The present invention relates to a method for forming polymeric laminates.
Formed wafers are curved laminates often produced as an intermediate step to a completed lens. For example, a wafer may be produced having a delicate functional layer, such as a polarizing or photochromic layer, sandwiched by a first, protective layer and a second, base layer. The wafer is then formed to have a base curve. The formed wafer is then placed in an injection mold chamber where a molten lens material is injected behind the wafer to form a lens against the base layer of the wafer. In the alternative, the formed wafer can be used simply as a plano lens by itself, e.g., as a piano polarized or photochromic sunglass lens or sungoggle, i.e., without injecting a molten lens material behind the wafer. An example of such a wafer is disclosed in publication EP 0 299 509 A2 by Kawaki et al., incorporated by reference herein in its entirety.
The wafers are typically formed via a process that includes first heating the polymeric wafer to a softening temperature. This heating step may be accomplished in a variety of ways such as with hot air or heated forming molds. Next the softened wafer is placed in a forming cup and either pressed or sucked into the forming cup. The wafer is held in the cup until it sets, thus assuming the shape of the forming cup. The wafer is then removed and cooled to ambient temperature.
Typical heating or softening temperatures for use in forming the laminated wafer are determined by the thermal properties of the materials chosen for producing the laminated wafer. One example of materials that have been previously used in making laminated wafers is polycarbonate resin films or sheets. Polycarbonate films or sheets include general aromatic polycarbonate resin sheets prepared from bisphenols (e.g., bisphenol A) and phosgene or carbonic esters and sheets prepared from transparent copolycarbonate resins or transparent resin compositions containing other resins. If desired, these polycarbonate sheets may thereafter be coated or otherwise treated with a functional coating, such as heat-formable hard coat, an anti-fogging coat, an infrared-reflective or infrared-absorbable coat, an ultra-violet reflective or ultra-violet absorbable coat or other similar functional coatings that are known in the art.
Other materials contemplated for use in making laminated wafers may include adhesives or functional materials such as polarizing films or photochromic films. Examples of adhesives that are contemplated for use in laminated wafers may include PVA adhesives or urethane adhesives that are commonly known in the polycarbonate lens industry. Examples of a polarizing film suitable for use in laminated wafers include a polarizing film containing components such as polyvinyl alcohol polymer (PVA) film, which is monoaxially stretched before dyeing, or dyed before monoaxial stretching, and subjected to fixing treatment with a boron compound (in some cases, the dyeing and fixing treatment are conducted simultaneously). Other examples of functional materials may include polyester polarizers or photochromic polarizing films.
Once the functional layer, such as a polarizing PVA film, has been incorporated, then a protective film having optical transparency and mechanical strength is normally laminated on each surface or one surface thereof. Examples of protective layer materials would typically include materials such as cellulose tri-acetate (CTA) film, cellulose acetate butyrate (CAB) and other cellulose resins, cyclic olefin, polyesters, such as polyethylenetelephthalate (PET) and its alloy or modified resin, polycarbonate alloy and copolymer with other polymer(s), polyethylenenaphthalate (PEN), and acrylic resins, such as polymethyl methacrylate (PMMA).
Laminated wafers having the above-described materials are thereafter formed into curved laminates. This process is commonly accomplished using a machine, such as those made by Lema of Italy. The Lema machines have a thermostatically-controlled electric heating chamber with an air blower, and forming cups mounted on a rotating turret. A vacuum hole at the bottom of each forming cup allows the wafers to be sucked into the cups and held in place with a vacuum. Vacuum control valves hold the wafers until they reach a designated position on the rotating turret at which time they are released.
Other machines that are suitable for use in making laminated wafers are produced by Japanese companies such as Wintec and Fuji Kasei. These are similar to the Lema machine but also include wafer pre-heating units, pick and place mechanisms, and plungers to mechanically press the wafers into the vacuum cups. Some machines also have a cooling conveyor or other apparatus used to achieve desired formation(s) of selected wafer components.
