The present disclosure relates to gas and liquid injection systems and methods, and more particularly to gas and liquid injection systems and methods for film deposition and other processes.
The background description provided herein is for the purpose of generally presenting the context of the disclosure. Work of the presently named inventors, to the extent the work is described in this background section, as well as aspects of the description that may not otherwise qualify as prior art at the time of filing, are neither expressly nor impliedly admitted as prior art against the present disclosure.
During semiconductor processing, films may need to be deposited on a substrate. A semiconductor processing system deposits the film in a processing chamber. A substrate may be positioned on a pedestal that is located in the processing chamber. To deposit the film, a precursor gas may be supplied to the processing chamber for a predetermined period. After exposing the substrate, the precursor gas may be purged from the processing chamber. Then, oxidation or plasma treatment may be performed. These steps may be repeated a number of times to build up the thickness of the film on the substrate.
Mass flow controllers may be used to meter the flow of a precursor liquid that is vaporized into the precursor gas that is supplied to the processing chamber. For some films, once saturation of the precursor gas is reached in the processing chamber, any additional precursor gas that is added is wasted. Therefore very precise metering of the precursor liquid and/or gas is required to minimize production costs. However, precise mass flow controllers are also very expensive, which increases the cost of the semiconductor processing equipment.
A liquid injection system for a processing chamber includes a liquid injector that receives a liquid from a liquid supply and that selectively pulses the liquid into a conduit. A control module selects a number of pulses and a pulse width of the liquid injector. A gas supply supplies gas into the conduit. A sensor senses at least one of a first temperature and a first pressure in the conduit and generates at least one of a first temperature signal and a first pressure signal, respectively. The control module confirms that the selected number of pulses occur based on the at least one of the first temperature signal and the first pressure signal.
In other features, a heated manifold surrounds the conduit. The sensor senses the at least one of the first temperature and the first pressure in portions of the conduit heated by the heated manifold. The control module includes a pulse counting module that communicates with the sensor and that counts pulses based on the at least one of the first temperature signal and the first pressure signal. A pulse parameter module selects the number of pulses and the pulse width of the pulses. A comparing module compares the selected number of pulses to the counted number of pulses.
In other features, the control module further comprises a pulse width modulation (PWM) module that generates control signals that are output to the liquid injector. A sensor senses at least one of a second temperature and a second pressure of the liquid from the liquid supply and generates at least one of a second temperature signal and a second pressure signal. The pulse parameter module determines at least one of the number of pulses and the pulse width based on the at least one of the second temperature signal and the second pressure signal.
In other features, the liquid injector includes an automotive-type fuel injector. The liquid injector includes at least one of a pintle style injector, a disc style injector, and a ball seat style injector. The liquid injector and the gas supply are coupled to a fitting that is connected to the conduit. The processing chamber comprises a semiconductor processing chamber.
A system includes the liquid injection system and further includes a lithography patterning tool.
A method for operating a processing chamber comprises receiving a liquid from a liquid supply at a liquid injector; selecting a number of pulses and a pulse width of the liquid injector; selectively pulsing the liquid into a conduit using the liquid injector; supplying gas from a gas supply into the conduit; sensing at least one of a first temperature and a first pressure in the conduit and generating at least one of a first temperature signal and a first pressure signal, respectively; and confirming that the selected number of pulses occur based on the at least one of the first temperature signal and the first pressure signal.
The method further comprises heating the conduit. The method further comprises sensing the at least one of the first temperature and the first pressure in portions of the conduit that are heated. The method further comprises counting pulses based on the at least one of the first temperature signal and the first pressure signal; and comparing the selected number of pulses to the counted number of pulses.
In other features, the method includes generating pulse width modulation control signals that are output to the liquid injector. The method includes sensing at least one of a second temperature and a second pressure of the liquid from the liquid supply and generating at least one of a second temperature signal and a second pressure signal. The method includes determining at least one of the number of pulses and the pulse width based on the at least one of the second temperature signal and the second pressure signal.
In other features, the liquid injector includes an automotive-type fuel injector. The liquid injector includes at least one of a pintle style injector, a disc style injector, and a ball seat style injector. The liquid injector and the supply are coupled to a fitting that is connected to the conduit. The processing chamber comprises a semiconductor processing chamber.
A semiconductor manufacturing method further comprises at least one of before and after placing a substrate in the processing chamber: applying photoresist to the substrate; exposing the photoresist to light; patterning the photoresist and transferring the pattern to the substrate; and selectively removing the photoresist from the substrate.
A non-transitory computer machine-readable medium comprises program instructions for control of a processing chamber. The program instructions comprise code for: selecting a number of pulses and a pulse width of a liquid injector receiving a liquid from a liquid supply; selectively pulsing the liquid into a conduit using the liquid injector; supplying gas into the conduit; sensing at least one of a first temperature and a first pressure in the conduit and generating at least one of a first temperature signal and a first pressure signal, respectively; and confirming that the selected number of pulses occur based on the at least one of the first temperature signal and the first pressure signal.
