This invention relates to an electronic component mounting apparatus and an electronic component mounting method for mounting the metal electrodes of electronic components and the metal electrodes of wiring boards using ultrasonic vibration.
In apparatuses of the prior art which mount electronic components on printed boards and other wiring boards, various methods are employed to bond the electrodes of the electronic components to the electrodes of the wiring boards; one known method of mounting electronic components in a short time and at comparatively low temperatures is a bonding method employing ultrasound (hereafter called ultrasonic bonding).
In ultrasonic bonding, an electronic component pressed against a wiring board is vibrated by ultrasonic vibration, and the electrodes of the electronic component (with bumps formed, for example) and the electrodes of the wiring board are electrically bonded. At this time, the bumps may be formed on the electrodes of the wiring board, or may be formed both on the electrodes of the electronic component and on the electrodes of the wiring board.
Explanatory diagrams of (a) and (b) in
In (a) of
As shown in (a) of
As shown in
Further, in an area C of high loading or of high ultrasonic vibration, excessive loading energy causes breakage of the electronic component 4 or of the wiring board 14.
Hence there is a need to set the load value and ultrasonic vibration value, as the bonding conditions, within a range in which the bonding strength needed to secure the reliability demanded of products can be secured, and moreover breakage of the electronic component 4 or of the wiring board 14 does not occur. In an area A it is possible to achieve favorable bonding of the electronic component 4 and wiring board 14 with an appropriate load and appropriate ultrasonic vibration.
Patent Reference 1: Japanese Patent Application Laid-Open No. 2004-330228
In recent years, ultrasonic bonding methods have been recognized as superior, in enabling bonding of electronic components in short times and at comparatively low temperatures, over other bonding methods for bonding the electrodes of electronic components and the electrodes of wiring boards, such as bonding methods in which bumps formed on the electrodes of electronic components are bonded to bumps formed on the electrodes of wiring boards via conductive adhesive, bonding methods in which bumps formed on the electrodes of electronic components and the electrodes of wiring boards are bonded via adhesive sheet comprising conductive particles, or bonding methods in which solder bumps formed on electronic components are bonded to the electrodes of wiring boards; and so the application of ultrasonic bonding to numerous forms of electronic component bonding is anticipated.
In particular, in forms of electronic component bonding of driver ICs for image displays and other large components, in which the electrode pitch is expected to continue to decrease, thermal expansion of constituent members due to thermal loading at the time of bonding causes shifts in bonding position and other problems, so that great expectations are being placed on ultrasonic bonding methods enabling bonding at low temperatures.
In ultrasonic bonding, in order to transmit ultrasonic vibrations from the tool to the entire face of the electronic component, the lengths of the tool perpendicular to and parallel to the ultrasonic vibration direction are set to be the same as the lengths of the electronic component perpendicular to and parallel to the ultrasonic vibration direction. Alternatively, the lengths of the tool perpendicular to and parallel to the ultrasonic vibration direction of the electronic component are set to be longer than the lengths perpendicular to and parallel to the ultrasonic vibration direction. Moreover, the lengths of the tool perpendicular to the ultrasonic vibration direction are set to be the same at the component-holding face of the tool, and the lengths of the tool parallel to the ultrasonic vibration direction are set to be the same at the component-holding face.
However, given such a tool shape, the farther a region in the tool from the center line of the tool parallel to the ultrasonic vibration direction, the poorer the transmission of ultrasonic vibrations.
That is, as shown in (b) of
As explained above, the bonding conditions of ultrasonic bonding has to be bonding conditions in the area A, in which the electrodes of the electronic component are bonded to the electrodes of the wiring board, and no breakage occurs; but if a difference occurs in the transmission of ultrasonic vibrations to the electrodes in the center portion of the electronic component and to electrode portions at the ends, the bonding conditions to be actually imposed at different bonded portions in the electronic component have a range, for example, as shown in
Alternatively, even if bonding conditions are discovered satisfying both the requirement of securing bonding strength at all bonded portions in the electronic component, and the requirement that there be no breakage of the electronic component or of the wiring board, the bonding conditions have small margins for securing non-defective products, and the maintenance of the bonding conditions in mass production is extremely difficult.
This invention has been devised in light of these problems of the prior art. An object of the invention is to facilitate the maintenance of bonding conditions in mass production, by discovering conditions satisfying both the requirement of either eliminating the difference in ultrasound amplitude at the tool center portion and at the tool end portions in ultrasonic bonding, that is, eliminating the difference in transmission of ultrasonic vibrations, or reducing the difference in transmission of ultrasonic vibrations to secure bonding strength at all the bonded portions in the electronic component, and the requirement that there be no breakage of the electronic component or wiring board, and also by securing a bonding condition range with a large margin in order to secure non-defective products.