These machines perform adequately when forming a wafer that has a protective layer and a base layer having similar properties and/or materials. However, they are found to be deficient to form wafers where the protective layer is different than its base layer. Materials having similar properties, such as softening properties, can be heated and formed uniformly at a uniform temperature. For example, the softening temperature of a laminated wafer having a protective layer and a base layer comprised entirely of polycarbonate materials, or similar-propertied materials, is at or near approximately 285° F. Therefore, placing the laminated wafer in a heated environment possessing a uniform temperature of approximately 285° F. over a prescribed amount of time will result in a softening and formation of a uniformly curved laminated wafer, appropriate for use thereafter in a manufacturing process, such as injection molding. However, preparing a laminated wafer where one or more layers have properties and/or materials that are different from other layers, and exposing such a wafer to a uniform heat that is outside a prescribed or required softening temperature for one of the materials will result either in inadequate softening and forming (e.g. when the temperature is too low) or, alternatively, a softening of the material to a point of damaging the material (e.g. when the temperature is too high).
One example of a laminated wafer having different layer materials is a wafer having a CAB film as a protective layer, a PVA film as a polarizer functional layer, and a polycarbonate film as a base layer. The optimum softening and forming temperature for the polycarbonate film base layer occurs at or near 285° F. At temperatures substantially below this temperature (e.g. at 270° F. or below), polycarbonate does not undergo adequate softening due to its chemical and structural properties, namely its thermal properties. Alternatively, at temperatures above 260° F., CAB becomes too soft because the temperature is too high to maintain the chemical and structural integrity of the material due to its underlying thermal properties. Thus, the aforementioned machines are unable to form a wafer including, for example, a CAB film protective layer and a polycarbonate film base layer because there is no operational temperature window that satisfies both layers.
There is thus a need for a machine that is able to soften and form laminated wafers having different layers of materials with diverse thermal properties.
In view of the foregoing, it is an object of the present invention to provide a process of making a laminated wafer that overcomes the limitations of the prior art.
It is another object to provide a process wherein the method of making the present invention is efficient and economical.
These and other objects not specifically enumerated here are addressed by the present invention wherein one object of the present invention provides a method for forming a laminated wafer having at least a first layer and a second layer comprising placing the wafer in a heated environment having a first temperature capable of softening the first layer, exposing the second layer, and not the first layer, to a second temperature higher than the first temperature, the second temperature capable of softening the second layer, and forming the laminated wafer into a desired shape.
Another object of the present invention relates to a laminated wafer comprising different materials that are formed at different softening temperatures.
The present invention provides a method for forming wafers whereby different temperatures are applied to either side of the wafer, in which each side has different materials and/or thermal properties. An example of such a wafer is shown in
One embodiment of the wafer having a first layer 12 and a second layer 14, includes a first layer comprising CAB film and a second layer 14 comprising a polycarbonate film. CAB film is commercially available by companies such as Kodak (sold under the name KODACEL®) and comes in various grades. In another embodiment, any material possessing low to no birefringence at Tg between 100° C. and 150° C., such as CAB film, is a good candidate for a first layer 12 (also referred to as a protective layer) of the wafer 10. As for the polycarbonate second layer 12, commercial sources of polycarbonate film include GE (LEXAN® T2FOQ), Teijin (PANLITE® 1151, 2151), and Bayer (Makrofoil Del.). Modified polycarbonates and polycarbonate alloy film would also be well-suited for use as layers in the present invention.
The functional layer 16 typically gives the lens to which the wafer 10 will be applied a desired property. For example, the functional layer 16 may include a photochromic or polarizing layer, such as a polyester polarizer, a multi-layer film for reflecting and transmitting a specific wave length, or a combination of these properties, as found in a photochromic polarizing layer. The first layer 12 is often a protective layer that protects the functional layer 16 from the elements. The second layer 14 is often referred to as a base layer and, in one embodiment, is eventually fused to a lens. However, the present invention contemplates interchangeable use of materials for a first layer and a second layer of a laminated wafer, as herein described.
Referring now to
The heating chamber 17 also contains electric heaters and a convection blower (not shown). This heating chamber 17 provides a first heating temperature that is distributed uniformly throughout the heating environment. Most preferably, the first heating temperature will be set to a temperature sufficient to soften a first layer of wafer material, based on its thermal properties (typically, a lower temperature than a second temperature that is required to soften a second layer of wafer material). The heating chamber 17 may further provide one temperature controller that maintains the air temperature throughout the heating chamber at a desired setting (e.g., a first temperature) as well as the temperature of the forming cups 20. In a preferred embodiment, the heating chamber 17 will provide an air temperature that is set near the first layer material's glass transition temperature (Tg) or slightly lower (5-15° C.) than Tg.
