Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and packaging and, in particular, gallium nitride (GaN) integrated circuit technology.
Power delivery and RF communication are essential to every compute solution. Si and III-V technologies are facing fundamental limits in power and RF. Future compute solutions will require a better semiconductor technology to continue to deliver better energy efficiencies, better performance, and more functionalities in smaller form factors. Two industry trends are converging to transform power delivery and RF: 300 mm gallium nitride (GaN)-on-Si and monolithic 3D ICs. Amongst semiconductor technologies today, GaN is best for power delivery and RF due to its wide bandgap qualities. Monolithic 3D integration is a powerful way to integrate dissimilar best-in-class semiconductor technologies on the same silicon to deliver the best performance, improved density, and more functionalities.
Gallium nitride (GaN) layer on carburized substrate for integrated circuit technology is described. In the following description, numerous specific details are set forth, such as specific integration and material regimes, in order to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to one skilled in the art that embodiments of the present disclosure may be practiced without these specific details. In other instances, well-known features, such as integrated circuit design layouts, are not described in detail in order to not unnecessarily obscure embodiments of the present disclosure. Furthermore, it is to be appreciated that the various embodiments shown in the Figures are illustrative representations and are not necessarily drawn to scale.
The following detailed description is merely illustrative in nature and is not intended to limit the embodiments of the subject matter or the application and uses of such embodiments. As used herein, the word “exemplary” means “serving as an example, instance, or illustration.” Any implementation described herein as exemplary is not necessarily to be construed as preferred or advantageous over other implementations. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.
This specification includes references to “one embodiment” or “an embodiment.” The appearances of the phrases “in one embodiment” or “in an embodiment” do not necessarily refer to the same embodiment. Particular features, structures, or characteristics may be combined in any suitable manner consistent with this disclosure.
Terminology. The following paragraphs provide definitions or context for terms found in this disclosure (including the appended claims):
“Comprising.” This term is open-ended. As used in the appended claims, this term does not foreclose additional structure or operations.
“Configured To.” Various units or components may be described or claimed as “configured to” perform a task or tasks. In such contexts, “configured to” is used to connote structure by indicating that the units or components include structure that performs those task or tasks during operation. As such, the unit or component can be said to be configured to perform the task even when the specified unit or component is not currently operational (e.g., is not on or active). Reciting that a unit or circuit or component is “configured to” perform one or more tasks is expressly intended not to invoke 35 U.S.C. § 112, sixth paragraph, for that unit or component.
“First,” “Second,” etc. As used herein, these terms are used as labels for nouns that they precede, and do not imply any type of ordering (e.g., spatial, temporal, logical, etc.).
“Coupled”—The following description refers to elements or nodes or features being “coupled” together. As used herein, unless expressly stated otherwise, “coupled” means that one element or node or feature is directly or indirectly joined to (or directly or indirectly communicates with) another element or node or feature, and not necessarily mechanically.
In addition, certain terminology may also be used in the following description for the purpose of reference only, and thus are not intended to be limiting. For example, terms such as “upper”, “lower”, “above”, and “below” refer to directions in the drawings to which reference is made. Terms such as “front”, “back”, “rear”, “side”, “outboard”, and “inboard” describe the orientation or location or both of portions of the component within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the component under discussion. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import.
“Inhibit”—As used herein, inhibit is used to describe a reducing or minimizing effect. When a component or feature is described as inhibiting an action, motion, or condition it may completely prevent the result or outcome or future state completely. Additionally, “inhibit” can also refer to a reduction or lessening of the outcome, performance, or effect which might otherwise occur. Accordingly, when a component, element, or feature is referred to as inhibiting a result or state, it need not completely prevent or eliminate the result or state.
Embodiments described herein may be directed to front-end-of-line (FEOL) semiconductor processing and structures. FEOL is the first portion of integrated circuit (IC) fabrication where the individual devices (e.g., transistors, capacitors, resistors, etc.) are patterned in the semiconductor substrate or layer. FEOL generally covers everything up to (but not including) the deposition of metal interconnect layers. Following the last FEOL operation, the result is typically a wafer with isolated transistors (e.g., without any wires).
Embodiments described herein may be directed to back-end-of-line (BEOL) semiconductor processing and structures. BEOL is the second portion of IC fabrication where the individual devices (e.g., transistors, capacitors, resistors, etc.) get interconnected with wiring on the wafer, e.g., the metallization layer or layers. BEOL includes contacts, insulating layers (dielectrics), metal levels, and bonding sites for chip-to-package connections. In the BEOL part of the fabrication stage contacts (pads), interconnect wires, vias and dielectric structures are formed. For modern IC processes, more than 10 metal layers may be added in the BEOL.
Embodiments described below may be applicable to FEOL processing and structures, BEOL processing and structures, or both FEOL and BEOL processing and structures. In particular, although an exemplary processing scheme may be illustrated using a FEOL processing scenario, such approaches may also be applicable to BEOL processing. Likewise, although an exemplary processing scheme may be illustrated using a BEOL processing scenario, such approaches may also be applicable to FEOL processing.
One or more embodiments described herein are directed to GaN epitaxial growth and structures with Si—C carburization. One or more embodiments described herein are directed to silicon wafer carburization to form a SiC template for GaN epitaxy.
To provide context, GaN transistors are potential candidates for future RF products, such as in 5G. One key problem for GaN epi on Silicon is the formation of threading dislocation defects due to the large mismatch of GaN and Silicon. GaN and SiC have relatively closer lattice constants (˜4% mismatch) and lesser thermal coefficient of expansion mismatch and, hence, SiC is a better substrate for GaN epitaxy. The insulating nature of SiC also makes it the chosen substrate for RF usage. Embodiments described herein include approaches by which a thin SiC template can be made on a large Si carrier wafer to mimic the epi growth of GaN on SiC.
In accordance with an embodiment of the present disclosure, a thin film technique for forming SiC on Si wafers and on patterned Si wafers to seed the epitaxy of III-N films is described. Such III-N films can have lower defect density and other benefits for integration of different devices and improved RF performance. Advantages for implementing one or more embodiments described herein can include enabling low defect density GaN on large area substrates.
In accordance with an embodiment of the present disclosure, a thin film of amorphous Silicon (a-Si) or polycrystalline Silicon (poly-Si) is deposited on s silicon substrate. In one embodiment, following deposition, the resulting structures are subjected to high temperature anneal between 1000-1100° ° C. under methane flow for 1-45 minutes. In other embodiments, different hydrocarbons can be used to carburize the surface, such as ethane, etc.
As exemplary processing schemes,
Referring to
Referring to pathway (a), an amorphous silicon layer 104 is deposited on a top surface of the silicon substrate 102. Referring top pathway (b), the resulting structure is then annealed, e.g., in the presence of CH4 at a temperature in the range of 1000-1100 degrees Celsius for a duration of 1-45 minutes, to provide a structure including a layer of silicon carbide (SiC) 106. The layer of silicon carbide (SiC) 106 may be formed by consuming a portion of the amorphous silicon layer 104 and leaving to remain unconsumed amorphous silicon layer 104A. In one embodiment, the layer of silicon carbide (SiC) 106 is a few monolayers thick.