An electronic component mounting apparatus according to a first aspect of the invention is an electronic component mounting apparatus which transmits ultrasonic vibrations generated from an ultrasonic vibrator, via an ultrasonic horn and a tool, to an electronic component on a wiring board, and which causes the electronic component and the wiring board to be bonded to each other, wherein the cross-sectional area of a center portion, passing through a center axis of the ultrasonic vibrator, in the tool perpendicular to a contact face with the electronic component is set to be larger than cross-sectional areas in other regions of the tool.
An electronic component mounting apparatus according to a second aspect of the invention is the apparatus of the first aspect, wherein the length of the center portion of the contact face with the electronic component in the tool parallel to an ultrasonic vibration direction is set to be greater than the length of an end portion of the contact face with the electronic component in the tool.
An electronic component mounting apparatus according to a third aspect of the invention is the apparatus of the first aspect, wherein in a side face of the tool, a groove portion is formed parallel to the direction of ultrasonic vibrations imparted from the ultrasonic vibrator.
An electronic component mounting apparatus according to a fourth aspect of the invention is the apparatus of the first aspect, wherein two hole portions are formed perpendicular to the direction of ultrasonic vibrations imparted from the ultrasonic vibrator in a side face of the tool, and the two hole portions are placed in positions which are symmetrical with respect to the center axis of the ultrasonic vibrator.
An electronic component mounting apparatus according to a fifth aspect of the invention is an electronic component mounting apparatus which transmits ultrasonic vibrations generated from an ultrasonic vibrator, via an ultrasonic horn and a tool, to an electronic component on a wiring board, and which causes the electronic component and the wiring board to be bonded to each other, wherein the cross-sectional area of a center portion, passing through the center axis of the ultrasonic vibrator, in the tool perpendicular to a contact face with the electronic component is set to be smaller than cross-sectional areas in other regions of the tool.
An electronic component mounting apparatus according to a sixth aspect of the invention is the apparatus of the fifth aspect, wherein a hole portion is formed in a side face of the tool perpendicular to the direction of ultrasonic vibrations imparted from the ultrasonic vibrator, and the hole portion is placed such that the center line of the hole portion exists in the tool in a plane passing through the center portion of the contact face with the electronic component and the center axis of the ultrasonic vibrator.
An electronic component mounting apparatus according to a seventh aspect of the invention is the apparatus of the fifth aspect, wherein a groove portion is formed in the center portion of an electronic component holding face of the tool.
An electronic component mounting apparatus according to an eighth aspect of the invention is an electronic component mounting apparatus which transmits ultrasonic vibrations generated from an ultrasonic vibrator, via an ultrasonic horn and a tool, to an electronic component on a wiring board, and which causes the electronic component and the wiring board to be bonded to each other, wherein the material of a center portion, passing through the center axis of the ultrasonic vibrator, in the tool perpendicular to a contact face with the electronic component is different from material in other regions of the tool.
An electronic component mounting apparatus according to a ninth aspect of the invention is an electronic component mounting apparatus which transmits ultrasonic vibrations generated from an ultrasonic vibrator, via an ultrasonic horn and a tool, to an electronic component on a wiring board, and which causes the electronic component and the wiring board to be bonded to each other, wherein the material texture of a center portion, passing through the center axis of the ultrasonic vibrator, in the tool perpendicular to a contact face with the electronic component is different from material texture in other regions of the tool.
An electronic component mounting method according to a tenth aspect of the invention is an electronic component mounting method of mounting an electronic component on a wiring board employing ultrasound, by using the electronic component mounting apparatus according to any one of the first to sixth aspects, wherein provided are a tool whose shape in a center portion parallel to the direction of ultrasonic vibrations imparted from an ultrasonic vibrator is changed from a shape in an end portion, and an ultrasonic horn for holding the tool, the method including the steps of: imparting ultrasonic vibrations from the ultrasonic vibrator to the electronic component via the ultrasonic horn and the tool holding the electronic component; and pressing the electronic component against the wiring board, with a support member on which the ultrasonic horn is mounted, the ultrasonic horn, and the tool therebetween.