The heating chamber 17 further contains a second source for introducing heat into the chamber 17. This second heat source enables the chamber 17 to direct heat specifically to one layer of each wafer and thereby heat that layer with heat at a temperature different from the air temperature otherwise being generated by the chamber 17. This second heat source therefore allows two different temperatures to be imparted onto the wafers. In one embodiment, the chamber 17 heats (through its first heat source (e.g. electrical heater and convection blower)) the protective and functional layers 12, 16 to a first air temperature in the chamber 17 while the base layer 14 is heated to a higher temperature from the second heat source.
The second heating source may be provided by heating devices such as infrared heaters, directed hot air jet(s), or hot metal plunger(s) that are placed in contact with a second (or, higher softening temperature) material, holding a wafer between the lower temperature moving, forming cups 20 and hot metal plungers (not shown).
In a preferred embodiment of the present invention, the second source of heat is provided by infrared heaters 22 as shown in
Further, if necessary, filters may be used between the infrared heaters and the wafers to ensure the functional and protective layers 16, 12 do not encounter the infrared rays. Infrared rays will be absorbed or passed at different wavelengths, based on the properties of the selected wafer materials. Any directed energy sources, as described herein, that produce the same practical effect of softening and/or forming a wafer with different materials, are therefore contemplated for use in the present invention.
In a preferred embodiment as shown in
This process may further be accomplished by manual or other automated mechanisms that promote forming or curving of wafers in any environment that permits different softening conditions or temperatures for different material properties of the layers, and are thus not limited to the illustrative examples of heating chambers as described and disclosed herein.
The device and method of forming polymeric laminated wafers comprising different film materials of the present invention will now be described in more detail in reference to examples, which are for illustrative purposes only and should not in any way be construed as a limitation upon the scope of the invention. The following are examples of wafers made using the present invention and comparative examples using various prior art methods. The first two comparative examples use a wafer having base layers and protective layers that are comprised of the same material in order to demonstrate the required settings to achieve the desired base form. The second two comparative examples attempt to form a wafer using the materials used in the Example.
A wafer produced by Polaroid Corporation having a polarizer laminate comprising 1.35 mil CAB protective layer (KODACEL® brand CAB film, product code K7755), 1.2 mil PVA polarizer layer (custom formulated from raw material PVA: Vinylon made by Kuraray of Japan) and 10 mil polycarbonate base layer was punched into an 80 mm diameter disc and placed in a Lema P-10 forming machine with a quartz infrared heater 3 inches above the forming cups with a power controller. Air temperature was set to 225° F., bringing the cup temperature to approximately 220° F. The infrared heater power, having a power capacity of 204 volt×15 amp maximum (thereby a 2500 nm maximum wavelength output), was set to 90%. Cycle time for one wafer was set at 25 seconds and the forming cup was a 6 base.
Result: The wafer was formed to 6 base without any damage to the CAB protective layer of the wafer or to the adhesive that joins the layers of the wafer together.
A wafer made by Fuji Kasei of Japan having polycarbonate as a base layer, a PVA polarizing element as a functional layer, and polycarbonate as a protective layer was formed using a Lema P-10 forming machine without using infrared heating. The temperature was set to 235° F. Cycle time for one wafer was set at 25 seconds.
Result: The wafer stayed almost flat and was not formed to a 6 base due to insufficient heat for forming the polycarbonate.
A wafer made by Fuji Kasei of Japan having polycarbonate as a base layer, a PVA polarizing element as a functional layer, and polycarbonate as a protective layer was formed using a Lema P-10 forming machine without using infrared heating. The temperature was set to 285° F. Cycle time for one wafer was set at 25 seconds.
Result: The wafer was successfully formed to a 6 base.
A wafer produced by Polaroid Corporation having a polarizer laminate comprising 1.35 mil CAB protective layer, 1.2 mil PVA polarizer layer and 10 mil polycarbonate base layer was punched into an 80 mm diameter disc and placed in a Lema P-10 forming machine without the presence of infrared heaters. Air temperature was set to 235° F. and the cycle time for one wafer was set at 25 seconds and the forming cup was a 6 base.
Result: The wafer stayed almost flat and was not formed to a 6 base due to insufficient heat to the polycarbonate layer.