A liquid injection system for a processing chamber includes a manifold defining a fluid passageway receiving gas from a gas supply. A liquid injector is arranged in the manifold that receives a liquid from a liquid supply and selectively pulses the liquid into the fluid passageway. A control module selects a number of pulses and a pulse width of the liquid injector. A sensor is arranged in the manifold, senses at least one of a first temperature and a first pressure in the fluid passageway and generates at least one of a first temperature signal and a first pressure signal. The control module confirms that the selected number of pulses occur based on the at least one of the first temperature signal and the first pressure signal.
In other features, the manifold is a heated manifold. The control module includes a pulse counting module that communicates with the sensor and that counts pulses based on the at least one of the first temperature signal and the first pressure signal, a pulse parameter module that selects the number of pulses and the pulse width of the pulses, and a comparing module that compares the selected number of pulses to the counted number of pulses.
In other features, the control module further comprises a pulse width modulation (PWM) module that generates control signals that are output to the liquid injector. A sensor senses at least one of a second temperature and a second pressure of the liquid from the liquid supply and generates at least one of a second temperature signal and a second pressure signal.
In other features, the pulse parameter module determines at least one of the number of pulses and the pulse width based on the at least one of the second temperature signal and the second pressure signal. The liquid injector includes an automotive-type fuel injector. The processing chamber comprises a semiconductor processing chamber.
In other features, a nozzle is arranged in the fluid passageway upstream from the injector. The injector is arranged perpendicular to the fluid passageway. The liquid injector includes at least one of a pintle style injector, a disc style injector, and a ball seat style injector.
A semiconductor manufacturing system includes the liquid injection system and further includes a lithography patterning tool.
A method for operating a processing chamber includes arranging a liquid injector in a manifold defining a fluid passageway receiving gas from a gas supply; selecting a number of pulses and a pulse width of the liquid injector; receiving a liquid from a liquid supply at the injector and selectively pulsing the liquid into the fluid passageway; sensing at least one of a first temperature and a first pressure in the fluid passageway and generating at least one of a first temperature signal and a first pressure signal; and confirming that the selected number of pulses occur based on the at least one of the first temperature signal and the first pressure signal.
In other features, the method includes heating the manifold. The method includes counting pulses based on the at least one of the first temperature signal and the first pressure signal; and comparing the selected number of pulses to the counted number of pulses.
In other features, the method includes generating pulse width modulation (PWM) control signals that are output to the liquid injector. The method includes sensing at least one of a second temperature and a second pressure of the liquid from the liquid supply and generating at least one of a second temperature signal and a second pressure signal. The method includes determining at least one of the number of pulses and the pulse width based on the at least one of the second temperature signal and the second pressure signal.
In other features, the liquid injector includes an automotive-type fuel injector. The processing chamber comprises a semiconductor processing chamber. The method includes arranging a nozzle in the fluid passageway upstream from the injector. The method includes arranging the liquid injector perpendicular to the fluid passageway.
In other features, the liquid injector includes at least one of a pintle style injector, a disc style injector, and a ball seat style injector.
A semiconductor manufacturing method include the method and further includes at least one of before and after treating a substrate in the processing chamber: applying photoresist to the substrate; exposing the photoresist to light; patterning the photoresist and transferring the pattern to the substrate; and selectively removing the photoresist from the substrate.
A gas injection system for a processing chamber includes a gas injector that receives gas from a gas supply. A sensor is arranged upstream from the gas injector to sense at least one of a first temperature and a first pressure in a fluid passageway between the gas supply and the gas injector and to generate at least one of a first temperature signal and a first pressure signal. A control module communicates with the gas injector and selects a number of pulses and a pulse width of the gas injector to provide a predetermined flow of the gas to the processing chamber based on the at least one of the first temperature signal and the first pressure signal.
In other features, the control module includes a pulse parameter module that selects the number of pulses and the pulse width of the pulses and a pulse width modulation (PWM) module that generates control signals that are output to the gas injector.
In other features, the gas injector includes an at least one of automotive-type fuel injector. The gas injector includes at least one of a pintle style injector, a disc style injector, and a ball seat style injector. The processing chamber comprises a semiconductor processing chamber. The control module varies the pulse width above a predetermined pulse width to cause pulsing of plasma in the semiconductor processing chamber due to the gas injection.
In other features, the control module varies the pulse width below the predetermined pulse width to prevent pulsing of plasma in the semiconductor processing chamber due to the gas injection.
A semiconductor manufacturing system includes the gas injection system and further includes a lithography patterning tool.