An electronic component mounting method according to an eleventh aspect of the invention is an electronic component mounting method of mounting an electronic component on a wiring board by using the electronic component mounting apparatus according to the eighth or ninth aspect employing ultrasound, wherein provided are a tool whose material texture perpendicular to the direction of ultrasonic vibrations in a center portion parallel to the direction of ultrasonic vibrations imparted from an ultrasonic vibrator is changed from material texture perpendicular to the direction of ultrasonic vibrations in an end portion, and an ultrasonic horn for holding the tool, the method including the steps of: imparting ultrasonic vibrations from the ultrasonic vibrator to the electronic component via the ultrasonic horn and the tool holding the electronic component; and pressing the electronic component against the wiring board, with a support member on which the ultrasonic horn is mounted, the ultrasonic horn, and the tool therebetween.
According to this invention, a difference in ultrasonic amplitude between at the tool center portion and at the tool end portion in ultrasonic bonding, that is, a difference in the transmission of ultrasonic vibrations is eliminated, or the difference in the transmission of ultrasonic vibrations is reduced, so that both the requirement of securing bonding strength at all bonded portions in the electronic component and the requirement that there be no breakage of the electronic component or the wiring board can be satisfied. Further, a range of bonding conditions with a large margin can be secured in order to secure non-defective products, so that the maintenance of bonding conditions in mass production is facilitated.
Below, embodiments of the invention are explained, based on
This ultrasonic bonding apparatus includes a wiring board holding portion 24 for holding a wiring board 14; on the side in the +Z direction of the wiring board holding portion 24 is provided a bonding mechanism 21 for bonding an electronic component 4 to the wiring board 14. An image capture mechanism 27 for capturing images of the electronic component 4 and wiring board 14 is provided between the wiring board holding portion 24 and the bonding mechanism 21. Further, a supply mechanism (not shown) for supplying the electronic component 4 to the bonding mechanism 21 is installed. In this ultrasonic bonding apparatus, by using a control portion 40 to control these mechanisms, bonding of the wiring board 14 and the electronic component 4 is performed.
The wiring board holding portion 24 comprises a stage 25 for holding the wiring board 14, and a stage movement mechanism 26 for moving the stage 25 in the X direction and the Y direction. The bonding mechanism 21 comprises a bonding head 23 and a raising/lowering mechanism 22 for moving (raising/lowering) the bonding head 23 in the Z direction. The image capture mechanism 27 comprises an image capture unit 28 for capturing images of the electronic component 4 and the wiring board 14, and an image capture unit movement mechanism 29 which moves in the X direction and the Y direction.
The control portion 40 first sucks the electronic component 4 supplied by the supply mechanism using the bonding head 23 (S11).
Next, the image capture unit 28 moves between the electronic component 4 and the wiring board 14, and captures an image of the sucked electronic component 4 and the wiring board 14 being held by the stage 25 (S12).
Next, image data is sent to the control portion 40 and is compared with image data for the electronic component 4 and wiring board 14 stored in advance, and the position and orientation of the electronic component 4 and the wiring board 14 are detected (S13).
Next, the electronic component 4 and wiring board 14 are corrected to preset relative positions and orientations based on the detection results (S14).
The image capture unit 28 is retracted to a position where there is no contact with the electronic component 4 or bonding head 23, the bonding head 23 is lowered, and the electronic component 4 is pressed against and bonded to the wiring board 14 (S15).
Further, by releasing the sucking of the electronic component 4 by the bonding head 23 and raising the bonding head 23 (S16), one cycle of the bonding operation is completed.
In the process of correcting the electronic component 4 and wiring board 14 to the preset relative positions and orientations (S14), a movement mechanism provided separately on the bonding mechanism 21 may be used to perform correction, rather than using the stage movement mechanism 26 shown in
In
Using
First, prior to applying ultrasonic vibration, loading alone is applied using a loading application member 11. That is, a wiring board 14, with bonding materials 13 placed on wiring electrodes 15 of the wiring board 14, and electronic components 4 are prepared (initial area 30, at 0 second in (a), with the wiring electrodes 15 in state (b1) and the electronic components 4 in state (c1)).
A load alone is then applied for t1 seconds (area 31, enlarged due to loading, at time 0 to t1 seconds in (a), with the wiring electrodes 15 in state (b2) and the electronic components 4 in state (c2)). The load F (N) applied at this time is a load having a sufficient value at which there is no shift in position of the electronic components 4 when ultrasonic vibration is applied after t1 (s).
Next, after time t1 seconds, ultrasonic vibration P (W) and the load F (N) are applied after t2 seconds, and the bonding profiles are completed (area 32, enlarged due to loading and ultrasonic vibration, at time t1 seconds to t2 seconds in (a), with the wiring electrodes 15 in state (b3) and the electronic components 4 in state (c3)).