A wafer produced by Polaroid Corporation having a polarizer laminate comprising 1.35 mil CAB protective layer, 1.2 mil PVA polarizer layer and 10 mil polycarbonate base layer was punched into an 80 mm diameter disc and placed in a Lema P-10 forming machine without the presence of infrared heaters. Air temperature was set to 285° F. and the cycle time for one wafer was set at 25 seconds and the forming cup was a 6 base.
Result: The wafer was badly curled and delaminated due to excessive heat to the CAB layer.
A polarizing wafer produced by Shin-wha comprising a 1.35 mil CAB protective layer, a 1.2 mil PVA polarizer layer, and a 12 mil polycarbonate layer was punched into an 86 mm disc and formed using a Lema P-10 fitted with two quartz infrared heaters 3 inches above the forming cups with independent power controllers. The air temperature was set to 245° F. resulting in an approximate cup temperature of 240° F. The cycle time for one wafer was set to 15 seconds and the infrared heater, having a power capacity of 204 volt×15 amp maximum (thereby a 2500 nm maximum wavelength output) was set to 90% for the first heater and 70% for the second heater. The forming cup had a 4.25 base curve.
Result: The wafer was formed to a 4.25 base curve without any damage to the CAB protective layer or the PVA polarizer adhesive layer.
An experiment was conducted to see if a wafer could be re-formed using the present invention. A polarizing wafer produced by Shin-wha comprising a 1.35 mil CAB protective layer, a 1.2 mil PVA polarizer layer, and a 12 mil polycarbonate layer was punched into an 86 mm disc and formed using a Lema P-10 fitted with two quartz infrared heaters 3 inches above the forming cups with independent power controllers. The air temperature was set to 245° F. resulting in an approximate cup temperature of 240° F. The cycle time for one wafer was set to 15 seconds and the infrared heater, having a power capacity of 204 volt×15 amp maximum (thereby a 2500 nm maximum wavelength output), was set to 90% for the first heater and 70% for the second heater. The forming cup had a 4.25 base curve. This wafer that was formed to a 4.25 base curve was placed back into the Lema machine and exposed to another cycle as previously described, with the exception that this time, the formed wafer was placed in a cup having an 8.00 base curve. The temperature settings remained the same with the cycle time adjusted to 13 seconds.
Result: The wafer was re-formed to 8.00 base without any damage to the CAB protective layer or the PVA polarizer layer.
Based on these illustrative examples, one skilled in the art would conclude that this method enables forming of laminates having different materials with varying softening temperatures on either side of the wafer. This invention may be applied for thermal forming of various polymeric film laminates consisting of different films having varying optimum forming temperatures, which would otherwise be very difficult, if not impossible to form using conventional forming methods.
Although the invention has been described in terms of particular embodiments and applications, one of ordinary skill in the art, in light of this teaching, can generate additional embodiments and modifications without departing from the spirit of or exceeding the scope of the claimed invention. Accordingly, it is to be understood that the drawings and descriptions herein are proffered by way of example to facilitate comprehension of the invention and should not be construed to limit the scope thereof.
