The present invention relates to a grinding apparatus.
As disclosed in Japanese Patent Laid-open No. 2008-073785 and Japanese Patent Laid-open No. 2019-130607, a grinding apparatus for grinding a wafer held by a holding surface of a chuck table includes a first height gauge that measures the height of the holding surface, a second height gauge that measures the height of an upper surface of the wafer, and a calculation section that calculates the difference between the height of the holding surface measured by the first height gauge and the height of the upper surface of the wafer measured by the second height gauge, as the thickness of the wafer, and in the grinding apparatus, grinding is conducted until a predetermined thickness is reached while the thickness of the wafer is calculated.
For example, as illustrated in
However, according to the abovementioned method, though the arm can be made short, it cannot be said that the thickness of the wafer can be accurately measured. The provision of the arm is considered to have a bad influence on measurement of the thickness of the wafer.
Accordingly, it is an object of the present invention to provide a novel grinding apparatus with which the thickness of the wafer can be accurately measured.
In accordance with an aspect of the present invention, there is provided a grinding apparatus including a chuck table that holds a wafer on a holding surface; a grinding unit that has a spindle unit in which a spindle with an annular grindstone mounted to a tip thereof is rotatably supported and that grinds the wafer by use of the grindstone; a grinding feeding mechanism that puts the grinding unit into grinding feeding in a grinding feeding direction perpendicular to the holding surface; a first height gauge that measures a height of the holding surface; a second height gauge that measures a height of an upper surface of the wafer held on the holding surface; and a calculation section that calculates a difference between the height of the holding surface measured by the first height gauge and the height of the upper surface of the wafer measured by the second height gauge, as a thickness of the wafer. In the grinding apparatus, the first height gauge and the second height gauge are disposed in the grinding unit.
Preferably, the grinding unit includes a holder having a support plate that has an opening for exposing a lower portion of the spindle and that supports the spindle unit and a side plate erected from a periphery of the support plate, and the first height gauge and the second height gauge are disposed on the side plate such that a first measurement point of the first height gauge and a second measurement point of the second height gauge are positioned in the vicinity of a processing region where the grindstone grinds the wafer.
In addition, preferably, when the grinding unit is lowered in a direction for approaching the holding surface by the grinding feeding mechanism, the first height gauge measures the height of the holding surface and the second height gauge measures the height of the upper surface of the wafer, before the grindstone comes into contact with the wafer.
In the grinding apparatus according to one aspect of the present invention, the first measurement point and the second measurement point can be positioned in the vicinity of the processing region where the upper surface of the wafer and the lower surface of the grindstone come into contact with each other, and, thus, the thickness of the wafer that is obtained immediately after grinding has started can be accurately measured, and fine variation in the thickness of the wafer that is recognized immediately after grinding has started can be recognized.
In addition, in the case where the first height gauge and the second height gauge are disposed on the side plate of the holder, it is possible, by causing the grindstone to approach the upper surface of the wafer by use of the grinding feeding mechanism, to simultaneously lower the first height gauge and the second height gauge. Further, since both height gauges are separated away from the upper surface of the wafer together with the grindstone when the grindstone is spaced away from the upper surface of the wafer by use of the grinding feeding mechanism, operability of maintenance work and the like can be enhanced.
The above and other objects, features and advantages of the present invention and the manner of realizing them will become more apparent, and the invention itself will best be understood from a study of the following description and appended claims with reference to the attached drawings showing a preferred embodiment of the invention.
An embodiment of the present invention will be described below with reference to the attached drawings.
1. Configuration of Grinding Apparatus
A grinding apparatus 1 illustrated in
As depicted in
A chuck table 2 is disposed on the base 10. The chuck table 2 includes a suction section 20 that has a porous member and a frame body 21 that supports the suction section 20. An upper surface of the suction section 20 is a holding surface 200 that holds the wafer 17, and is formed in a comparatively gentle conical surface. In addition, an upper surface 210 of the frame body 21 is formed flush with the holding surface 200.