Referring to pathway (c), a polycrystalline silicon layer 108 is deposited on a top surface of the silicon substrate 102. Referring top pathway (d), the resulting structure is then annealed, e.g., in the presence of CH4 at a temperature in the range of 1000-1100 degrees Celsius for a duration of 1-45 minutes, to provide a structure including a layer of silicon carbide (SIC) 110. The layer of silicon carbide (SiC) 110 may be formed by consuming a portion of the polycrystalline silicon layer 108 and leaving to remain unconsumed polycrystalline silicon layer 108A. In one embodiment, the layer of silicon carbide (SIC) 110 is a few monolayers thick.
To provide a comparison of lattice constant compatibility,
In another embodiment, using a furnace and under high temperature and methane gas, a Si wafer surface (e.g., as starting from a Si(111) substrate) is converted to SiC using a diffusion process. In one embodiment, the diffusion process is self-limiting once the first few layers are converted to SiC and the process slows down significantly.
As an exemplary structure,
Referring to
In another embodiment, in order to enable more aggressive diffusion, a patterned Si surface is subjected to a carburization process. In either case (planar or patterned), III-N epitaxy is performed on the “created” pseudo-substrates. In one embodiment, a defect reduction scheme can be implemented to reduce the net defect density of the III-N films grown on the pseudo substrates.
In an embodiment, prior to III-N epitaxy, SiC epitaxy may follow the carburization operation to form a relatively thicker blanket SiC crystalline film which can be processed into SiC transistors for high-voltage applications. Such a method can enable SiC substrates that are grown from 300 mm Silicon wafers, a much cheaper method than state-of-the-art growth techniques based on sublimation.
In another embodiment, other than forming blanket layers, patterned Si starting substrates can be used to obtain relatively thicker SiC films.
As an example,
Referring to
As another example,
Referring to
The above described approaches can be used to fabricate a GaN layer above a silicon substrate, where the GaN has significantly reduced defects as opposed to GaN layers formed directly on silicon or on other lattice mismatched substrates. The reduced defects can result from defect bending at the SiC/Si interface. As an exemplary structure,
Referring to
It is to be appreciated that a unique advantage of SiC on Si is the nature of the SiC crystal and its polar surface: a Si surface is different than the C face surface. As a result, in an embodiment, a single structure can integrate a Ga-polar GaN and N-polar GaN on a Si wafer (which is otherwise non-polar) using thin SiC layer depositions. The co-existence of N-polar and Ga-polar III-N on the same substrate can lead to device structures that are enabled by the formation of two different types of SiC films on a Si surface.
As an exemplary structure,
Referring to
Referring again to
Referring again to
To provide further context, embodiments described herein can be implemented to enable GaN transistor fabrication with very high cut-off frequency (fT, the frequency where the gain of the transistor equals unity). Transistors with high fT can provide larger gain at a specified circuit operating frequencies. They have high RF performances (gain and efficiency) at higher frequencies. With the push for ever increasing wireless communication data rates, the mobile industry is looking to access greater bandwidths at higher frequency bands including millimeter waves (f>26 GHz) in 5G and future generations of wireless communication (f>70 Ghz). At such high communication frequencies, the fT of a transistor may need to be at least 400 GHz or more.
Current GaN transistors use both Ga-polar and N-polar crystals. The 2D electron gas (or channel) in a Ga-polar crystal is formed in GaN on the bottom interface of the polarization layer (AlGaN, AlInN, AlN, AlGaInN) with the c-axis orientated such that a single Ga—N bond in the tetrahedral (with Ga atom as the center of this tetrahedral) is orientated along the c-axis, pointing upwards while the other 3 Ga—N bonds are pointing at 120 degrees downwards from the vertical c-axis. An N-polar GaN crystal is the crystal orientation such that the 2DEG is formed in GaN on the upper interface of the polarization layer. A Ga-polar GaN crystal is one where the gallium face is above the nitrogen face. A polarization charge vector in standard convention, would be orientated such that it points away from the gallium face and towards the nitrogen face. This crystal orientation is obtained by effectively turning the crystal upside down. In this orientation, a single Ga—N bond in the tetrahedral is orientated along the c-axis, pointing downwards, while the other 3 Ga—N bonds are pointing at 120 degrees upwards from the vertical c-axis.
It is to be appreciated that in both Ga-polar and N-polar crystals, there can be crystal planes consisting of gallium only and planes that consist of nitrogen only. In both crystals, the top (or terminal) plane can be either a gallium plane or a nitrogen plane, hence it may not necessarily be used to distinguish a Ga-polar crystal from a N-polar crystal. In one embodiment, it is the relative orientation of the four Ga—N bonds in the tetrahedral configuration that defines which facet of the crystal is the gallium or nitrogen face.
Epitaxial growth of N-polar GaN crystal on Si substrate has not been demonstrated consistently. To-date, successful N-polar GaN has only been shown on sapphire and SiC substrate. SiC substrates are very expensive and are available only in 6 inch diameter. Sapphire substrates may not be preferred for RF power applications because of the low substrate thermal conductivity.
To provide further context, it is an industry challenge to integrate multiple dissimilar technologies, e.g., GaN and Si, monolithically to bring together best-in-class performance and add Si CMOS functionality to N-channel only GaN to meet customer/product demands for applications in RF and power electronics. Packaging of multiple separate die for, e.g., one die including GaN-only technology and a separate die including Si CMOS technology has been attempted. However, such an approach can incur significant parasitic inductance and capacitance in wirings and routing of signals off-die and back on die.
In accordance with embodiments of the present disclosure, monolithic 3D integration of GaN NMOS and Si CMOS enables full integration of energy-efficient, truly compact power delivery and RF solutions with CMOS digital signal processing, logic computation and control, memory functions and analog circuitries for next generation power delivery, RF (5G and beyond) and SoC applications.
Inflection points: (a) Today, products are pushing the envelope of power delivery towards 2000 W and beyond. This demands compact high power solutions that only GaN 3D IC can provide. Power delivery experts can now be empowered to re-think the entire power delivery chain from 48V-to-1V, from servers to clients, how to achieve higher efficiencies as well as higher frequencies to shrink inductor size. (b) Emergence of new communication standards at ever higher frequencies and larger bandwidths, e.g. WiFi 7, and convergence of 5G wireless and WiFi, demand cost effective, efficient and compact high-power RF frontend solutions that only 300 mm GaN 3D IC can provide. In a 5G basestation/picocell, a phase array solution based on Si or SiGe technology would require>1000 RF power amplifiers (PAs) to produce the same RF output power that can be achieved with about 100 GaN RF PAs. Moreover, the phase array based on GaN 3D IC could be about 10× cheaper and consume up to about 35% less power.
Customers will require compact, efficient power and RF solutions along with compute solutions. 300 mm GaN 3D IC offers high power delivery and RF output at high frequency which no other technology can deliver. It is about 50× cheaper than today's 4″ GaN-on-SiC, 30-50% more efficient and about 10× smaller than Si/III-V technologies. Before GaN 3D IC, there is not one technology that can meet the diverse needs of RF frontends. These solutions come in multiple separate chips that must be made to work together in a bulky package. With GaN 3D IC, single-chip RF frontend solutions can be enabled that integrates all these functionalities onto a single die. Therefore, GaN 3D IC could enable features that were not possible before, for e.g., tiny power delivery chiplets, and fully integrated RF FE for 5G picocells and basestation.