This invention is related to and claims priority from U.S. provisional application Ser. No. 60/658,800 filed on Mar. 4, 2005 entitled Forming Method For Polymeric Laminated Wafers Comprising Different Film Materials, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2443286 | Weston | Jun 1948 | A |
2618200 | Clave et al. | Nov 1952 | A |
3051054 | Crandon | Aug 1962 | A |
3560076 | Ceppi | Feb 1971 | A |
3711417 | Schuler | Jan 1973 | A |
3786119 | Ortlieb | Jan 1974 | A |
3833289 | Schuler | Sep 1974 | A |
3846013 | Cohen | Nov 1974 | A |
3877798 | Tolar et al. | Apr 1975 | A |
3878282 | Bonis et al. | Apr 1975 | A |
3940304 | Schuler | Feb 1976 | A |
3963679 | Ullrich et al. | Jun 1976 | A |
3988610 | Street | Oct 1976 | A |
3989676 | Gerkin et al. | Nov 1976 | A |
4008031 | Weber | Feb 1977 | A |
4012232 | Uhlmann et al. | Mar 1977 | A |
4035213 | Thoma et al. | Jul 1977 | A |
4035524 | Fritsch | Jul 1977 | A |
4035527 | Deeg | Jul 1977 | A |
4046586 | Uhlmann et al. | Sep 1977 | A |
4085919 | Sullivan | Apr 1978 | A |
4091057 | Weber | May 1978 | A |
4106861 | Brewer et al. | Aug 1978 | A |
4160853 | Ammons | Jul 1979 | A |
4166043 | Uhlmann et al. | Aug 1979 | A |
4170567 | Chu et al. | Oct 1979 | A |
4211590 | Steward et al. | Jul 1980 | A |
4251476 | Smith | Feb 1981 | A |
4268134 | Gulati et al. | May 1981 | A |
4364878 | Laliberte et al. | Dec 1982 | A |
4367170 | Uhlmann et al. | Jan 1983 | A |
4409169 | Bartholdsten et al. | Oct 1983 | A |
4440672 | Chu | Apr 1984 | A |
4442061 | Matsuda et al. | Apr 1984 | A |
4490495 | Weber | Dec 1984 | A |
4495015 | Petcen | Jan 1985 | A |
4519763 | Matsuda et al. | May 1985 | A |
4540534 | Grendol | Sep 1985 | A |
4590144 | Schornick et al. | May 1986 | A |
4628134 | Gould et al. | Dec 1986 | A |
4645317 | Frieder et al. | Feb 1987 | A |
4650533 | Parker et al. | Mar 1987 | A |
4679918 | Ace | Jul 1987 | A |
4699473 | Chu | Oct 1987 | A |
4756973 | Sakagami et al. | Jul 1988 | A |
4767647 | Bree | Aug 1988 | A |
4781452 | Ace | Nov 1988 | A |
4793703 | Fretz, Jr. | Dec 1988 | A |
4828769 | Maus et al. | May 1989 | A |
4839110 | Kingsbury | Jun 1989 | A |
4867553 | Frieder | Sep 1989 | A |
4873029 | Blum | Oct 1989 | A |
4882438 | Tanaka et al. | Nov 1989 | A |
4883548 | Onoki | Nov 1989 | A |
4889412 | Clere et al. | Dec 1989 | A |
4889413 | Ormsby et al. | Dec 1989 | A |
4892403 | Merle | Jan 1990 | A |
4892700 | Guerra et al. | Jan 1990 | A |
4898706 | Yabe et al. | Feb 1990 | A |
4900242 | Maus et al. | Feb 1990 | A |
4917851 | Yamada et al. | Apr 1990 | A |
4927480 | Vaughan | May 1990 | A |
4933119 | Weymouth, Jr. | Jun 1990 | A |
4944584 | Maeda et al. | Jul 1990 | A |
4955706 | Schmidthaler et al. | Sep 1990 | A |
4960678 | Tanaka et al. | Oct 1990 | A |
4961894 | Yabe et al. | Oct 1990 | A |
4962013 | Tateoka et al. | Oct 1990 | A |
4968545 | Fellman et al. | Nov 1990 | A |
4969729 | Merle | Nov 1990 | A |
4985194 | Watanabe | Jan 1991 | A |
4992347 | Hawkins et al. | Feb 1991 | A |
4994208 | McBain et al. | Feb 1991 | A |