An unillustrated suction source is connected to the holding surface 200. With the suction source operated, a suction force generated is transmitted to the holding surface 200. For example, in a state in which the wafer 17 is mounted on the holding surface 200, the suction force generated by operation of the suction source is transmitted to the holding surface 200, whereby the wafer 17 can be held under suction on the holding surface 200. In this instance, the wafer 17 is held on the holding surface 200 so as to be along the conical surface of the holding surface 200, so that, in the state in which the wafer 17 is held on the holding surface 200, an upper surface 170 of the wafer 17 is substantially conical in shape.
The chuck table 2 is detachably mounted to a base 23. The base 23 is rotatably supported by an annular connection member 29, and the connection member 29 is supported by three support shafts 291 (two of which are depicted in
The support member 240 is opened, and a rotating mechanism 26 that rotates the chuck table 2 is disposed at the opening part of the support member 240. The rotating mechanism 26 is, for example, a pulley mechanism, and includes a driving shaft 262 configured to be rotatable by a motor 260 around an axis 25 substantially in a Z-axis direction, a driving pulley 263 connected to an upper end of the driving shaft 262, a transmission belt 264 that is wound around the driving pulley 263 to transmit a driving force of the driving pulley 263 to a driven pulley 265, the driven pulley 265 wound by the transmission belt 264 together with the driving pulley 263, a driven shaft 266 connected to the driven pulley 265, and a rotary joint 267 connected to a lower end of the driven shaft 266. The driven shaft 266 is connected to the base 23.
When the driving shaft 262 is rotated by use of the motor 260, the driving pulley 263 is rotated, and a rotating force of the driving pulley 263 is transmitted by the transmission belt 264 to the driven pulley 265, whereby the driven pulley 265 is rotated. As a result, the driven shaft 266 connected to the driven pulley 265 is rotated around the axis 25, to rotate the base 23 connected to the driven shaft 266 and the chuck table 2 mounted to the base 23, around the axis 25.
On a side surface on a −Y direction side of the column 11, a grinding feeding mechanism 4 that puts the grinding unit 3 into grinding feeding in a grinding feeding direction perpendicular to the holding surface 200 is disposed.
The grinding unit 3 includes a spindle unit 35 having a spindle 30 having an axis in the Z-axis direction, a spindle housing 31 supporting the spindle 30 in a rotatable manner, and a spindle motor 32 driving, in a rotational manner, the spindle 30 around an axis in the Z-axis direction.
In addition, the grinding unit 3 includes a mount 33 connected to a lower end of the spindle 30 and a grinding wheel 34 detachably mounted to a lower surface of the mount 33.
The grinding wheel 34 includes a wheel base 341 and a plurality of substantially rectangular parallelepiped grindstones 340 arranged in an annular pattern on a lower surface of the wheel base 341. Lower surfaces 342 of the grindstones 340 are grinding surfaces that come into contact with the wafer 17.
With the spindle 30 is rotated by use of the spindle motor 32, the mount 33 connected to the spindle 30 and the grinding wheel 34 mounted to the lower surface of the mount 33 are rotated as one body.
In addition, the spindle 30, the mount 33, and the wheel base 341 are formed with a grinding water channel 80 in a penetrating manner. The grinding water channel 80 is connected to a grinding water source 8, and, with grinding water supplied from the grinding water source 8, the grinding water is passed through the inside of the spindle 30, the mount 33, and the wheel base 341 to be supplied through the lower end of the wheel base 341 to the lower side of the grindstones 340.
For example, supplying the grinding water from the grinding water source 8 during grinding of the wafer 17 to a portion between the lower surfaces 342 of the grindstones 340 and the upper surface 170 of the wafer 17 makes it possible to cool the grindstones 340 and clean the swarf generated on the upper surface 170 of the wafer 17 and the like, with running water.