Co-integration of GaN power transistors with Si CMOS can be readily detected by conventional cross-section and/or material analysis techniques. For example, Transmission Electron Microscopy (TEM)) can be used to identify 3D structural arrangements of GaN and Si transistors. Electron Energy Loss Microscopy (EELS) can be used to identify elemental composition of transistor channels to show the presence of Ga and Si in the transistors.
In another aspect, in accordance with one or more embodiments of the present disclosure, a GaN device is fabricated in or on the N-polar GaN or Ga-polar GaN layers described above. In a particular embodiment, one or more high voltage scaled GaN devices are fabricated in or on the N-polar GaN or Ga-polar GaN layers described above.
To provide context, RF power amplifiers (RF PAs) are needed to transmit RF signals between mobile devices and base stations located at far distances away, such as greater than 1 mile. The efficiency of these RF PAs is a key determinant of battery life in mobile handsets and power consumption (cost) in RF base stations. Good linearity of the RF power amplifier is required for modern communication standards such as 4G LTE and 5G standards. RF PAs typically operate at several dB back-off from its saturated mode in order to meet the linearity requirements. Thus, the efficiency suffers and in most PAs, it may degrade by a factor of 2-3×.
Due to its wide bandgap and high critical breakdown electric field, gallium nitride (GaN) transistors are considered for high voltage applications such as power converters, RF power amplifiers, RF switch and high voltage applications. Simple transistor architecture, namely, having a single gate, source and drain, falls short of realizing the full potential of GaN in achieving the maximum breakdown voltage as dictated by its material properties. This is because the drain electric field concentrates at the edge of the gate and causes premature breakdown.
Embodiments of the present disclosure relate to gallium nitride (GaN) transistors having drain field plates. In embodiments, the transistors of the present disclosure have a gallium nitride (GaN) layer disposed above a substrate. A gate structure is disposed above the GaN layer. A source region and a drain region are disposed on opposite sides of the gate structure. The drain field plate may be biased to an electrical potential which is different than a gate voltage and/or VSS offering a greater degree of control of the drain field. The transistors of the present disclosure may enable new circuit architectures, such as a cross-coupled pairs. Additionally, the distance the drain field plate extends above the drain can be independently adjusted to improve the effect the field plate has on the drain field distribution, and hence increase breakdown voltage and linearity. In an embodiment, the transistor is operated in an enhancement mode. In an embodiment the gate structure may have a “T” shape in order to reduce the electrical resistance of the gate structure. In an embodiment, the transistor may include a second gate structure or multiple gate structures disposed between the gate structure and the drain field plate to provide a multigate switch for, for example, an RF voltage divider.
Transistor 200 includes a drain field plate 220 located above drain region 216. Drain field plate 220 is separated from drain region 216 by a distance (dDFP) as illustrated in
In an embodiment, source region 214 includes a source contact 224 and drain region 216 includes a drain contact 226. Source contact 224 may include a source semiconductor contact 228 and a source metal contact 230, and drain contact 226 may include a drain semiconductor contact 232 and a drain metal contact 234. In an embodiment as illustrated in
Transistor 200 may include a polarization layer 240 disposed on GaN layer 202. Polarization layer 240 may be formed from a group III-N semiconductor, such as but not limited to aluminum gallium nitride (AlGaN), aluminum indium nitride (AlInN), aluminum indium gallium nitride (AlInGaN) and indium gallium nitride (InGaN). In an embodiment, polarization layer 240 is sufficiently thick in order to create a two-dimensional electron gas (2DEG) effect or layer 250 in the top surface of GaN layer 202 as illustrated in
Drain field plate 220 and gate structure 208 are disposed within dielectric layer 260 as illustrated in
Transistor 200 has a gate length (Lg) in a first direction extending between the source region 214 and the drain region 216 as shown in
In an embodiment, drain field plate 220 may be biased separately from a gate voltage (Vg) applied to gate structure 208. In an embodiment, drain field plate 220 may be biased to a potential different than Vss or ground. In an embodiment, drain field plate 220 may be biased differently than the voltage applied to source region 214. In an embodiment, drain field plate 220 may be biased differently than a voltage applied to drain region 216. In an embodiment, drain field plate 220 is not electrically connected to drain region 216.
In an embodiment, a pair of insulative spacers 270 are disposed along opposite sides of gate structure 208 as illustrated in
In an embodiment, a second dielectric layer 280 is disposed over dielectric layer 260. A plurality of conductive vias 282 may be disposed in dielectric 280 to enable independent electrical connections to and control of source region 214, drain region 216, drain field plate 220 and gate structure 208.
In an embodiment, a high-k dielectric 272, such as but not limited to hafnium oxide (e.g., HfO2) and aluminum oxide (e.g., Al2O3) may be disposed and on the sidewalls and bottom surface of drain field plate 220 as illustrated in
In an embodiment, two or more additional gate structures 302 may be disposed over GaN layer 202 and between gate structure 208 and drain field plate 220. In an embodiment, gate structure 208 and each of the additional gate structures 302 may be bias separately. In an embodiment, the multiple gates act as an RF voltage divider allowing each gate to be biased with a lower DC voltage. A single gate NMOS transistor may require a large negative gate voltage (Vg) to keep the transistor in an “OFF” state. In an embodiment, transistor 300 may be used in a cascoded power amplifier circuit. Transistor 300 may improve gain by reducing source resistance of the second gate. Having two gate electrodes may protect the corresponding gate oxides from increased voltages.
To provide further context, GaN high voltage transistors in the market are not scaled. GaN transistors in the market today utilize long channel gates and thick p-GaN gate stack that may not be suitable for scaling the transistor to smaller dimensions to improve performance and low resistances. Moreover, coarse lithography techniques that are used may be limited as the industry remains working in 4 inch manufacturing lines that do not have access to the latest lithographic tools and techniques.
In accordance with one or more embodiments of the present disclosure, a heterostructure employing, p-InGaN and p-AlGaN layers in the gate of the GaN transistor, in addition to p-GaN, to enable scaling of the gate stack, thus enabling the further scaling of transistor channel length to improve performance: lower on-resistance and higher drive current. Other enabling features such as p-(III-N) field plate, multi-gate structures and hybrid trench plus implant isolation techniques are also disclosed herein to enable scaling of high voltage GaN transistor solutions. Such features can enable the ultimate scaling of high voltage GaN transistors to provide the highest performance in the smallest possible footprint.
