This application claims priority to Japanese Patent Application No. 2008-054046 filed Mar. 4, 2008.
The present invention relates to an electronic unit.
In an electronic unit such as an inverter, a power semiconductor device serving as a switching device is operated under the control of a control circuit. In a known electronic unit disclosed, for example, in Japanese Unexamined Patent Application Publication No. 2000-228492, a circuit board having a control circuit thereon is disposed above the power semiconductor device.
In the electronic unit of
In the electronic unit of
The present invention is directed to providing an electronic unit that allows electronic components thereof to be less affected by heat or noise and offers more reliable electric connection without enlarging the size of the unit.
In accordance with an aspect of the present invention, an electronic unit includes a first circuit board having a power semiconductor device and an electrolytic capacitor and a second circuit board having an electronic component to control the power semiconductor device. The second circuit board is arranged perpendicular to the first circuit board and along the surface of the electrolytic capacitor. The electronic unit further includes a connecting member being jointed at one end thereof to the first circuit board and jointed at the other end thereof to the second circuit board for electrical connection between the first and second circuit boards.
Other aspects and advantages of the invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
The features of the present invention that are believed to be novel are set forth with particularity in the appended claims. The invention together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
The following will describe an electronic unit according to the first embodiment of the present invention with reference to
The electronic unit is a three-phase inverter to drive a vehicle driving motor. Referring to
Four power capacitors 5, which serve as smoothing capacitors, and three pairs of serially connected power MOSFETs 6 are connected in parallel between the terminals P4 and P5. Each power MOSFET 6 is connected to a flywheel diode 7 in parallel. Nodes between the respective paired power MOSFETs 6 are connected to the terminals P1, P2 and P3. The terminals P1, P2 and P3 are connected to a three-phase induction motor as the vehicle driving motor. The terminals P1, P2 and P3 correspond to outputs of U phase, V phase and W phase respectively. The gate electrodes of power MOSFETs 6 are connected to the terminals P10, P11, P12, P13, P14 and P15. An IGBT may be applied as a substitute for the power MOSFET 6.
A control circuit 8 including a microcomputer 9 and a driver (not shown) is connected to the terminals P10, P11, P12, P13, P14 and P15. The control circuit 8 operates the power MOSFETs 6 by the driver under the control of the microcomputer 9. Specifically, each power MOSFET 6 is operated so as to perform switching operation for driving the vehicle driving motor by controlling the gate potential.
Referring to
Referring to
A semiconductor chip 11 (a power semiconductor device) is mounted on the upper surface of each first circuit board 10. The semiconductor chip 11 has the power MOSFET 6 and the flywheel diode 7 (see
Conductive members 13 and 15 are disposed on the upper surfaces of the first circuit boards 10. The conductive members 13 and 15 extend in longitudinal direction of the base plate 1 and have a cross section in the form of a channel. The conductive members 13 and 15 sandwich an insulation sheet 14 therebetween to form a laminate. The conductive members 13 and 15 include connecting portions 13A and 15A at the lower ends thereof, respectively. The conductive members 13 and 15 are located so as to bridge across over the upper surfaces of the paired first circuit boards 10 of each row.
Four electrolytic capacitors 16 serving as the power capacitors 5 of
As described above, the semiconductor chips 11 and the electrolytic capacitors 16 are mounted on the first circuit boards 10.
Referring to
Referring to
The rectangular frame 3 is molded integrally with plural lead pins 20. Each lead pin 20 (a connecting member) projects inward of the rectangular frame 3 and jointed at one end thereof to the conductive pattern of the first circuit board 10. Part of the lead pin 20 adjacent to the one end thereof is bent in a crank shape, as shown in
As described above, the second circuit board 30 is arranged substantially perpendicular to the first circuit boards 10 and along the side surface of the electrolytic capacitors 16. The height of the electrolytic capacitors 16 arranged on the first circuit boards 10 on the base plate 1 is substantially equal to the height of the second circuit board 30 mounted on the base plate 1 via the rectangular frame 3.
The terminals P1, P2, P3, P4 and P5 (see
The following will describe the operation of the electronic unit according to the first embodiment.
Referring to
As shown in
The second circuit board 30 arranged as described above does not enlarge the size of the electronic unit. Specifically, since the electrolytic capacitors 16 are disposed above the first circuit boards 10, the electronic unit essentially requires a space above the first circuit boards 10 for the electrolytic capacitors 16. Therefore, the second circuit board 30 disposed upright adjacent to the first circuit boards 10 does not cause the enlargement of the entire size of the electronic unit.
Each lead pin 20 is jointed at the opposite ends thereof to the first and second circuit boards 10 and 30, respectively, for electrically connecting the first and second circuit boards 10 and 30. In the background art of
The electronic unit according to the first embodiment offers the following advantages.
(1) The second circuit board 30 is arranged substantially perpendicular to the first circuit boards 10 and along the side surface of the electrolytic capacitors 16. Each lead pin 20 is jointed at one end thereof to the first circuit board 10 and at the other end thereof to the second circuit board 30 for electrically connecting the first and second circuit boards 10 and 30. Therefore, electrical components on the second circuit board 30 are less affected by noise or heat from the first circuit boards 10 and more reliable electric connection is achieved between the first and second circuit boards 10 and 30 without enlarging the size of the electronic unit.
(2) Since the second circuit board 30 is arranged perpendicular to the first circuit boards 10 within the housing of the electronic unit, the first and second circuit boards 10 and 30 are both accommodated in the housing.
(3) Each first circuit board 10 is mounted on the upper surface of the base plate 1, and the second circuit board 30 is disposed upright on the base plate 1. Therefore, heat generated by the semiconductor chip 11 on the first circuit board 10 is transferred through the first circuit board 10 to the base plate 1 and then radiated into the atmosphere.
(4) Since the second circuit board 30 is fixedly mounted to the rectangular frame 3 surrounding the first circuit boards 10 on the base plate 1, the position of the second circuit board 30 is fixed by the rectangular frame 3.
In the first embodiment, the second circuit board 30 is arranged perpendicular to the first circuit boards 10 within the housing of the electronic unit, but the second circuit board 30 may be arranged outside the housing.
The above embodiments may be modified in various ways as exemplified below.
In the embodiments, the six first circuit boards 10 are mounted on the upper surface of the base plate 1, and each first circuit board 10 has one semiconductor chip 11. Alternatively, the number of the first circuit boards 10 or the number of the power semiconductor devices on each first circuit board 10 may be changed as required. For example, one first circuit board 10 having six semiconductor chips 11 may be mounted on the base plate 1.
In the embodiments, the present invention is applied to the inverter as the electronic unit, but it may be applied to a voltage booster circuit. For example, the inverters of the previous embodiments are composed of six arms, wherein one arm is composed of a pair of the power MOSFET 6 (or IGBT) and the flywheel diode 7 of
Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein but may be modified within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2008-054046 | Mar 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5907475 | Babinski et al. | May 1999 | A |
6496384 | Morales et al. | Dec 2002 | B1 |
6932617 | Debord et al. | Aug 2005 | B2 |
7283374 | Pedoeem et al. | Oct 2007 | B2 |
20060255448 | Nagase et al. | Nov 2006 | A1 |
Number | Date | Country |
---|---|---|
2000-228492 | Aug 2000 | JP |
2003-078107 | Mar 2003 | JP |
2006-066572 | Mar 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20090225523 A1 | Sep 2009 | US |