The grinding unit 3 includes a holder 37 which has a support plate 370 having an opening 372 for exposing a lower portion of the spindle 30 on the lower side; and a side plate 374 erected on a peripheral portion of the support plate 370. The support plate 370 supports the spindle housing 31.
The grinding feeding mechanism 4 includes a ball screw 40 having a rotational axis in the Z-axis direction, a pair of guide rails 41 disposed in parallel to the ball screw 40, a Z-axis motor 42 for rotating the ball screw 40, and an encoder 420 for measuring the rotation amount of the ball screw 40 rotated by the Z-axis motor 42. The ball screw 40 is in screw engagement with a nut 400, and a slider 38 is connected to the nut 400. In addition, the slider 38 supports the side plate 374.
When the ball screw 40 is driven by the Z-axis motor 42 and the ball screw 40 is rotated, the nut 400 in screw engagement with the ball screw 40 is lifted upward or downward in the Z-axis direction while sliding on the ball screw 40. Attendant on this, the slider 38 connected to the nut 400 is lifted upward or downward in the Z-axis direction while being guided by the guide rails 41, whereby the grinding unit 3 is moved in the Z-axis direction.
A connection section 60 is supported by the side plate 374 of the holder 37, and the first height gauge 61 and the second height gauge 62 are supported by the connection section 60. A first contact element 610 making contact with the upper surface 210 of the frame body 21 is provided at a lower portion of the first height gauge 61, and a second contact element 620 making contact with the upper surface 170 of the wafer 17 is provided at a lower portion of the second height gauge 62.
By bringing the first contact element 610 of the first height gauge 61 into contact with the upper surface 210 of the frame body 21, it is possible to measure the height of the holding surface 200 which is flush with the upper surface 210 of the frame body 21. In addition, by bringing the second contact element 620 of the second height gauge 62 into contact with the upper surface 170 of the wafer 17, it is possible to measure the height of the upper surface 170 of the wafer 17.
The first contact element 610 and the second contact element 620 are disposed at positions lower than the lower surfaces 342 of the grindstones 340. Thus, when the grinding unit 3 is moved in a −Z direction by use of the grinding feeding mechanism 4 in a state in which the wafer 17 is held on the holding surface 200, the first contact element 610 comes into contact with the upper surface 210 of the frame body 21 and the second contact element 620 comes into contact with the upper surface 170 of the wafer 17 before the grindstones 340 come into contact with the upper surface 170 of the wafer 17.
As depicted in
A first measurement point 611 which is a point where the first contact element 610 of the first height gauge 61 and the upper surface 210 of the frame body 21 come into contact each other and a second measurement point 621 which is a point where the second contact element 620 of the second height gauge 62 and the upper surface 170 of the wafer 17 held on the holding surface 200 come into contact each other are located in the vicinity of a processing region 9 where the lower surfaces 342 of the grindstones 340 and the upper surface 170 of the wafer 17 come into contact with each other in a positional relation of horizontal positions. Here, the vicinity of the processing region 9 is a position sufficiently close to the processing region 9 within such a range that interference with the grindstones 340 is not caused during grinding.
2. Operation of Grinding Apparatus
At the time of grinding the wafer 17 by use of the grinding apparatus 1, first, the wafer 17 is mounted on the holding surface 200 of the chuck table 2, and thereafter, the suction source connected to the holding surface 200 is operated. As a result, a suction force generated by the suction source is transmitted to the holding surface 200, whereby the wafer 17 is held under suction by the holding surface 200. Then, for example, the chuck table 2 is rotated in the direction of an arrow 27 depicted in
In addition, for example, the grindstones 340 are preliminarily rotated in the direction of an arrow 39 depicted in
In this instance, since the first contact element 610 and the second contact element 620 are disposed at positions lower than the grindstones 340, the first contact element 610 comes into contact with the upper surface 210 of the frame body 21 and the second contact element 620 comes into contact with the upper surface 170 of the wafer 17 before the grindstones 340 come into contact with the upper surface 170 of the wafer 17.