In accordance with an embodiment of the present disclosure, a high voltage GaN transistor technology enables power delivery solutions that are more efficient than what is possible today. Servers and graphics products are powered by power delivery solutions with input voltages ranging between 48V to 72V. Discrete GaN transistors are used to step this high input voltage down to 5V on the board so that a second stage voltage conversion can be used in the subsequent power stages to convert the voltage to a desired supply voltage to integrated circuits, ranging from 3.3V to 0.5V, for example. Many stages of conversion are required using Si technology because at each stage, a different Si transistor technology is used. Dissimilar discrete technologies must thus be made to work together on the board or in bulky thick packages. GaN technology is unique in that it is the only technology that can be used across the entire power delivery value chain from 72V down to 0.6V. With a high voltage GaN transistor technology, power can ultimately be delivered at 48V to the socket of a microprocessor. Many benefits can be realized: the current level (I) on the board can be reduced, power dissipation (proportional to I2) on the board can be significantly reduced, form factor can be significantly reduced (at least 2× shrink, up to 10× or more).
Referring to
Referring to part (A) of
Referring to part (B) of
Referring to part (C) of
Referring to part (D) of
In an embodiment, using a p-InGaN layer can translate to higher active p-dopants being achieved. With higher active p-dopants compared to p-GaN, thinner p-InGaN can be used to deplete 2DEG in channel for e-mode. Thinner EOT enables shorter channel length, hence higher performance (lower RON and higher drive current). In an embodiment, using a p-AlGaN layer can translate to higher barrier to electrons, although lower p-dopants. With higher energy barrier to electrons, p-AlGaN can be used to reduce the thickness of the p-doped barrier to enable shorter channel length as well as to increase the P-N junction turn-on voltage and reduce gate leakage. Heterostructures, e.g. p-InGaN/p-AlGaN/AlGaN/GaN channel can be used to achieve combinations of the characteristics described above.
Referring to
In an embodiment, multi-gates can extend the voltage handling capability and incur minimal increase in on-resistance and transistor drive current. Multi-gates also improve drain induced barrier leakage (DIBL), and reduce off-state leakage.
Referring to
In an embodiment, aside from providing a field-plate (FP) to redistribute the high lateral electric field on the drain side of the transistor, a p-GaN/p-InGaN/p-AlGaN field plate can inject compensating holes into the channel in the drain region to neutralized electrons that are trapped in the high field region on the drain side. High energy hydrogen atoms can be implanted in the shallow-trench isolation region to further isolate each GaN transistor active region from the rest of the wafer. Further, a hydrogen implant plane can be achieved underneath the GaN 2DEG for further isolation of GaN transistor active region from the GaN buffer and substrate. In one embodiment, voltage converter circuit topologies enabled by these devices include LLC resonant converter, switched capacitor converters, buck converters, and others.
Embodiments of the disclosure relate to gallium nitride (GaN) transistors having multiple threshold voltages and their methods of fabrication. A GaN transistor, in accordance with embodiments, includes a gallium nitride layer above a substrate, such as a silicon monocrystalline substrate. A gate stack is disposed above the GaN layer. A source region and a drain region are disposed on opposite sides of the gate stack. A polarization layer including a group III-N semiconductor is disposed on the GaN layer and beneath the gate stack. The polarization layer may have a first thickness, including a zero thickness, beneath a first gate portion of the gate stack and a second thickness greater than the first thickness beneath a second gate portion of the gate stack. The thickness of the polarization layer or lack of a polarization layer beneath the gate stack affects the threshold voltage of the overlying portion of the gate stack. By providing different thicknesses of the polarization layer beneath different portions of the gate stack, a transistor may be engineered to have two or more different threshold voltages. In an embodiment, a transistor has a threshold voltage in the range of 1V to −6V. A GaN transistor having multiple threshold voltages may be fabricated as a planar transistor or a nonplanar transistor. In embodiments of the present disclosure, a GaN transistor having two or more threshold voltages may be used to create a hybrid class A+AB power amplifier with improved linearity.
A source region 830 and a drain region 832 may be disposed on opposite sides of gate stack 820 as illustrated in
Transistor 800 includes a polarization layer 840. In an embodiment, polarization layer 840 is a group III-N semiconductor, such as but not limited to a group III-N semiconductor including aluminum, gallium, indium and nitrogen or AlxInyGa1-x-yN (0<x<=1, 0<=y<1). In an embodiment, x=0.83 and y=0.17, where Al0.83In0.17N is lattice-matched to GaN. In an embodiment, the polarization layer 840 is disposed directly on a surface 811 of GaN layer 810 which is a (0001) plane or a C-plane of gallium nitride. Depending on the composition and thickness of polarization layer 840, polarization layer 840 may create a 2DEG layer 850 in the top surface of GaN layer 810 as illustrated in
In an embodiment of the present disclosure, a first portion 802 of transistor 800 has a first gate portion 826 of gate stack 820 disposed over a first portion 842 of polarization layer 840 having a first thickness, which may be a zero thickness, while a second portion 804 of transistor 800 has a second gate portion 828 of gate stack 820 disposed over a second portion 844 of polarization layer 840 having a second thickness, wherein the second thickness is greater than the first thickness. The difference in thicknesses between the first portion 842 and the second portion 844 of polarization layer 840 creates a difference in the threshold voltages for the first gate portion 826 of gate stack 820 and the second gate portion 828 of gate stack 820 where the threshold voltage (VT1) of the first gate portion 826 is greater than the threshold voltage (VT2) of the second gate portion 828. In an embodiment, the first threshold voltage (VT1) is greater than the second threshold voltage (VT2) by an amount in the range of 100 mV to 9V. In an embodiment, the first threshold voltage (VT1) is greater than the second threshold voltage (VT2) by greater than 2V.
In a specific embodiment, as shown in
In the embodiment, the first portion 842 and the second portion 844 of polarization layer 840 both have a non-zero thickness. In an embodiment, the first portion 842 has a first non-zero thickness and a second portion 844 has a second non-zero thickness greater than the first thickness, wherein the first portion 842 is not sufficiently thick to create a 2DEG layer in GaN layer 810 beneath first gate portion 826 and wherein the second portion 844 of polarization layer 840 is also not sufficiently thick to create a 2DEG layer in GaN layer 810 beneath second gate portion 828. In yet another embodiment, the second portion 844 of polarization layer 840 is thicker than the first portion 842 of polarization layer 840 and the first portion 842 and the second portion 844 are each sufficiently thick to create a 2DEG layer in GaN layer 810 beneath first gate portion 826 and second gate portion 828, respectively. In an embodiment, the second portion 844 of polarization layer 840 is approximately 2-3 times thicker than the first portion 842 of polarization layer 840. In a specific embodiment, the first portion 842 of polarization layer 840 includes a 1 nanometer AlN layer on the GaN layer 810 and a 1 nanometer AlInN layer on the 1 nanometer AlN layer, and the second portion 844 of polarization layer 840 includes a 1 nanometer AlN layer on the GaN layer 810 and a 3 nanometer AlInN layer on the 1 nanometer AlN layer. In an embodiment, in either case, the AlInN layer includes Al0.83In0.17N.
In another embodiment, first portion 842 of polarization layer 840 has a non-zero thickness that is insufficient to create a 2DEG layer in GaN layer 810 beneath first gate portion 826 and wherein the second portion 844 of polarization layer 840 has a thickness greater than the thickness of the first polarization layer 842 and is sufficient to create a 2DEG layer in GaN layer 810 beneath second gate portion 828.
