1. Field of the Invention
This invention relates to optical inspection and inspection systems, and more specifically, to an optical inspection head and system in which a fluorescence-detecting channel is combined with another optical inspection channel.
2. Background of the Invention
During optical surface inspection, it is often desirable to determine if a defect is part of the surface (i.e., material protruding from the surface or a portion of the surface that is inset), or whether the defect is foreign material on the surface. Therefore, it is also often desirable to determine or at least distinguish, the material forming the defect.
Current optical inspection techniques such as scatterometry can locate a defect, but cannot not identify the material forming of defect or distinguish whether the defect is inset or protruding. Further, if interferometry is used to measure the surface under inspection, transparent or opaque contaminants may affect the optical height of the surface at the location of the defect, in some cases leading to a determination that material deposited on the surface under inspection is an inset and vice-versa.
Therefore, it would be desirable to provide an optical inspection system, optical inspection head, and methods of operation of an optical inspection system that provide further information about material composition of artifacts present on or in a surface under inspection.
The foregoing objectives are achieved in an optical inspection system and a method of operation of the optical inspection system. The optical inspection system includes a fluorescence channel that detects fluorescent behavior (or lack thereof) of artifacts present on a surface under inspection and at least one other optical channel for determining a characteristic of the surface under inspection in an illuminated spot.
The other optical channel may be a height measuring channel, such as an interferometric channel or a deflectometric channel, the other optical channel may be a scatterometric channel, or both height measurement and scatterometry may be employed in combination as a three channel system.
The foregoing and other objects, features, and advantages of the invention will be apparent from the following, more particular, description of the preferred embodiment of the invention, as illustrated in the accompanying drawings.
The present invention encompasses optical inspection systems in which combine one or more measurement/detection optical channels, such as a scatterometer, an interferometer or a deflectometer, with a fluorimetry channel. The result is that the optical inspection system can differentiate organic materials that exhibit fluorescent behavior, from other particulate or features of a surface under inspection. During optical surface inspection, it is often desirable to determine if a defect is part of the surface (i.e., material protruding from the surface or a portion of the surface that is inset), or whether the defect is foreign material on the surface. Therefore, it is also often desirable to determine or at least distinguish, the material forming the defect. Current techniques such as scatterometry can locate a defect, but cannot not identify the material forming of defect or distinguish whether the defect is inset or protruding. Further, if interferometry is used to measure the surface under inspection, transparent or opaque contaminants may affect the optical height of the surface at the location of the defect, in some cases leading to a determination that material deposited on the surface under inspection is an inset and vice-versa. Further, when dark-field detection is employed in one or more of the optical channels, it is desirable to separate the scattering detection from the surface noise induced by illumination.
Embodiments of the present invention provide techniques for accurately measuring the size and/or height of defects on the surface of, or within an article under inspection. In particular, certain embodiments of the present invention provide techniques for measuring the height of a surface in the presence of artifacts such as transparent defects on the surface of a media or other article being inspected or detecting differences in material of an object located by scattering detection. Transparent defects as described herein are distinguished from pits, since pits are caused by the absence of material, rather than the presence of additional material. In scattering measurements, the difference between a bump (i.e., a raised region of the ordinary surface material) and a piece foreign matter may be determined by fluorescence detection. As noted above, interferometric and deflectometric height measurement systems generate erroneous results for transparent defects, since the optical path through the defect will differ from optical path through air (or the inspection environment) due a higher index of refraction within the defect. The present invention provides additional information for correcting the results by determining whether a transparent organic material is present, which in most cases can be assumed to be a deposit (positive height artifact), but in some cases may be a recess, for example when a metal coating on an organic substrate is pitted.
Referring now to
Referring now to
The interferometric or deflectometric height measuring channel in a system according to the present invention, is supplemented by a fluorescence detecting channel, which provides resolution of the above-described ambiguities for most, if not all, transparent surface deposits that may be present on a surface under inspection. Since most transparent deposits are organic in nature, those deposits have fluorescence characteristics. One embodiment of the detection system of the present invention has two parallel synchronous detection channels, one for height-measuring inspection (interferometric or deflectometric) and one for detection of fluorescence. A “DOWN” defect diagnosed as having a negative height below a nominal height, as detected by a height measuring channel, but that also causes a simultaneous fluorescence signal, can be reported as transparent “UP” defect having positive height, since the negative height measurement from the height measuring channel is due to the index of refraction of the defect.
Inspection logic according to the present invention can therefore be implemented as illustrated in the following table:
The inspection logic presented above is a simple example of a use of additional information provided by the fluorescence channel in conjunction with the information provided from a height-measuring channels such as the interferometers or deflectometer channels mentioned above. More sophisticated logic can be employed, making full use of particular properties of the height measurement and additional scattering measurement channels, when a scatterometer is included with the height measuring channel (interferometer or deflectometer) and the fluorescence detecting channel.