A method for operating a processing chamber includes arranging a sensor upstream from a gas injector that receives gas from a gas supply; sensing at least one of a first temperature and a first pressure in a fluid passageway between the gas supply and the gas injector and generating at least one of a first temperature signal and a first pressure signal; and selecting a number of pulses and a pulse width of the gas injector to provide a predetermined flow of the gas to the processing chamber based on the at least one of the first temperature signal and the first pressure signal.
In other features, the method includes generating control signals that are output to the gas injector. The gas injector includes an automotive-type fuel injector. The gas injector includes at least one of a pintle style injector, a disc style injector, and a ball seat style injector. The processing chamber comprises a semiconductor processing chamber.
In other features, the method includes varying the pulse width above a predetermined pulse width to cause pulsing of plasma in the semiconductor processing chamber due to injection of the gas. The method includes varying the pulse width below the predetermined pulse width to prevent pulsing of plasma in the semiconductor processing chamber due to injection of the gas.
A semiconductor manufacturing method includes the method and further includes at least one of before and after placing a substrate in the processing chamber: applying photoresist to the substrate; exposing the photoresist to light; patterning the photoresist and transferring the pattern to the substrate; and selectively removing the photoresist from the substrate.
Further areas of applicability of the present disclosure will become apparent from the detailed description, the claims and the drawings. The detailed description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the disclosure.
The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description is merely illustrative in nature and is in no way intended to limit the disclosure, its application, or uses. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements. As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A or B or C), using a non-exclusive logical OR. It should be understood that steps within a method may be executed in different order without altering the principles of the present disclosure.
In addition,
Referring now to
A gas supply 24 supplies gas through a conduit 28, which is connected to a fitting 29. The gas may be heated or unheated. The injector tip 22 may be disposed inside the fitting 29 such that gas flows across the injector tip 22 as it flows to the processing chamber.
A heated manifold 32 receives flow of gas and the precursor from the fitting 29. The injector 20 injects relatively small droplets of the precursor into the heated manifold 32. The droplets are sheared by the gas and heated by the heated manifold 32 to a gaseous state. The precursor gas is delivered to a chamber 36. As can be appreciated, it is important to prevent liquid droplets of the precursor from reaching the processing chamber 36 and contaminating the substrate.
A sensor 48 such as a temperature sensor or a pressure sensor senses either the temperature or pressure of the precursor gas. The sensor 48 generates a temperature signal or a pressure signal, which is output to a control module 38. The control module 38 monitors the temperature signal and/or the pressure signal to ensure that a selected number N of pulses occur, where N is an integer greater than 0. As discussed above, it is important when depositing films such as conformal films or in other processes to have the correct amount of precursor or other liquid (or gas) without excess to minimize cost.
The control module 38 may include a pulse parameter module 40 that outputs a duty cycle, a pulse width, and a number of pulses N to a pulse width modulation (PWM) control module 52. The PWM control module 52 outputs switch signals to the injector 20. A relay may be used between the PWM control module 52 and the injector 20.
The control module 38 includes a pulse counting module 42 that determines the number of pulses that actually occurred. The control module 38 includes a comparing module 44 that compares the desired number of pulses N to the number of pulses that actually occurred. The comparing module 44 may generate an error signal when a mismatch occurs.
One or more additional sensors 56, such as a temperature sensor and/or a pressure sensor, monitor conditions such as temperature and/or pressure on an inlet side of the injector 20. The pulse parameter module 40 may adjust one or more of the pulse parameters such as the duty cycle, the pulse width, and the number of pulses N in response to changes in the sensed conditions at the inlet side of the injector 20. For example only, changes can be made by the pulse parameter module 40 to the pulse parameters in response to changes in the temperature and/or pressure conditions. Changes can be made continuously, on a discrete time basis, on an event basis or using other criteria.
Referring now to
As the injector injects liquid into the heated manifold, the temperature and pressure of the gas in the heated manifold 32 varies. More particularly, the pressure increases in response to an injection pulse and then falls. Likewise, the temperature in the heated manifold decreases and then rises. While the sensor may measure either the pressure or the temperature, suitable temperature sensors tend to have a lower cost.
Referring now to
Referring now to
Referring now to
In
In
Referring now to
As can be appreciated, the injector 20 may be arranged at varying angles relative to the direction of gas flowing through the heated manifold 32. For example, the conduit 28 and the injector 20 may form an angle of approximately 120° relative to each other and to the direction of gas flowing through the heated manifold 32, although other angles may be used.
Referring now to
While the examples in
Referring now to
Referring now to
Where m is the mass flow rate in kg/s, C is the discharge coefficient, A is the discharge hole cross-sectional area in m2, k is equal to cp/cv, cp is the specific heat of the gas at constant pressure, cv is the specific heat of the gas at constant volume, p is the real gas density at P and T in kg/m2, P is the absolute upstream pressure of the gas in Pa, and M is the gas molecular mass in kg/mole.