It is to be appreciated, in embodiment of the present disclosure, polarization layer 840 may have a third portion beneath a third gate portion wherein the third portion of the polarization layer 840 has a thickness greater than the thickness of the second portion 844 of polarization layer 840 which is yet thicker than the first portion 842 of polarization layer 840. In this way, a transistor having three different threshold voltages may be obtained. A similar technique may be practiced to create a GaN transistor with four or more threshold voltages, if desired.
In an embodiment, transistor 800 includes a pair of insulative sidewall spacers 860 disposed on opposite sides of gate stack 820 as illustrated in
In an embodiment of the present disclosure, the first transistor portion 802 and the second transistor portion 804 have the same gate width. In other embodiments, the first transistor portion 802 has a greater or smaller gate width than second transistor portion 804. In this way, the amount of current provided by the first transistor portion may differ from the amount of current provided by the second transistor portion 804.
In embodiments of the present disclosure, isolation regions 870 may be formed in GaN layer 810. Isolation regions 870 may surround transistor 800 to isolate transistor 800 from other devices manufactured in GaN 810 and/or substrate 812. An interlayer dielectric 872, such as but not limited to, silicon dioxide and carbon doped silicon oxide, may be disposed over transistor 800. Contacts 874 and 876, such as metal contacts, may be disposed in dielectric 872 to create electrical contacts to source group III-N semiconductor contact 834 and to drain group III-N semiconductor contact 836, respectively, as illustrated in
A polarization layer 1040 is disposed on the top surface 1018 of fin 1010. In an embodiment, polarization layer 1010 is a group III-N semiconductor material, such as but not limited to AlGaInN, AlGaN, and AlInN. In an embodiment polarization layer 1040 is not formed on sidewall 1016 of fin 1010. A gate stack 1020 is disposed over polarization layer 1040 on the top surface 1018 of fin 1010 and is disposed over the sidewalls 1016 of fin 1010 as illustrated in
In an embodiment, polarization layer 1040 is of a sufficient thickness to create a 2DEG layer in the top surface of fin 1010 as illustrated in
As described throughout the present application, a substrate may be composed of a semiconductor material that can withstand a manufacturing process and in which charge can migrate. In an embodiment, a substrate is described herein is a bulk substrate composed of a crystalline silicon, silicon/germanium or germanium layer doped with a charge carrier, such as but not limited to phosphorus, arsenic, boron or a combination thereof, to form an active region. In one embodiment, the concentration of silicon atoms in such a bulk substrate is greater than 97%. In another embodiment, a bulk substrate is composed of an epitaxial layer grown atop a distinct crystalline substrate, e.g. a silicon epitaxial layer grown atop a boron-doped bulk silicon mono-crystalline substrate. A bulk substrate may alternatively be composed of a group III-V material. In an embodiment, a bulk substrate is composed of a group III-V material such as, but not limited to, gallium nitride, gallium phosphide, gallium arsenide, indium phosphide, indium antimonide, indium gallium arsenide, aluminum gallium arsenide, indium gallium phosphide, or a combination thereof. In one embodiment, a bulk substrate is composed of a group III-V material and the charge-carrier dopant impurity atoms are ones such as, but not limited to, carbon, silicon, germanium, oxygen, sulfur, selenium or tellurium.
As described throughout the present application, isolation regions such as shallow trench isolation regions or sub-fin isolation regions may be composed of a material suitable to ultimately electrically isolate, or contribute to the isolation of, portions of a permanent gate structure from an underlying bulk substrate or to isolate active regions formed within an underlying bulk substrate, such as isolating fin active regions. For example, in one embodiment, an isolation region is composed of one or more layers of a dielectric material such as, but not limited to, silicon dioxide, silicon oxy-nitride, silicon nitride, carbon-doped silicon nitride, or a combination thereof.
As described throughout the present application, gate lines or gate structures may be composed of a gate electrode stack which includes a gate dielectric layer and a gate electrode layer. In an embodiment, the gate electrode of the gate electrode stack is composed of a metal gate and the gate dielectric layer is composed of a high-k material. For example, in one embodiment, the gate dielectric layer is composed of a material such as, but not limited to, hafnium oxide, hafnium oxy-nitride, hafnium silicate, lanthanum oxide, zirconium oxide, zirconium silicate, tantalum oxide, barium strontium titanate, barium titanate, strontium titanate, yttrium oxide, aluminum oxide, lead scandium tantalum oxide, lead zinc niobate, or a combination thereof. Furthermore, a portion of gate dielectric layer may include a layer of native oxide formed from the top few layers of a semiconductor substrate. In an embodiment, the gate dielectric layer is composed of a top high-k portion and a lower portion composed of an oxide of a semiconductor material. In one embodiment, the gate dielectric layer is composed of a top portion of hafnium oxide and a bottom portion of silicon dioxide or silicon oxy-nitride. In some implementations, a portion of the gate dielectric is a “U”-shaped structure that includes a bottom portion substantially parallel to the surface of the substrate and two sidewall portions that are substantially perpendicular to the top surface of the substrate.
In one embodiment, a gate electrode is composed of a metal layer such as, but not limited to, metal nitrides, metal carbides, metal silicides, metal aluminides, hafnium, zirconium, titanium, tantalum, aluminum, ruthenium, palladium, platinum, cobalt, nickel or conductive metal oxides. In a specific embodiment, the gate electrode is composed of a non-workfunction-setting fill material formed above a metal workfunction-setting layer. The gate electrode layer may consist of a P-type workfunction metal or an N-type workfunction metal, depending on whether the transistor is to be a PMOS or an NMOS transistor. In some implementations, the gate electrode layer may consist of a stack of two or more metal layers, where one or more metal layers are workfunction metal layers and at least one metal layer is a conductive fill layer. For a PMOS transistor, metals that may be used for the gate electrode include, but are not limited to, ruthenium, palladium, platinum, cobalt, nickel, and conductive metal oxides, e.g., ruthenium oxide. A P-type metal layer will enable the formation of a PMOS gate electrode with a workfunction that is between about 4.9 eV and about 5.2 eV. For an NMOS transistor, metals that may be used for the gate electrode include, but are not limited to, hafnium, zirconium, titanium, tantalum, aluminum, alloys of these metals, and carbides of these metals such as hafnium carbide, zirconium carbide, titanium carbide, tantalum carbide, and aluminum carbide. An N-type metal layer will enable the formation of an NMOS gate electrode with a workfunction that is between about 3.9 eV and about 4.2 eV. In some implementations, the gate electrode may consist of a “U”-shaped structure that includes a bottom portion substantially parallel to the surface of the substrate and two sidewall portions that are substantially perpendicular to the top surface of the substrate. In another implementation, at least one of the metal layers that form the gate electrode may simply be a planar layer that is substantially parallel to the top surface of the substrate and does not include sidewall portions substantially perpendicular to the top surface of the substrate. In further implementations of the disclosure, the gate electrode may consist of a combination of U-shaped structures and planar, non-U-shaped structures. For example, the gate electrode may consist of one or more U-shaped metal layers formed atop one or more planar, non-U-shaped layers.
