The present disclosure relates to a semiconductor package, and more particularly to a semiconductor package having encapsulated dies with enhanced thermal performance.
With the current popularity of portable communication devices and developed semiconductor fabrication technology, high speed and high performance transistors are more densely integrated on semiconductor dies. Consequently, the amount of heat generated by the semiconductor dies will increase significantly due to the large number of transistors integrated on the semiconductor dies, the large amount of power passing through the transistors, and the high operation speed of the transistors. Accordingly, it is desirable to package the semiconductor dies in a configuration for better heat dissipation.
Flip chip assembly technology is widely utilized in semiconductor packaging due to its preferable solder interconnection between flip chip dies and laminate, which eliminates the space needed for wire bonding and die surface area of a package and essentially reduces the overall size of the package. In addition, the elimination of wire connections and implementation of a shorter electrical path from the flip chip die to the laminate reduces undesired inductance and capacitance.
In flip chip assembly, mold compounds, formulated from epoxy resins containing silica particulates, are used to encapsulate and underfill flip chip dies to protect the dies against damage from the outside environment. Some of the mold compounds can be used as a barrier withstanding chemistries such as potassium hydroxide (KOH), sodium hydroxide (NaOH) and acetylcholine (ACH) without breakdown; while some of the mold compounds having good thermal conductive features can be used for heat dissipation of dies.
To accommodate the increased heat generation of high performance dies and to utilize the advantages of flip chip assembly, it is therefore an object of the present disclosure to provide an improved semiconductor package design with flip chip dies in a configuration for better heat dissipation. In addition, there is also a need to enhance the thermal performance of the flip chip dies without increasing the package size.
The present disclosure relates to a semiconductor package having encapsulated dies with enhanced thermal performance. The semiconductor package includes a carrier having a top surface, an etched flip chip die attached to the top surface of the carrier, a first mold compound, and a second mold compound. The etched flip chip die includes a device layer and essentially does not include a substrate. The first mold compound resides on the top surface of the carrier, surrounds the etched flip chip die, and extends beyond a top surface of the etched flip chip die to form a cavity, to which the top surface of the etched flip chip die is exposed. The second mold compound fills the cavity and is in contact with the top surface of the etched flip chip die. The second mold compound is a high thermal conductivity mold compound, which improves thermal performance of the etched flip chip die.
Those skilled in the art will appreciate the scope of the present disclosure and realize additional aspects thereof after reading the following detailed description of the preferred embodiments in association with the accompanying drawing figures.
The accompanying drawing figures incorporated in and forming a part of this specification illustrate several aspects of the disclosure, and together with the description serve to explain the principles of the disclosure.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the embodiments and illustrate the best mode of practicing the embodiments. Upon reading the following description in light of the accompanying drawing figures, those skilled in the art will understand the concepts of the disclosure and will recognize applications of these concepts not particularly addressed herein. It should be understood that these concepts and applications fall within the scope of the disclosure and the accompanying claims.
It will be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element such as a layer, region, or substrate is referred to as being “on” or extending “onto” another element, it can be directly on or extend directly onto the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or extending “directly onto” another element, there are no intervening elements present. Likewise, it will be understood that when an element such as a layer, region, or substrate is referred to as being “over” or extending “over” another element, it can be directly over or extend directly over the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly over” or extending “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
Relative terms such as “below” or “above” or “upper” or “lower” or “horizontal” or “vertical” may be used herein to describe a relationship of one element, layer, or region to another element, layer, or region as illustrated in the Figures. It will be understood that these terms and those discussed above are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the disclosure. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises,” “comprising,” “includes,” and/or “including” when used herein specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. It will be further understood that terms used herein should be interpreted as having a meaning that is consistent with their meaning in the context of this specification and the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The present disclosure relates to a semiconductor package having encapsulated dies with enhanced thermal performance.
Initially, a plurality of flip chip dies 10 are attached on a top surface of a carrier 12 as depicted in
A first mold compound 26 is then applied over the top surface of the carrier 12 such that the flip chip dies 10 are encapsulated by the first mold compound 26 as illustrated in
With reference to
The next process step is to thin the first mold compound 26 down to expose the back side of the flip chip dies 10, wherein the only exposed component of the flip chip dies 10 will be the substrate 14, as shown in
Next, a wet/dry etchant chemistry, which may be KOH, ACH, NaOH or the like, is used to etch away substantially the entire substrate 14 of each flip chip die 10 to provide an etched flip chip die 10E that has an exposed surface at the bottom of a cavity, as shown in
With reference to
The top surface of the second mold compound 30 is then planarized to ensure each encapsulated etched flip chip die 10E has a flat top surface as shown in
Those skilled in the art will recognize improvements and modifications to the preferred embodiments of the present disclosure. All such improvements and modifications are considered within the scope of the concepts disclosed herein and the claims that follow.
This application is a continuation of U.S. patent application Ser. No. 14/959,129, filed Dec. 4, 2015, which claims priority to provisional patent application Ser. No. 62/138,177, filed Mar. 25, 2015, the disclosures of which are hereby incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62138177 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14959129 | Dec 2015 | US |
Child | 15173037 | US |