As a result, the height of the holding surface 200 is measured by the first height gauge 61, and the height of the upper surface 170 of the wafer 17 is measured by the second height gauge 62.
Then, the height value of the holding surface 200 and the height value of the upper surface 170 of the wafer 17 thus measured are transmitted to the calculation section 63, and the thickness of the wafer 17 that is yet to be ground is calculated.
In a state in which the first contact element 610 is in contact with the upper surface 210 of the frame body 21 and the second contact element 620 is in contact with the upper surface 170 of the wafer 17, the grinding unit 3 is further lowered in the −Z direction by use of the grinding feeding mechanism 4. As a result, as depicted in
During grinding of the wafer 17, the measurement of the height of the holding surface 200 by the first height gauge 61 and the measurement of the height of the upper surface 170 of the wafer 17 by the second height gauge 62 are continued, and calculation of the thickness of the wafer 17 performed by the calculation section 63 on the basis of the difference between the two heights is continued.
In the grinding apparatus 1, the first measurement point 611 and the second measurement point 621 are located in the vicinity of the processing region 9 where the upper surface 170 of the wafer 17 and the lower surfaces 342 of the grindstones 340 make contact as depicted in
In addition, since the first height gauge 61 and the second height gauge 62 are disposed on the side plate 374 of the holder 37, it is possible, by bringing the grindstones 340 close to the upper surface 170 of the wafer 17 by use of the grinding feeding mechanism 4, to simultaneously lower the first height gauge 61 and the second height gauge 62. Further, since both height gauges are separated away from the upper surface 170 of the wafer 17 together with the grindstones 340 when the grindstones 340 are separated away from the upper surface 170 of the wafer 17 by use of the grinding feeding mechanism 4, operability of maintenance work and the like can be enhanced.
When the wafer 17 has been ground to a predetermined thickness, the grinding unit 3 is moved in the +Z direction by use of the grinding feeding mechanism 4 to separate away the grindstones 340 from the upper surface 170 of the wafer 17, and the grinding of the wafer 17 is ended.
Instead of the configuration in which the first height gauge 61 and the second height gauge 62 are provided at the connection section 60 supported by the side plate 374 of the holder 37, the grinding apparatus 1 may have a configuration in which, as depicted in
The present invention is not limited to the details of the above described preferred embodiment. The scope of the invention is defined by the appended claims and all changes and modifications as fall within the equivalence of the scope of the claims are therefore to be embraced by the invention.
Number | Date | Country | Kind |
---|---|---|---|
JP2020-145969 | Aug 2020 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6168499 | Jang | Jan 2001 | B1 |
20080070480 | Nomiya | Mar 2008 | A1 |
20090247050 | Arisa | Oct 2009 | A1 |
20200206868 | Owada | Jul 2020 | A1 |
20210023674 | Genozono | Jan 2021 | A1 |
Number | Date | Country |
---|---|---|
2008073785 | Apr 2008 | JP |
2019130607 | Aug 2019 | JP |
I546155 | May 2014 | TW |
202133994 | Sep 2021 | TW |
WO-2018235619 | Dec 2018 | WO |
Entry |
---|
IP Translated Doc WO2018235619A1 (English), (Kodama, Munehisa) Nov. 2018, [ip.com], [retrieved on Aug. 11, 2022], Retrieved from IP.com using internet <https://iq.ip.com/discover> (Year: 2018). |
IP Translated Doc JP 2019-13067 (Japanese, Junsoo). Aug. 2019, [ip.com], [retrieved on Aug. 18, 2022], Retrieved from IP.com using internet <https://iq.ip.com/discover> (Year: 2019). |
Number | Date | Country | |
---|---|---|---|
20220063051 A1 | Mar 2022 | US |