As described throughout the present application, spacers associated with gate lines or electrode stacks may be composed of a material suitable to ultimately electrically isolate, or contribute to the isolation of, a permanent gate structure from adjacent conductive contacts, such as self-aligned contacts. For example, in one embodiment, the spacers are composed of a dielectric material such as, but not limited to, silicon dioxide, silicon oxy-nitride, silicon nitride, or carbon-doped silicon nitride.
In an embodiment, approaches described herein may involve formation of a contact pattern which is very well aligned to an existing gate pattern while eliminating the use of a lithographic operation with exceedingly tight registration budget. In one such embodiment, this approach enables the use of intrinsically highly selective wet etching (e.g., versus dry or plasma etching) to generate contact openings. In an embodiment, a contact pattern is formed by utilizing an existing gate pattern in combination with a contact plug lithography operation. In one such embodiment, the approach enables elimination of the need for an otherwise critical lithography operation to generate a contact pattern, as used in other approaches. In an embodiment, a trench contact grid is not separately patterned, but is rather formed between poly (gate) lines. For example, in one such embodiment, a trench contact grid is formed subsequent to gate grating patterning but prior to gate grating cuts.
Furthermore, a gate stack structure may be fabricated by a replacement gate process. In such a scheme, dummy gate material such as polysilicon or silicon nitride pillar material, may be removed and replaced with permanent gate electrode material. In one such embodiment, a permanent gate dielectric layer is also formed in this process, as opposed to being carried through from earlier processing. In an embodiment, dummy gates are removed by a dry etch or wet etch process. In one embodiment, dummy gates are composed of polycrystalline silicon or amorphous silicon and are removed with a dry etch process including use of SF6. In another embodiment, dummy gates are composed of polycrystalline silicon or amorphous silicon and are removed with a wet etch process including use of aqueous NH4OH or tetramethylammonium hydroxide. In one embodiment, dummy gates are composed of silicon nitride and are removed with a wet etch including aqueous phosphoric acid.
In an embodiment, one or more approaches described herein contemplate essentially a dummy and replacement gate process in combination with a dummy and replacement contact process to arrive at structure. In one such embodiment, the replacement contact process is performed after the replacement gate process to allow high temperature anneal of at least a portion of the permanent gate stack. For example, in a specific such embodiment, an anneal of at least a portion of the permanent gate structures, e.g., after a gate dielectric layer is formed, is performed at a temperature greater than approximately 600 degrees Celsius. The anneal is performed prior to formation of the permanent contacts.
In some embodiments, the arrangement of a semiconductor structure or device places a gate contact over portions of a gate line or gate stack over isolation regions. However, such an arrangement may be viewed as inefficient use of layout space. In another embodiment, a semiconductor device has contact structures that contact portions of a gate electrode formed over an active region. In general, prior to (e.g., in addition to) forming a gate contact structure (such as a via) over an active portion of a gate and in a same layer as a trench contact via, one or more embodiments of the present disclosure include first using a gate aligned trench contact process. Such a process may be implemented to form trench contact structures for semiconductor structure fabrication, e.g., for integrated circuit fabrication. In an embodiment, a trench contact pattern is formed as aligned to an existing gate pattern. By contrast, other approaches typically involve an additional lithography process with tight registration of a lithographic contact pattern to an existing gate pattern in combination with selective contact etches. For example, another process may include patterning of a poly (gate) grid with separate patterning of contact features.
It is to be appreciated that not all aspects of the processes described above need be practiced to fall within the spirit and scope of embodiments of the present disclosure. For example, in one embodiment, dummy gates need not ever be formed prior to fabricating gate contacts over active portions of the gate stacks. The gate stacks described above may actually be permanent gate stacks as initially formed. Also, the processes described herein may be used to fabricate one or a plurality of semiconductor devices. The semiconductor devices may be transistors or like devices. For example, in an embodiment, the semiconductor devices are a metal-oxide semiconductor (MOS) transistors for logic or memory, or are bipolar transistors. Also, in an embodiment, the semiconductor devices have a three-dimensional architecture, such as a trigate device, an independently accessed double gate device, a FIN-FET, a nanowire, or a nanoribbon.
Additional or intermediate operations for FEOL layer or structure fabrication may include standard microelectronic fabrication processes such as lithography, etch, thin films deposition, planarization (such as chemical mechanical polishing (CMP)), diffusion, metrology, the use of sacrificial layers, the use of etch stop layers, the use of planarization stop layers, or any other associated action with microelectronic component fabrication. Also, it is to be appreciated that the process operations described for the preceding process flows may be practiced in alternative sequences, not every operation need be performed or additional process operations may be performed, or both.
It is to be appreciated that the layers and materials described above in association with back-end-of-line (BEOL) structures and processing may be formed on or above an underlying semiconductor substrate or structure, such as underlying device layer(s) of an integrated circuit. In an embodiment, an underlying semiconductor substrate represents a general workpiece object used to manufacture integrated circuits. The semiconductor substrate often includes a wafer or other piece of silicon or another semiconductor material. Suitable semiconductor substrates include, but are not limited to, single crystal silicon, polycrystalline silicon and silicon on insulator (SOI), as well as similar substrates formed of other semiconductor materials, such as substrates including germanium, carbon, or group III-V materials. The semiconductor substrate, depending on the stage of manufacture, often includes transistors, integrated circuitry, and the like. The substrate may also include semiconductor materials, metals, dielectrics, dopants, and other materials commonly found in semiconductor substrates. Furthermore, the structures depicted may be fabricated on underlying lower level interconnect layers.
Although the preceding methods of fabricating a metallization layer, or portions of a metallization layer, of a BEOL metallization layer are described in detail with respect to select operations, it is to be appreciated that additional or intermediate operations for fabrication may include standard microelectronic fabrication processes such as lithography, etch, thin films deposition, planarization (such as chemical mechanical polishing (CMP)), diffusion, metrology, the use of sacrificial layers, the use of etch stop layers, the use of planarization stop layers, or any other associated action with microelectronic component fabrication. Also, it is to be appreciated that the process operations described for the preceding process flows may be practiced in alternative sequences, not every operation need be performed or additional process operations may be performed or both.
In an embodiment, as used throughout the present description, interlayer dielectric (ILD) material is composed of or includes a layer of a dielectric or insulating material. Examples of suitable dielectric materials include, but are not limited to, oxides of silicon (e.g., silicon dioxide (SiO2)), doped oxides of silicon, fluorinated oxides of silicon, carbon doped oxides of silicon, various low-k dielectric materials known in the arts, and combinations thereof. The interlayer dielectric material may be formed by techniques, such as, for example, chemical vapor deposition (CVD), physical vapor deposition (PVD), or by other deposition methods.
In an embodiment, as is also used throughout the present description, metal lines or interconnect line material (and via material) is composed of one or more metal or other conductive structures. A common example is the use of copper lines and structures that may or may not include barrier layers between the copper and surrounding ILD material. As used herein, the term metal includes alloys, stacks, and other combinations of multiple metals. For example, the metal interconnect lines may include barrier layers (e.g., layers including one or more of Ta, TaN, Ti or TiN), stacks of different metals or alloys, etc. Thus, the interconnect lines may be a single material layer, or may be formed from several layers, including conductive liner layers and fill layers. Any suitable deposition process, such as electroplating, chemical vapor deposition or physical vapor deposition, may be used to form interconnect lines. In an embodiment, the interconnect lines are composed of a conductive material such as, but not limited to, Cu, Al, Ti, Zr, Hf, V, Ru, Co, Ni, Pd, Pt, W, Ag, Au or alloys thereof. The interconnect lines are also sometimes referred to in the art as traces, wires, lines, metal, or simply interconnect.