Interferometer/scatterometer combinations are described in U.S. Pat. No. 7,671,978, by the same inventors and assigned to the same Assignee, the disclosure of which is incorporated herein by reference.
In optical systems according to embodiments of the present invention, the fluorescence channel can detect fluorescence generated in response to the same laser beam as employed for the height measuring channel, which generally can be done if the laser is of a sufficiently short wavelength. However, it is possible to use a second laser focused on the surface at a fixed known offset from the height measuring beam and having appropriate wavelengths selected according to the types of material that are being detected. Also, since many substrates generate some amount of fluorescence from the illumination beam used to illuminate for scattering detection and/or height measurement, the fluorescence will introduce a background noise. Therefore, separating the fluorescence and scattering signals by wavelength will improve the signal-to-noise of both channels.
Referring now to
While the illustration shows a positioner 28 for moving surface under inspection under scanning head 10, it is understood that scanning head 10 can be moved over a fixed surface, or that multiple positioners may be employed, so that both scanning head 10 and surface under inspection 11 may be moved in the measurement process. Further, while scattering detector 14 and illumination source 15 are shown as included within scanning head 10, optical fibers and other optical pathways may be provided for locating scattering detector 14 and illumination source(s) 15 physically apart from scanning head 10.
Signal processor 18 includes a processor 26 that includes a memory 26A for storing program instructions and data. The program instructions include program instructions for controlling positioner 28 via a positioner control circuit 24, and performing measurements in accordance with the output of scatterometric detector 14 via scatterometer measurement circuit 20A that include signal processing and analog-to-digital conversion elements as needed for receiving the output of scatterometric detector 14 and providing an output to processor 26. Fluorimeter channel 17 is coupled to a fluorescence measurement circuit 20C that provides another output to processor 26. Profilometer channel 16 is coupled to a height measurement circuit 20B that also provides an output to processor 26. A dedicated threshold detector 21 can be employed to indicate to processor 26 when scattering from an artifact 13 on surface under measurement 11 has been detected above a threshold. As an alternative, continuous data collection may be employed. Processor 26 is also coupled to an external storage 27 for storing measurement data and a display device 29 for displaying measurement results, by a bus or network connection. External storage 27 and display device 29 may be included in an external workstation computer or network connected to the optical inspection system of the present invention by a wired or wireless connection.
Referring now to
An illumination beam 41 is focused to provide an illumination spot on surface under inspection 46. Illumination beam 41 is directed to surface under inspection 46 by bending mirror 44. Light returning along the illumination path is split by polarizing beam splitter 42 that includes a quarter-wave plate 3 to form an optical isolator. Light scattered from, and fluorescent emissions from, surface under inspection 46, is collected by a collecting lens 45, which directs the collected light to a fiber collector 50. Fiber collector 50 directs the collected light to a chromatic beamsplitter 51 that directs the collected scattered illumination (of shorter wavelength) to a scattering detector 53 and collected fluorescent emissions into a second fluorescence detector 52. The embodiment of the invention depicted in
In the embodiment of the invention depicted in
Embodiments of the optical system of the present invention provide a method of identification of organic deposits, both transparent and non-transparent for correct discrimination of up/down artifacts and therefore provides, in some environments, the ability to distinguish between cleanable defects and those that result in permanent rejection of articles being tested such as optical or magnetic media. Embodiments of the present invention also provide a very compact configuration that can include height measuring channels and/or scattering defect detection, along with fluorescence detection in order to distinguish the type of defect. Therefore, the system of the present invention can prevent confusion of organic contamination with pits in a surface under inspection. The results of the fluorescence detection can also be used to resolve confusion between organic contamination or surface features and other non-organic surface artifacts or features, providing a better diagnostic for surface cleaning. The results of height measurements may be corrected by processor 26 of
The present invention may also be applied in wafer inspection and other polished surface inspection and also in transparent feature/object inspection, using a detection layer that differs from the nominal (reference) surface.
Application of the techniques of the present invention may also be applied to reduce the background noise of the scattering channel by separating the scattering-only detection from the fluorescence induced into the substrate by the illumination beam. The illumination-induced substrate fluorescence has a spatial distribution similar to the scattering and will superimpose onto a dark-field signal as an undesirable background. Separating the two signals, scattering and fluorescence, will improve the signal-to-noise ratio of the scattering channel.
While the above-described exemplary optical inspection system includes a fluorescence channel in addition to a scattering channel and an interferometric or deflectometric channel in accordance with an embodiment of the invention, other systems in accordance with other embodiments of the invention include systems having only a scattering channel and a fluorescence channel and systems having an interferometric or deflectometric channel in conjunction with a fluorescence channel.
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form and details may be made therein without departing from the spirit and scope of the invention.
The present U.S. patent application claims priority to U.S. Provisional Patent Application Ser. No. 61/363,422 filed on Jul. 12, 2010.
Number | Date | Country | |
---|---|---|---|
61363422 | Jul 2010 | US |