The present invention relates to an electrical communications apparatus, and more particularly to a light channel communications device for high-frequency antenna communications applications.
Microwave and optical wavelength communications are generally carried out by extremely high frequency nodes. A central controller is responsible for the command and control of a diffuse network of individual nodes. The networking between the central controller and the nodes is wireless, and the signals are transmitted through lasers or microwaves.
Sophisticated communications require complex and expensive hardware, including antennas, photoreceptors, solid-state lasers, and processors, all of which must be compact and efficiently arranged. One consequence of the packaging of these components is the general deterioration of the electrical signals and the loss of fidelity in the data transmission. The consequences include electrical losses and interference, inductive and capacitive parasitics, propagation delays, signal-to-signal skews, signal-to-signal coupling, decreased signal strength, and alteration in the phase relationship between the voltage and current components of a signal.
Accordingly, the present invention is an electrical communications apparatus that minimizes the signal losses and interferences while maintaining the fidelity of the data transmissions. Moreover, the present invention includes all of the sophisticated hardware referenced above, but packaged in an efficient and cost-effective assembly
The present invention includes a dielectric material defining a volume and at least one via inscribed within the dielectric material. The at least one via intersects the volume at a first planar surface, a second planar surface, or the third planar surface thereby providing a plurality of connection points on the first planar surface, the second planar surface, and the third planar surface. The via is preferably composed of a conductive material. In one embodiment, the first planar surface, the second planar surface, and the third planar surface intersect along a first line, a second line, and a third line, and the first line, the second line, and the third line are mutually perpendicular. This configuration generally defines a cubic volume.
The dielectric material, or substrate, has at least one electrical device attached thereto. The electrical device is preferably of the sort needed to conduct high frequency communications, such as an antenna. The electrical device is attached to the substrate at the connection points described by the intersection of the vias and one of the planar surfaces. The electrical device may be attached to the substrate in numerous ways, including solder, flipped chip ball bonds, wire bonds, or a gold stud assembly. In particular, the gold stud assembly is utilized to attach an antenna to the substrate, thereby providing a predetermined air gap therebetween.
In accordance with a preferred embodiment of the present invention an electrical communications apparatus 10 is provided in FIG. 1. The electrical communications apparatus 10 is generally composed of a substrate 11 with a number of electrical devices 24, 26, 28 attached thereto. While three electrical devices are illustrated, it is understood that a greater or lesser number of electrical devices could be employed. The electrical devices 24, 26, 28 are in communication by, for example, the traces 30 connecting electrical device 26 to electrical device 28.
As shown in
The first planar surface 12 and the second planar surface 14 intersect along a line A. The first planar surface 12 and the third planar surface 16 intersect along a line B. The second planar surface 14 and the third planar surface 16 intersect along a line C. As shown in
The electronic devices 32, 36, 40 shown in
The electrical communication apparatus 10 of
Similarly, vias may be used to conduct electrical signals through the substrate to adjacent surfaces. For example,
An alternative system of vias is shown in FIG. 4. This system includes vias 52, 54, 58, 58 that extend at various angles through the substrate 11. For example vias 52 provide an electrical connection between the second planar surface 14 and the fourth planar surface 18. Vias 56 diagonally connect the first planar surface 12 with the sixth planar surface 22. Vias 54 and v as 58 jointly connect the third planar surface 18 and the fifth planar surface 20 while intersecting at the sixth planar surface 22, forming an elbow connection at the sixth planar surface 22.
In its preferred embodiment, the electrical communications apparatus 10 of the present invention is a high frequency antenna communications system. In particular, the fourth electrical device 80 is preferably a GaAs antenna. The GaAs antenna 80 is coupled to the substrate 11 by a gold stud assembly 78. The gold stud assembly 78 is particularly useful in coupling the GaAs antenna 80 to the substrate 11 because the size of the air gap can be predetermined to maximize the overall performance of the electrical communications device 10.
The first electrical device 66, second electrical device 70, and third electrical device 74 generally comprise an optical communications cluster that is particularly adapted for use in a phased array antenna. In the phased array antenna embodiment, the first electrical device 66 is a CMOS controller, the third electrical device 74 is a PIN diode, and the second electrical device 70 is a vertical cavity surface emitting laser (VCSEL).
As part of a phased array antenna, the electrical communications apparatus 10 is arranged such that it is optically coupled to a centralized antenna and data transmitter (not shown). The communication and data transmission between the centralized antenna and the electrical communications device 10 is carried out by photons. The PIN diode 74 receives incident light signals from the centralized antenna and converts the incident signal into an electrical signal. The electrical signal is processed by the CMOS controller 66, and a reply or function is executed by the VCSEL 70 or the GaAs antenna 80. The VCSEL 70 emits a laser signal that contains the necessary data, while the GaAs antenna 80 emits extremely high frequency microwave signals that also transmit data. The outgoing data transmissions, laser light and microwave radiation, are received by photodetectors or antennas disposed on remotely located components of a communications network.
As shown in
In order to improve the overall efficiency of the electrical communications apparatus 10, it is preferred to route the electrical network of the optical communications cluster through the vias described herein and shown in
As described, the present invention consists of an electrical communications device including a three-dimensional substrate, an antenna, and an optical communications cluster wherein the noted components are coupled through vias internal to the substrate. Nevertheless, it should be apparent to those skilled in the art that the above-described embodiments are merely illustrative of but a few of the many possible specific embodiments of the present invention. Numerous and various other arrangements can be readily devised by those skilled in the art without departing from the spirit and scope of the invention as defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3561107 | Best et al. | Feb 1971 | A |
4179802 | Joshi et al. | Dec 1979 | A |
4607242 | Cozzie | Aug 1986 | A |
4724472 | Sugimoto et al. | Feb 1988 | A |
4908587 | Davcev | Mar 1990 | A |
5012047 | Dohya | Apr 1991 | A |
5160907 | Nakajima et al. | Nov 1992 | A |
5624741 | Scott | Apr 1997 | A |
5640052 | Tsukamoto | Jun 1997 | A |
5982250 | Hung et al. | Nov 1999 | A |
6118357 | Tomasevic et al. | Sep 2000 | A |
6160463 | Arakawa et al. | Dec 2000 | A |
6181278 | Kakimoto et al. | Jan 2001 | B1 |
6346867 | Arakawa et al. | Feb 2002 | B1 |
6356170 | Arakawa et al. | Mar 2002 | B1 |
6400241 | Ulian et al. | Jun 2002 | B1 |
Number | Date | Country |
---|---|---|
61-99361 | May 1986 | JP |
4-107989 | Apr 1992 | JP |
WO 0141517 | Jun 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20040095214 A1 | May 2004 | US |