5015523 | Kawashima et al. | May 1991 | A |
5017698 | Machida et al. | May 1991 | A |
5049321 | Galic | Sep 1991 | A |
5049427 | Starzewski et al. | Sep 1991 | A |
5051309 | Kawaki et al. | Sep 1991 | A |
5073423 | Johnson et al. | Dec 1991 | A |
5106998 | Tanaka et al. | Apr 1992 | A |
5120121 | Rawlings et al. | Jun 1992 | A |
5130058 | Tanaka et al. | Jul 1992 | A |
5147585 | Blum | Sep 1992 | A |
5149181 | Bedford | Sep 1992 | A |
5175201 | Forgione et al. | Dec 1992 | A |
5188787 | King et al. | Feb 1993 | A |
5214453 | Giovanzana | May 1993 | A |
5223862 | Dasher et al. | Jun 1993 | A |
5246989 | Iwamoto et al. | Sep 1993 | A |
5252450 | Schwerzel et al. | Oct 1993 | A |
5266447 | Takahashi et al. | Nov 1993 | A |
5268231 | Knapp-Hayes | Dec 1993 | A |
5286419 | Van Ligten et al. | Feb 1994 | A |
5288221 | Stoerr et al. | Feb 1994 | A |
5292243 | Gibbemeyer | Mar 1994 | A |
5327180 | Hester, III et al. | Jul 1994 | A |
5336261 | Barrett et al. | Aug 1994 | A |
5349065 | Tanaka et al. | Sep 1994 | A |
5391327 | Ligas et al. | Feb 1995 | A |
5405557 | Kingsbury | Apr 1995 | A |
5430146 | Tanaka et al. | Jul 1995 | A |
5433810 | Abrams | Jul 1995 | A |
5434707 | Dalzell et al. | Jul 1995 | A |
5435963 | Backovan et al. | Jul 1995 | A |
5449558 | Hasegawa et al. | Sep 1995 | A |
5523030 | Kingsbury | Jun 1996 | A |
5531940 | Gupta et al. | Jul 1996 | A |
5631720 | Guglielmetti et al. | May 1997 | A |
5658502 | Hughes | Aug 1997 | A |
5699182 | Alfekri | Dec 1997 | A |
5702645 | Hughes | Dec 1997 | A |
5702813 | Murata et al. | Dec 1997 | A |
5708063 | Imura et al. | Jan 1998 | A |
5728758 | Smith | Mar 1998 | A |
5751481 | Dalzell et al. | May 1998 | A |
5757459 | Bhalakia et al. | May 1998 | A |
5770115 | Misura | Jun 1998 | A |
5800744 | Munakata | Sep 1998 | A |
5827614 | Bhalakia et al. | Oct 1998 | A |
5840926 | Hughes | Nov 1998 | A |
5851328 | Kohan | Dec 1998 | A |
5851585 | Gupta et al. | Dec 1998 | A |
5854710 | Rao et al. | Dec 1998 | A |
5856860 | Bhalakia et al. | Jan 1999 | A |
5872648 | Sanchez et al. | Feb 1999 | A |
5951939 | Chernyak et al. | Sep 1999 | A |
6025026 | Smith et al. | Feb 2000 | A |
6068797 | Hunt | May 2000 | A |
6074579 | Greshes | Jun 2000 | A |
6083597 | Kondo | Jul 2000 | A |
6096246 | Chan et al. | Aug 2000 | A |
6107395 | Rosthauser et al. | Aug 2000 | A |
6113812 | Hughes | Sep 2000 | A |
6113813 | Goudjil | Sep 2000 | A |
6114437 | Brown et al. | Sep 2000 | A |
6138286 | Robrahn et al. | Oct 2000 | A |
6145984 | Farwig | Nov 2000 | A |
6146578 | Van Ert et al. | Nov 2000 | A |
6150430 | Walters et al. | Nov 2000 | A |
6165392 | Kobuchi et al. | Dec 2000 | A |
6166129 | Rosthauser et al. | Dec 2000 | A |
6177032 | Smith et al. | Jan 2001 | B1 |
6180033 | Greshes | Jan 2001 | B1 |
6187444 | Bowles, III et al. | Feb 2001 | B1 |
6254712 | Enlow et al. | Jul 2001 | B1 |
6256152 | Coldrey et al. | Jul 2001 | B1 |
6296785 | Nelson et al. | Oct 2001 | B1 |
6309313 | Peter | Oct 2001 | B1 |
6319433 | Kohan | Nov 2001 | B1 |
6328446 | Bhalakia et al. | Dec 2001 | B1 |
6333073 | Nelson et al. | Dec 2001 | B1 |
6334681 | Perrott et al. | Jan 2002 | B1 |
6353078 | Murata et al. | Mar 2002 | B1 |
6390621 | Maki et al. | May 2002 | B1 |
6416690 | Soane et al. | Jul 2002 | B1 |
6441077 | Border et al. | Aug 2002 | B1 |
6521146 | Mead | Feb 2003 | B1 |
