1. Technical Field
The disclosure generally relates to heat dissipation devices and, more particularly, to a heat dissipation device incorporating heat pipes.
2. Description of Related Art
With the fast development of electronic industry, advanced electronic components such as CPUs (central processing units), or GPUs (graphics processing units) are being made with ever faster operating speeds. In addition, successive new models of mobile computers, such as notebook computers, are continuing to shrink in size and become lighter, smaller and thinner. Thus, with the improvement of the functionality of the notebook computers, heat generated from CPUs, GPUs, disk drives, power supplies and other components of the notebook computers is often increased. Greater emphasis is now being laid on increasing the efficiency and effectiveness of heat dissipation devices so as to keep operational temperature of the electronic components within a suitable range.
Nowadays, heat pipes, which operate by phase change of working liquid sealed therein, have been widely used due to their excellent heat transfer properties. Accordingly, heat dissipation devices equipped with heat pipes appear in many current applications and are widely used, with optimal performance thereof towards a common goal in current R & D efforts.
However, since the notebook computers are continuing to shrink in size and become thinner, a distance between the heat-generating components within the notebook computer and a shell of the notebook computer becomes smaller and smaller. It is difficult to dissipate heat generated from the heat-generating components effectively, particularly, to ensure a temperature of the heat-generating components within a safe threshold level.
What is needed, therefore, is a heat dissipation device incorporating heat pipes with enhanced heat dissipation performance.
Many aspects of the present embodiments can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present embodiments. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Referring to
The fin unit 10 comprises a plurality of fins 12, each of which consists of an upright sheet body and a pair of flanges bent horizontally from a top and a bottom of the sheet body and engaging with the sheet body of an adjacent fin 12. Every two adjacent fins 12 form a passage therebetween for allowing airflow therethrough. An elongated receiving groove 120 is defined at a lateral side of the fin unit 10 and faces the centrifugal fan 20, for accommodating parts of the heat pipes 30, 40 therein. The receiving groove 120 extends transversely and perpendicularly through the fin unit 10.
The centrifugal fan 20 comprises a housing 22 engaging with the fin unit 10 and an impeller 24 rotatably disposed in the housing 22. The housing 22 comprises a top plate 220, a bottom plate 222 located opposite to the top plate 220 and a volute sidewall 224 extending upwardly from an outer periphery of the bottom plate 222 and fixed to the top plate 220. Each of the top plate 220 and the bottom plate 222 defines a through hole at a center thereof for functioning as an air inlet for the centrifugal fan 20. The top plate 220, the bottom plate 222, and the sidewall 224 cooperatively define a receiving space for receiving the impeller 24 therein. The sidewall 224 defines a rectangular air outlet at a lateral side of the housing 22. The fin unit 10 is partly received in the air outlet of the housing 22, and the passages of the fin unit 10 directly communicate with the air outlet.
The first heat pipe 30 comprises a straight first evaporating section 32, a straight first condensing section 34 and a bended first connecting section 36 interconnecting the first evaporating section 32 and the first condensing section 34. The first evaporating section 32 is thermally attached to the first heat-conducting board 50. The first condensing section 34 is thermally received in the receiving groove 120 of the fin unit 10. A bottom face and a top face of the first heat pipe 30 are planar.
The first heat-conducting board 50 is a rectangular plate, and made of a metal with good heat conductivity, such as aluminum, copper, or an alloy thereof. A bottom face of the first heat-conducting board 50 is correspondingly attached to the first electronic component 100. The first evaporating section 32 of the first heat pipe 30 is mounted on a top face of the first heat-conducting board 50. Two mounting members 52 are further provided to the first heat-conducting board 50, for fixing the first heat-conducting board 50 to the printed circuit board 300. The two mounting members 52 are disposed at two opposite lateral sides of the first heat-conducting board 50, respectively. The first heat pipe 30 is soldered to the top face of the first heat-conducting board 50 or clasped by a tab, which spans and abuts against a top face of the first evaporating section 32 of the first heat pipe 30, thereby securing the first heat pipe 30 on the first heat-conducting board 50.
The second heat pipe 40 is similar to the first heat pipe 30, and comprises a straight second evaporating section 42, a straight second condensing section 44 and a bended second connecting section 46 interconnecting the second evaporating section 42 and the second condensing section 44. The second evaporating section 42 is thermally attached to the second heat-conducting board 60. The second condensing section 44 is thermally received in the receiving groove 120 of the fin unit 10 and located juxtaposed to the first condensing section 34 of the first heat pipe 30. A bottom face and a top face of the second heat pipe 40 are planar. The second heat pipe 40 is coplanar with the first heat pipe 30.
Also referring to
The clip 70 is integrally formed by stamping and bending a resilient metal sheet. The clip 70 comprises an elongated main body 72, two arms 74 extending outwardly and horizontally from centers of two lateral sides of the main body 72, respectively, and two pairs of sidewalls 76 formed at two longitudinal ends of the main body 72, respectively. Each lateral sidewall 76 extends downwardly and perpendicularly from a corresponding lateral side of the main body 72. The main body 72, the arms 74 and the sidewalls 76 are all in a rectangular shape. The main body 72 is disposed on and spans the top face of the second evaporating section 42 of the second heat pipe 40. The two arms 74 abut against bottom faces of the two pressing sections 642 of the two engaging portions 64, respectively. Two flanges 740 are bent upwardly from two opposite lateral sides of each arm 74 at a distal end thereof, respectively. The two flanges 740 of each arm 74 of the clip 70 are located beyond two opposite lateral sides of the pressing section 642 when the engaging portions 64 engage with the arms 74, respectively, for preventing the clip 70 from escaping from the two engaging portions 64. The two sidewalls 76 of each pair are attached to the two lateral sides of the second evaporating section 42, respectively. A height of each of the sidewalls 76 is less than that of the second evaporating section 42 of the second heat pipe 40.
Referring to
In use of the heat dissipation device, the first and second electronic components 100, 200 generate a lot of heat. The heat is absorbed by the first and second heat-conducting boards 50, 60, then transferred by the first and second heat pipes 30, 40 to the fin unit 10, and finally dispersed into ambient air via the fin unit 10 in which airflow supplied by the centrifugal fan 20 flows through the fin unit 10, thereby preventing the electronic components 100, 200 from overheating.
It is to be understood, however, that even though numerous characteristics and advantages of the present embodiments have been set forth in the foregoing description, together with details of the structures and functions of the embodiments, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the disclosure to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2009 10 301478 | Apr 2009 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
6301107 | Lev et al. | Oct 2001 | B1 |
6366460 | Stone et al. | Apr 2002 | B1 |
6570761 | Stone et al. | May 2003 | B2 |
6883594 | Sarraf et al. | Apr 2005 | B2 |
7312997 | Huang et al. | Dec 2007 | B2 |
7405937 | Wang et al. | Jul 2008 | B1 |
7489510 | Hung et al. | Feb 2009 | B1 |
7697288 | Okutsu | Apr 2010 | B2 |
7710724 | Takeguchi et al. | May 2010 | B2 |
7855889 | Hung et al. | Dec 2010 | B2 |
7885075 | Li et al. | Feb 2011 | B2 |
7990713 | Liu et al. | Aug 2011 | B2 |
20070253769 | Hwang et al. | Nov 2007 | A1 |
20090229791 | Hung et al. | Sep 2009 | A1 |
20100059202 | Li et al. | Mar 2010 | A1 |
20100258277 | Chen et al. | Oct 2010 | A1 |
20100307719 | Yang et al. | Dec 2010 | A1 |
20110146949 | Yang et al. | Jun 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20100258276 A1 | Oct 2010 | US |