In an embodiment, as is also used throughout the present description, hardmask materials are composed of dielectric materials different from the interlayer dielectric material. In one embodiment, different hardmask materials may be used in different regions so as to provide different growth or etch selectivity to each other and to the underlying dielectric and metal layers. In some embodiments, a hardmask layer includes a layer of a nitride of silicon (e.g., silicon nitride) or a layer of an oxide of silicon, or both, or a combination thereof. Other suitable materials may include carbon-based materials. In another embodiment, a hardmask material includes a metal species. For example, a hardmask or other overlying material may include a layer of a nitride of titanium or another metal (e.g., titanium nitride). Potentially lesser amounts of other materials, such as oxygen, may be included in one or more of these layers. Alternatively, other hardmask layers known in the arts may be used depending upon the particular implementation. The hardmask layers maybe formed by CVD, PVD, or by other deposition methods.
Embodiments disclosed herein may be used to manufacture a wide variety of different types of integrated circuits or microelectronic devices. Examples of such integrated circuits include, but are not limited to, processors, chipset components, graphics processors, digital signal processors, micro-controllers, and the like. In other embodiments, semiconductor memory may be manufactured. Moreover, the integrated circuits or other microelectronic devices may be used in a wide variety of electronic devices known in the arts. For example, in computer systems (e.g., desktop, laptop, server), cellular phones, personal electronics, etc. The integrated circuits may be coupled with a bus and other components in the systems. For example, a processor may be coupled by one or more buses to a memory, a chipset, etc. Each of the processor, the memory, and the chipset, may potentially be manufactured using the approaches disclosed herein.
Depending on its applications, computing device 1100 may include other components that may or may not be physically and electrically coupled to the board 1102. These other components include, but are not limited to, volatile memory (e.g., DRAM), non-volatile memory (e.g., ROM), flash memory, a graphics processor, a digital signal processor, a crypto processor, a chipset, an antenna, a display, a touchscreen display, a touchscreen controller, a battery, an audio codec, a video codec, a power amplifier, a global positioning system (GPS) device, a compass, an accelerometer, a gyroscope, a speaker, a camera, and a mass storage device (such as hard disk drive, compact disk (CD), digital versatile disk (DVD), and so forth).
The communication chip 1106 enables wireless communications for the transfer of data to and from the computing device 1100. The term “wireless” and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not. The communication chip 1106 may implement any of a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. The computing device 1100 may include a plurality of communication chips 1106. For instance, a first communication chip 1106 may be dedicated to shorter range wireless communications such as Wi-Fi and Bluetooth and a second communication chip 1106 may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
The processor 1104 of the computing device 1100 includes an integrated circuit die packaged within the processor 1104. In some implementations of embodiments of the disclosure, the integrated circuit die of the processor includes one or more structures, such as integrated circuit structures built in accordance with implementations of the disclosure. The term “processor” may refer to any device or portion of a device that processes electronic data from registers or memory to transform that electronic data, or both, into other electronic data that may be stored in registers or memory, or both.
The communication chip 1106 also includes an integrated circuit die packaged within the communication chip 1106. In accordance with another implementation of the disclosure, the integrated circuit die of the communication chip is built in accordance with implementations of the disclosure.
In further implementations, another component housed within the computing device 1100 may contain an integrated circuit die built in accordance with implementations of embodiments of the disclosure.
In various embodiments, the computing device 1100 may be a laptop, a netbook, a notebook, an ultrabook, a smartphone, a tablet, a personal digital assistant (PDA), an ultramobile PC, a mobile phone, a desktop computer, a server, a printer, a scanner, a monitor, a set-top box, an entertainment control unit, a digital camera, a portable music player, or a digital video recorder. In further implementations, the computing device 1100 may be any other electronic device that processes data.
The interposer 1200 may be formed of an epoxy resin, a fiberglass-reinforced epoxy resin, a ceramic material, or a polymer material such as polyimide. In further implementations, the interposer 1200 may be formed of alternate rigid or flexible materials that may include the same materials described above for use in a semiconductor substrate, such as silicon, germanium, and other group III-V and group IV materials.
The interposer 1200 may include metal interconnects 1208 and vias 1210, including but not limited to through-silicon vias (TSVs) 1212. The interposer 1200 may further include embedded devices 1214, including both passive and active devices. Such devices include, but are not limited to, capacitors, decoupling capacitors, resistors, inductors, fuses, diodes, transformers, sensors, and electrostatic discharge (ESD) devices. More complex devices such as radio-frequency (RF) devices, power amplifiers, power management devices, antennas, arrays, sensors, and MEMS devices may also be formed on the interposer 1200. In accordance with embodiments of the disclosure, apparatuses or processes disclosed herein may be used in the fabrication of interposer 1200 or in the fabrication of components included in the interposer 1200.
The mobile computing platform 1300 may be any portable device configured for each of electronic data display, electronic data processing, and wireless electronic data transmission. For example, mobile computing platform 1300 may be any of a tablet, a smart phone, laptop computer, etc. and includes a display screen 1305 which in the exemplary embodiment is a touchscreen (capacitive, inductive, resistive, etc.), a chip-level (SoC) or package-level integrated system 1310, and a battery 1313. As illustrated, the greater the level of integration in the system 1310 enabled by higher transistor packing density, the greater the portion of the mobile computing platform 1300 that may be occupied by the battery 1313 or non-volatile storage, such as a solid state drive, or the greater the transistor gate count for improved platform functionality. Similarly, the greater the carrier mobility of each transistor in the system 1310, the greater the functionality. As such, techniques described herein may enable performance and form factor improvements in the mobile computing platform 1300.
The integrated system 1310 is further illustrated in the expanded view 1320. In the exemplary embodiment, packaged device 1377 includes at least one memory chip (e.g., RAM), or at least one processor chip (e.g., a multi-core microprocessor and/or graphics processor) fabricated according to one or more processes described herein or including one or more features described herein. The packaged device 1377 is further coupled to the board 1360 along with one or more of a power management integrated circuit (PMIC) 1315, RF (wireless) integrated circuit (RFIC) 1325 including a wideband RF (wireless) transmitter and/or receiver (e.g., including a digital baseband and an analog front end module further includes a power amplifier on a transmit path and a low noise amplifier on a receive path), and a controller thereof 1311. Functionally, the PMIC 1315 performs battery power regulation, DC-to-DC conversion, etc., and so has an input coupled to the battery 1313 and with an output providing a current supply to all the other functional modules. As further illustrated, in the exemplary embodiment, the RFIC 1325 has an output coupled to an antenna to provide to implement any of a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. In alternative implementations, each of these board-level modules may be integrated onto separate ICs coupled to the package substrate of the packaged device 1377 or within a single IC (SoC) coupled to the package substrate of the packaged device 1377.