Here, the area 31, enlarged due to the loading of the bonding materials 13 shown in (c2) of
In this embodiment, an example is explained of a bonding method in which the wiring board 14 on which the bonding material 13 is arranged on wiring in advance and the electronic component 4 are opposed and bonded to each other; but the bonding material 13 may be arranged in advance on the electronic component 4 as well. Further, the loading or ultrasonic vibration after t1 (s) need not necessarily be constant as shown in (a) of
As shown in
If, in addition to loading and ultrasonic vibration, heat is also applied to the bonded portions of the electronic component 4 and wiring board 14, then interdiffusion between the bonding material 13 and the electrodes 12 of the electronic component 4 as well as wiring electrodes 15 of the wiring board 14 is promoted, and bonding is possible under lighter loads and lower ultrasonic vibrations, so that the bonding condition margin is broadened, and still more stable quality can be obtained.
In
In
As shown in
The ultrasonic vibrator 1 is arranged at one end in the length direction of the ultrasonic horn 2, and the ultrasonic vibrator 1 generates ultrasonic vibrations in the ultrasound length direction. The ultrasonic horn 2 is fixed in place by the support member 10 at only a nodal portion (node) 34 of the ultrasonic vibration. By means of this configuration, the ultrasonic horn 2 can be held without impeding the ultrasonic vibration of the ultrasonic horn 2.
The load application member 11 which applies a load to the tool 3 is arranged on the position of the tool 3 at the maximum amplitude point 35 of the ultrasonic horn 2, and is fixed in place on the ultrasonic horn support member 10 of the ultrasonic horn 2. In this case, a bearing may be arranged on the load application member 11, and a configuration may be employed in which the face including the ultrasonic horn maximum amplitude point 35 on the face opposite the tool 3 where the ultrasonic horn 2 is arranged is in contact with the bearing.
The tool 3 is formed from stainless steel, an ultra-hard alloy, or hardened steel, which has preferred vibration characteristics and vibration transfer characteristics in bonding of the electronic components 4, and the tool 3 has in the center portion a suction path for vacuum suction which is used for sucking and holding of the electronic components 4.
As shown in (b) of
By means of this configuration, as shown in (b) of
The difference in the transmission of ultrasonic vibrations between at the center portion 3a and at the end portions 3b perpendicular to the ultrasonic vibration direction 5 in the electronic component 4 can be eliminated or reduced, so that as shown in (b1) through (b3) in
Hence as regards the range of bonding conditions actually applied to each bonded portion of the electronic component 4, for example as shown in
Further, the tool 3 need not be integral with the ultrasonic horn 2, and the tool 3 may be removeably installed on the ultrasonic horn 2. Further, the method of holding the electronic component 4 with the tool 3 is not limited to suction, and electrical or magnetic sucking may be used for holding the electronic component 4.
Further, as the materials of the members, a piezoelectric element is suitable for the ultrasonic vibrator 1, and stainless steel or the like is suitable for the ultrasonic horn 2; however, the ultrasonic horn 2 may be any material capable of transmitting ultrasonic vibrations generated by the ultrasonic vibrator 1.
Referring to the perspective views of principal portions shown in
The configurations of tools 3 are described in modified examples in which, in order to secure advantageous effects similar to those of Embodiment 1 above, the shape (cross-section) of a center portion 3a of the tool 3 and the shapes (cross-section) of end portions 3b of the tool 3 are modified in a direction perpendicular to a direction 5 of ultrasonic vibrations imparted from an ultrasonic vibrator 1, and the materials (composition) of the center portion 3a of the tool 3 and the materials (composition) of the end portions 3b of the tool 3 are modified.
In the example of
The shape of the groove portions 41 is not limited to the shape shown in
In the examples of (a) and (b) of
On the other hand, the hole portion 43 of the example of (b) of
The shapes and sizes of the hole portions 42, 43 are set such that the difference in vibrations between at the center portion 3a and at the end portions 3b of the tool 3 is eliminated or reduced. A plurality of hole portions 42, 43 may be formed.
In the example of
The shape of the groove portion 44 is not limited to the shape shown in
In the example of
In the example of
As the thermal process, for example, high-frequency quench hardening, nitriding, and the like are effective, but any thermal process may be used as long as the difference in vibrations between at the center portion 3a and at the end portions 3b of the tool 3 is eliminated or reduced.
Further, in addition to any one of the tools 3 described in the above Embodiment 1, an ultrasonic horn 2 can be configured as shown in
Hole portions 50 are formed in the ultrasonic horn 2. In this example, the hole portions 50 are formed in the ultrasonic horn 2, in portions on both sides of the tool 3, parallel to a direction 5 of ultrasonic vibrations imparted from an ultrasonic vibrator 1. The shape and size of the hole portions 50 are set such that the difference in vibrations between at the center portion 3a and at the end portions 3b of the tool 3 is eliminated or reduced. Further, a plurality of groove portions 50 may be formed.