6547390 | Bernheim et al. | Apr 2003 | B1 |
6585373 | Evans et al. | Jul 2003 | B2 |
6608215 | Qin | Aug 2003 | B2 |
6613433 | Yamamoto et al. | Sep 2003 | B2 |
6698884 | Perrott et al. | Mar 2004 | B2 |
6770324 | Hooker | Aug 2004 | B2 |
6797383 | Nishizawa et al. | Sep 2004 | B2 |
6807006 | Nakagoshi | Oct 2004 | B2 |
6814896 | Bhalakia et al. | Nov 2004 | B2 |
6863844 | Engardio et al. | Mar 2005 | B2 |
6863848 | Engardio et al. | Mar 2005 | B2 |
6971116 | Takeda et al. | Nov 2005 | B2 |
7004583 | Miniutti et al. | Feb 2006 | B2 |
7008568 | Qin | Mar 2006 | B2 |
7021761 | Künzler et al. | Apr 2006 | B2 |
7025457 | Trinh et al. | Apr 2006 | B2 |
7025458 | Vu | Apr 2006 | B2 |
7036932 | Boulineau et al. | May 2006 | B2 |
7048997 | Bhalakia et al. | May 2006 | B2 |
7077985 | Maki et al. | Jul 2006 | B2 |
7104648 | Dahi et al. | Sep 2006 | B2 |
7335702 | La Dous | Feb 2008 | B2 |
7350917 | Kawai et al. | Apr 2008 | B2 |
7465414 | Knox et al. | Dec 2008 | B2 |
7500749 | Vu | Mar 2009 | B2 |
20010035935 | Bhalakia et al. | Nov 2001 | A1 |
20020197484 | Nishizawa et al. | Dec 2002 | A1 |
20030184863 | Nakagoshi | Oct 2003 | A1 |
20040125335 | Vu | Jul 2004 | A1 |
20040207809 | Blackburn et al. | Oct 2004 | A1 |
20050009964 | Sugimura et al. | Jan 2005 | A1 |
20050168689 | Knox | Aug 2005 | A1 |
20050168690 | Kawai et al. | Aug 2005 | A1 |
20050233153 | Qin et al. | Oct 2005 | A1 |
20060065989 | Druffel et al. | Mar 2006 | A1 |
20060146278 | Vu | Jul 2006 | A1 |
20060187411 | Boulineau et al. | Aug 2006 | A1 |
20060192306 | Giller et al. | Aug 2006 | A1 |
20060244909 | Maki et al. | Nov 2006 | A1 |
20060264563 | Hanrahan et al. | Nov 2006 | A1 |
20070001327 | Chiu | Jan 2007 | A1 |
20070122626 | Qin et al. | May 2007 | A1 |
20070177100 | Knox | Aug 2007 | A1 |
20070291345 | Kumar et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
2003225785 | Sep 2002 | AU |
2003225785 | Sep 2003 | AU |
2004270746 | Mar 2005 | AU |
0 050 594 | Apr 1982 | EP |
0 134 633 | Mar 1985 | EP |
0 299 509 | Jan 1989 | EP |
0 415 716 | Jun 1991 | EP |
0 552 498 | Jul 1993 | EP |
0 814 956 | Jan 1998 | EP |
1 162 482 | Dec 2001 | EP |
1 273 935 | Jan 2003 | EP |
2 174 711 | Nov 1986 | GB |
56013139 | Feb 1981 | JP |
56-013139 | Sep 1981 | JP |
58173181 | Oct 1983 | JP |
36-0195515 | Oct 1985 | JP |
61-005910 | Jan 1986 | JP |
61-032004 | Feb 1986 | JP |
36-1236521 | Oct 1986 | JP |
61-276882 | Dec 1986 | JP |
63-061203 | Mar 1988 | JP |
63-178193 | Jul 1988 | JP |
10-22538 | Jan 1989 | JP |
03-132701 | Jun 1991 | JP |
03 282445 | Dec 1991 | JP |
32-69507 | Dec 1991 | JP |
43-58145 | Dec 1992 | JP |
05 032965 | Feb 1993 | JP |
62-38689 | Aug 1994 | JP |
07 048363 | Feb 1995 | JP |
90-01716 | Jan 1997 | JP |
2002196103 | Jul 2002 | JP |
2004 034609 | Feb 2004 | JP |
WO 8100769 | Mar 1981 | WO |
WO 9515845 | Jun 1995 | WO |
WO 9634735 | Nov 1996 | WO |
WO 9837115 | Aug 1998 | WO |
WO 0149478 | Jul 2001 | WO |
WO 02093235 | Nov 2002 | WO |
WO 03078148 | Sep 2003 | WO |
WO 2004011235 | Feb 2004 | WO |
WO 2004068217 | Aug 2004 | WO |
WO 2005023529 | Mar 2005 | WO |
WO 2006094312 | Sep 2006 | WO |
WO 2007041347 | Apr 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20060196413 A1 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
60658800 | Mar 2005 | US |