Since there is linear dependence on pressure, flow through the injector 320 appears to be choked. Therefore, the compressible gas flow theory is applicable. Flow is independent of the downstream pressure as long as the choking condition is met. As a result, the downstream flow can be maintained by controlling the upstream pressure. The accuracy of the flow is dependent upon the accuracy of the pressure sensor 322. Pressure sensors have an accuracy of ˜1% of reading/0.25% full scale, which is similar to the accuracy of more expensive mass flow controllers.
As can be appreciated, the injector 320 can be located in various positions between the gas box 304 and the shower head 330 or chamber 332. Referring now to
In
Referring now to
Referring now to
The present disclosure enables different plasma conditions with the same overall flow rate by modifying either PWM parameters and/or injector location. The present disclosure allows differentiated use of the injector where a parameter other than flow rate can be controlled. The present disclosure also allows different deposition conditions with same flow rate. The present disclosure offers a less expensive way to achieve the same effects as more expensive techniques such as plasma pulsers by pulsing the RF or in general excitation energy for the plasma.
For example only, the injectors used in both the liquid and gas injection systems may include automotive-style fuel injectors or automotive style fuel injectors that have been modified for semiconductor applications. Many automotive-style fuel injectors include brass or copper components. In some examples, the brass or copper components may be replaced with components made of steel, aluminum or another metal or alloy that does not contain copper. Still other material changes may be made. Likewise, flow rates of the automotive-style injectors may also be altered to suit a particular semiconductor application.
The apparatus/process described herein may be used in a process for depositing a film on a substrate, etching a film on a substrate, cleaning a film on substrate, chemically treating a film on a substrate, and/or otherwise processing a film on a substrate.
Referring now to
Referring now to
The apparatus/process described herein may be used in conjunction with the lithographic patterning tools or processes, for example, for the fabrication or manufacture of semiconductor devices, displays, LEDs, photovoltaic panels and the like. Typically, though not necessarily, such tools/processes will be used or conducted together in a common fabrication facility. Lithographic patterning of a film typically comprises some or all of the following, each enabled with a number of possible tools: (1) application of photoresist on a workpiece, i.e., substrate, using a resist applicator tool 462 such as a spin-on or spray-on tool; (2) curing of photoresist using a curing tool 464 such as a hot plate or furnace or UV curing tool; (3) exposing the photoresist to visible or UV or x-ray light with a photoresist exposing tool 466 such as a wafer stepper; (4) developing the resist so as to selectively remove resist and thereby pattern it using a tool such as a wet bench; (5) transferring the resist pattern into an underlying film or workpiece by using a transfer tool 468 such as a dry or plasma-assisted etching tool; and (6) removing the resist using a stripping tool 470 such as an RF or microwave plasma resist stripper.
As used herein, the term module may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC); an electronic circuit; a combinational logic circuit; a field programmable gate array (FPGA); a processor (shared, dedicated, or group) that interfaces with memory and executes code; other suitable components that provide the described functionality; or a combination of some or all of the above. The term code, as used above, may include software, firmware, and/or microcode, and may refer to programs, routines, functions, classes, and/or objects. The term shared, as used above, means that some or all code from multiple modules may be executed using a single (shared) processor. In addition, some or all code from multiple modules may be stored by a single (shared) memory. The term group, as used above, means that some or all code from a single module may be executed using a group of processors. In addition, some or all code from a single module may be stored using a group of memories.
The apparatuses and methods described herein may be implemented by one or more computer programs executed by one or more processors. The computer programs include processor-executable instructions that are stored on a non-transitory tangible computer readable medium. The computer programs may also include stored data. Non-limiting examples of the non-transitory tangible computer readable medium are nonvolatile memory, magnetic storage, and optical storage.
The broad teachings of the disclosure can be implemented in a variety of forms. Therefore, while this disclosure includes particular examples, the true scope of the disclosure should not be so limited since other modifications will become apparent upon a study of the drawings, the specification, and the following claims.
This application claims the benefit of U.S. Provisional Application No. 61/324,710, filed on Apr. 15, 2010, U.S. Provisional Application No. 61/372,367, filed on Aug. 10, 2010, U.S. Provisional Application No. 61/379,081, filed on Sep. 1, 2010, U.S. Provisional Application No. 61/417,807, filed on Nov. 29, 2010 and U.S. Provisional Application No. 61/439,619, filed on Feb. 4, 2011. The disclosures of the above applications are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
61324710 | Apr 2010 | US | |
61372367 | Aug 2010 | US | |
61379081 | Sep 2010 | US | |
61417807 | Nov 2010 | US | |
61439619 | Feb 2011 | US |