In another aspect, semiconductor packages are used for protecting an integrated circuit (IC) chip or die, and also to provide the die with an electrical interface to external circuitry. With the increasing demand for smaller electronic devices, semiconductor packages are designed to be even more compact and must support larger circuit density. Furthermore, the demand for higher performance devices results in a need for an improved semiconductor package that enables a thin packaging profile and low overall warpage compatible with subsequent assembly processing.
In an embodiment, wire bonding to a ceramic or organic package substrate is used. In another embodiment, a C4 process is used to mount a die to a ceramic or organic package substrate. In particular, C4 solder ball connections can be implemented to provide flip chip interconnections between semiconductor devices and substrates. A flip chip or Controlled Collapse Chip Connection (C4) is a type of mounting used for semiconductor devices, such as integrated circuit (IC) chips, MEMS or components, which utilizes solder bumps instead of wire bonds. The solder bumps are deposited on the C4 pads, located on the top side of the substrate package. In order to mount the semiconductor device to the substrate, it is flipped over with the active side facing down on the mounting area. The solder bumps are used to connect the semiconductor device directly to the substrate.
Processing a flip chip may be similar to conventional IC fabrication, with a few additional operations. Near the end of the manufacturing process, the attachment pads are metalized to make them more receptive to solder. This typically consists of several treatments. A small dot of solder is then deposited on each metalized pad. The chips are then cut out of the wafer as normal. To attach the flip chip into a circuit, the chip is inverted to bring the solder dots down onto connectors on the underlying electronics or circuit board. The solder is then re-melted to produce an electrical connection, typically using an ultrasonic or alternatively reflow solder process. This also leaves a small space between the chip's circuitry and the underlying mounting. In most cases an electrically-insulating adhesive is then “underfilled” to provide a stronger mechanical connection, provide a heat bridge, and to ensure the solder joints are not stressed due to differential heating of the chip and the rest of the system.
In other embodiments, newer packaging and die-to-die interconnect approaches, such as through silicon via (TSV) and silicon interposer, are implemented to fabricate high performance Multi-Chip Module (MCM) and System in Package (SiP) incorporating an integrated circuit (IC) fabricated according to one or more processes described herein or including one or more features described herein, in accordance with an embodiment of the present disclosure.
Thus, embodiments of the present disclosure include gallium nitride (GaN) layer on carburized substrate for integrated circuit technology.
Although specific embodiments have been described above, these embodiments are not intended to limit the scope of the present disclosure, even where only a single embodiment is described with respect to a particular feature. Examples of features provided in the disclosure are intended to be illustrative rather than restrictive unless stated otherwise. The above description is intended to cover such alternatives, modifications, and equivalents as would be apparent to a person skilled in the art having the benefit of the present disclosure.
The scope of the present disclosure includes any feature or combination of features disclosed herein (either explicitly or implicitly), or any generalization thereof, whether or not it mitigates any or all of the problems addressed herein. Accordingly, new claims may be formulated during prosecution of the present application (or an application claiming priority thereto) to any such combination of features. In particular, with reference to the appended claims, features from dependent claims may be combined with those of the independent claims and features from respective independent claims may be combined in any appropriate manner and not merely in the specific combinations enumerated in the appended claims.
The following examples pertain to further embodiments. The various features of the different embodiments may be variously combined with some features included and others excluded to suit a variety of different applications.
Example embodiment 1: An integrated circuit structure includes a substrate including silicon. A layer comprising silicon and carbon is above the substrate, the layer comprising silicon and carbon having a top surface with a silicon face. A layer comprising gallium and nitrogen is on the layer comprising silicon and carbon, the layer comprising gallium and nitrogen having a gallium-polar orientation with a top crystal plane consisting of a gallium face.
Example embodiment 2: The integrated circuit structure of example embodiment 1, wherein the layer comprising gallium and nitrogen is a Ga-polar GaN layer.
Example embodiment 3: The integrated circuit structure of example embodiment 1 or 2, wherein the layer comprising silicon and carbon is a Si-face SiC layer.
Example embodiment 4: The integrated circuit structure of example embodiment 1, 2 or 3, further comprising an amorphous silicon layer or a polycrystalline silicon layer between the substrate and the layer comprising silicon and carbon.
Example embodiment 5: The integrated circuit structure of example embodiment 1, 2, 3 or 4, further comprising a Ga-polar GaN transistor in or on the Ga-polar GaN layer.
Example embodiment 6: A computing device includes a board, and a component coupled to the board. The component includes an integrated circuit structure including a substrate including silicon. A layer comprising silicon and carbon is above the substrate, the layer comprising silicon and carbon having a top surface with a silicon face. A layer comprising gallium and nitrogen is on the layer comprising silicon and carbon, the layer comprising gallium and nitrogen having a gallium-polar orientation with a top crystal plane consisting of a gallium face.
Example embodiment 7: The computing device of example embodiment 6, further including a memory coupled to the board.
Example embodiment 8: The computing device of example embodiment 6 or 7, further including a communication chip coupled to the board.
Example embodiment 9: The computing device of example embodiment 6, 7 or 8, further including a camera coupled to the board.
Example embodiment 10: The computing device of example embodiment 6, 7, 8 or 9, wherein the component is a packaged integrated circuit die.
Example embodiment 11: An integrated circuit structure includes a substrate including silicon. A layer comprising silicon and carbon is above the substrate, the layer comprising silicon and carbon having a top surface with a carbon face. A layer comprising gallium and nitrogen is on the layer comprising silicon and carbon, the layer comprising gallium and nitrogen having a nitrogen-polar orientation with a top crystal plane consisting of a nitrogen face.
Example embodiment 12: The integrated circuit structure of example embodiment 11, wherein the layer comprising gallium and nitrogen is an N-polar GaN layer.
Example embodiment 13: The integrated circuit structure of example embodiment 11 or 12, wherein the layer comprising silicon and carbon is a C-face SiC layer.
Example embodiment 14: The integrated circuit structure of example embodiment 11, 12 or 13, further comprising an amorphous silicon layer or a polycrystalline silicon layer between the substrate and the layer comprising silicon and carbon.
Example embodiment 15: The integrated circuit structure of example embodiment 11, 12, 13 or 14, further comprising an N-polar GaN transistor in or on the N-polar GaN layer.
Example embodiment 16: A computing device includes a board, and a component coupled to the board. The component includes an integrated circuit structure including a substrate including silicon. A layer comprising silicon and carbon is above the substrate, the layer comprising silicon and carbon having a top surface with a carbon face. A layer comprising gallium and nitrogen is on the layer comprising silicon and carbon, the layer comprising gallium and nitrogen having a nitrogen-polar orientation with a top crystal plane consisting of a nitrogen face.
Example embodiment 17: The computing device of example embodiment 16, further including a memory coupled to the board.
Example embodiment 18: The computing device of example embodiment 16 or 17, further including a communication chip coupled to the board.
Example embodiment 19: The computing device of example embodiment 16, 17 or 18, further including a camera coupled to the board.
Example embodiment 20: The computing device of example embodiment 16, 17, 18 or 19, wherein the component is a packaged integrated circuit die.