In
Embodiments of the invention are described as above, but the invention is not limited to these embodiments, and various modifications, combinations of embodiments, and the like are possible.
The ultrasonic bonding apparatuses of the embodiments configured as described above are suitable for mounting driver ICs for driving image display devices in which semiconductor chips have to be mounted, and are also suitable for mounting various types of electronic components in addition to driver ICs for driving image display devices, such as semiconductor light-emitting elements, SAW (Surface Acoustic Wave) filters, semiconductor bare-chip components, and the like.
By means of this invention, when bonding electronic components onto a wiring board, both sufficient bonding of the electronic components with the wiring board as well as prevention of breakage can be achieved simultaneously, and the invention is useful for various technologies employing ultrasound to mount electronic components on wiring boards.
Number | Date | Country | Kind |
---|---|---|---|
2007-118211 | Apr 2007 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/000374 | 2/28/2008 | WO | 00 | 9/23/2009 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2008/139668 | 11/20/2008 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3750926 | Sakamoto et al. | Aug 1973 | A |
4131505 | Davis, Jr. | Dec 1978 | A |
4374697 | Tsuzuki et al. | Feb 1983 | A |
5057182 | Wuchinich | Oct 1991 | A |
5096532 | Neuwirth et al. | Mar 1992 | A |
5110403 | Ehlert | May 1992 | A |
5607528 | Choudhury | Mar 1997 | A |
5715590 | Fougere et al. | Feb 1998 | A |
5820011 | Ito et al. | Oct 1998 | A |
5868301 | Distefano et al. | Feb 1999 | A |
6168063 | Sato et al. | Jan 2001 | B1 |
6247628 | Sato et al. | Jun 2001 | B1 |
6494359 | Hasegawa | Dec 2002 | B1 |
6523732 | Popoola et al. | Feb 2003 | B1 |
6543668 | Fuji et al. | Apr 2003 | B1 |
6776323 | Schmidt | Aug 2004 | B2 |
6840424 | Sung | Jan 2005 | B2 |
6877648 | Higashiyama | Apr 2005 | B2 |
7122097 | Rabe | Oct 2006 | B2 |
7156281 | Hizukuri et al. | Jan 2007 | B2 |
7377416 | Yu et al. | May 2008 | B2 |
7392923 | Stroh et al. | Jul 2008 | B2 |
7424966 | Kainuma et al. | Sep 2008 | B2 |
20020066767 | Takahashi et al. | Jun 2002 | A1 |
20030038158 | Takahashi et al. | Feb 2003 | A1 |
20030160084 | Higashiyama | Aug 2003 | A1 |
20040046007 | Reiber et al. | Mar 2004 | A1 |
20040065711 | Sung | Apr 2004 | A1 |
20040211812 | Hizukuri et al. | Oct 2004 | A1 |
20050028942 | Rabe | Feb 2005 | A1 |
20050199676 | Stroh et al. | Sep 2005 | A1 |
20050247408 | Jung | Nov 2005 | A1 |
20060000870 | Matsumura | Jan 2006 | A1 |
20060071048 | Yu et al. | Apr 2006 | A1 |
20060090833 | Matsumura et al. | May 2006 | A1 |
20070114268 | Ishii et al. | May 2007 | A1 |
20070199972 | Chong et al. | Aug 2007 | A1 |
20080048004 | Ozaki et al. | Feb 2008 | A1 |
20080087708 | Ozaki et al. | Apr 2008 | A1 |
20080190993 | Delsman et al. | Aug 2008 | A1 |
20080265002 | Kainuma et al. | Oct 2008 | A1 |
20080265003 | Kainuma et al. | Oct 2008 | A1 |
20090200358 | Violleau et al. | Aug 2009 | A1 |
Number | Date | Country |
---|---|---|
60-161775 | Aug 1985 | JP |
11-074315 | Mar 1999 | JP |
2001-038291 | Feb 2001 | JP |
2002-141374 | May 2002 | JP |
2004-327590 | Nov 2004 | JP |
2004-330228 | Nov 2004 | JP |
2004-349655 | Dec 2004 | JP |
2005-311103 | Nov 2005 | JP |
2005-322716 | Nov 2005 | JP |
Number | Date | Country | |
---|---|---|---|
20100065613 A1 | Mar 2010 | US |