitors 16) and the semiconductor chip 11 is small, the insulating sheets 115 and 215 can be attached to the substrate relatively easily.
An example of a method of manufacturing the semiconductor devices 10, 110, and 210 includes a process of covering the conductor elements such as the circuit pattern and the electric parts or the like by the insulating portion (the insulating portion 15 or the insulating sheets 115, 215, and 225). In the process of covering the conductor elements by the insulating portion, the height of the upper surface of the insulating portion with respect to the substrate 17 is smaller than the height of the upper surface 11a of the semiconductor chip 11 with respect to the substrate 17. According to this method, the range over which the thermally conductive material 31 spreads can be limited to the region in which the conductor elements such as the electric parts are not present. In addition, adhesion between the radiator 50 and the semiconductor chip 11 can be secured.
It is to be noted that the invention according to the present disclosure is not limited to the electronic apparatus, the semiconductor devices, the insulating sheets, and the manufacturing methods described above, but appropriate changes within a scope in which the spirit of the invention is maintained is included in the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2019-018217 | Feb 2019 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2020/003993 | 2/3/2020 | WO |