High performance stress-enhanced MOSFETS using Si:C and SiGe epitaxial source/drain and method of manufacture

Abstract
A semiconductor device and method of manufacturing a semiconductor device. The semiconductor device includes channels for a pFET and an nFET. A SiGe layer is selectively grown in the source and drain regions of the pFET channel and a Si:C layer is selectively grown in source and drain regions of the nFET channel. The SiGe and Si:C layer match a lattice network of the underlying Si layer to create a stress component. In one implementation, this causes a compressive component in the pFET channel and a tensile component in the nFET channel.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention generally relates to a semiconductor device and method of manufacture and, more particularly, to a semiconductor device and method of manufacture which imposes tensile and compressive stresses in the device during device fabrication.


2. Background Description


Mechanical stresses within a semiconductor device substrate can modulate device performance. That is, stresses within a semiconductor device are known to enhance semiconductor device characteristics. Thus, to improve the characteristics of a semiconductor device, tensile and/or compressive stresses are created in the channel of the n-type devices (e.g., NFETs) and/or p-type devices (e.g., PFETs). However, the same stress component, either tensile stress or compressive stress, discriminatively affects the characteristics of an n-type device and a p-type device.


For example, it has been known that a device exhibits better performance characteristics when formed on a silicon layer (or cap) that is epitaxially grown on another epitaxially grown SiGe layer that has relaxed on top of the silicon substrate. In this system, the silicon cap experiences biaxial tensile strain. When epitaxially grown on silicon, an unrelaxed SiGe layer will have a lattice constant that conforms to that of the silicon substrate. Upon relaxation (through a high temperature process for example) the SiGe lattice constant approaches that of its intrinsic lattice constant which is larger than that of silicon. A fully relaxed SiGe layer has a lattice constant close to that of its intrinsic value. When the silicon layer is epitaxially grown thereon, the silicon layer conforms to the larger lattice constant of the relaxed SiGe layer and this applies physical biaxial stress (e.g., expansion) to the silicon layer being formed thereon. This physical stress applied to the silicon layer is beneficial to the devices (e.g., CMOS devices) formed thereon because the expanded silicon layer increases N type device performance and a higher Ge concentration in the SiGe layer improves P type device performances.


Relaxation in SiGe on silicon substrates occurs through the formation of misfit dislocations. For a perfectly relaxed substrate, one can envision a grid of misfit dislocations equally spaced that relieve the stress. The misfit dislocations facilitate the lattice constant in the SiGe layer to seek its intrinsic value by providing extra half-planes of silicon in the substrate. The mismatch strain across the SiGe/silicon interface is then accommodated and the SiGe lattice constant is allowed to get larger.


However, the problem with this conventional approach is that it requires a multi-layered SiGe buffer layer that is very thick (e.g., a thickness of approximately 5000 Å to 15000 Å) to achieve misfit dislocations on its surface portion while avoiding threading dislocations between the SiGe layer and the silicon substrate layer, thereby achieving a relaxed SiGe structure on the surface of the multi-layered SiGe layer. Also, this approach significantly increases manufacturing time and costs. Further, the thick graded SiGe buffer layer cannot be easily applicable to silicon-on-insulator substrate (SOI). This is because for silicon-on-insulator the silicon thickness has to be below 1500 Å for the benefits of SOI to be valid. The SiGe buffered layer structure is too thick.


Another problem is that misfit dislocations formed between the SiGe layer and the silicon epitaxial layer are random and highly non-uniform and cannot be easily controlled due to heterogeneous nucleation that cannot be easily controlled. Also, misfit dislocation densities are significantly different from one place to another. Thus, the physical stress derived from the non-uniform misfit dislocations are apt to be also highly non-uniform in the silicon epitaxial layer, and this non-uniform stress causes non-uniform benefits for performance with larger variability. Further at those locations where misfit density is high, the defects degrade device performances through shorting device terminals and through other significant leakage mechanisms.


It is also known to grow Si:C epitaxially on Si where it is inherently tensile. A 1% C content in a Si:C/Si material stack can cause tensile stress levels in the Si:C on the order of 500 MPa. In comparison, in the SiGe/Si system about 6% Ge is needed to causes a 500 MPa compression. This 1% level of C can be incorporated into Si during epitaxial growth as shown in Ernst et al., VLSI Symp., 2002, p 92. In Ernst et al., Si/Si:C/Si layered channels for nFETs are shown. However in the Ernst et al. structure, the Si:C is provided in the traditional strained Si approach as a stack of layers in the channel. Thus, in the Ernst et al. structure, the Si:C is used as part of the channel, itself. The problem with this approach is that the mobility is not enhanced, but retarded depending on the C content from scattering.


SUMMARY OF THE INVENTION

In a first aspect of the invention, a method of manufacturing a semiconductor structure includes forming a p-type field-effect-transistor (pFET) channel and a negative field-effect-transistor (nFET) channel in a substrate. A pFET stack and an nFET stack are formed on the substrate associated with the respective channels. A first layer of material is provided at source/drain regions associated with the pFET stack. The first layer of material has a lattice constant different than a base lattice constant of the substrate to create a compressive state within the pFET channel. A second layer of material is provided at the source/drain regions associated with the nFET stack. The second layer of material has a lattice constant different than the base lattice constant of the substrate to create a tensile state at the nFET channel.


In another aspect of the invention, a method of manufacturing a semiconductor structure is provided which includes forming a p-type field-effect-transistor (pFET) channel and a negative field-effect-transistor (nFET) channel in a substrate. A pFET structure and an nFET structure are formed on the substrate associated with the pFET channel and the nFET channel, respectively. The regions of the pFET structure and the nFET structure are etched to a predetermined depth. A first material with a lattice constant different than the base lattice constant of the layer is provided in the etched regions of the pFET structure to provide a compressive stress in the pFET channel. A second material with a lattice constant different than the base lattice constant of the layer is provided in the etched regions of the nFET structure to provide a tensile stress in the nFET channel. Doping source and drain regions of the nFET and pFET structures is provided.


In yet another aspect of the invention, a semiconductor structure includes a semiconductor substrate, and a pFET and nFET are formed in respective channels in the substrate. A first layer of material in source and drain regions of the pFET channel has a lattice constant different than the lattice constant of the substrate. A second layer of material in source and drain regions of the nFET channel has a lattice constant different than the lattice constant of the substrate.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1
a through 1e represent a fabrication process to form a device in accordance with the invention;



FIG. 2 illustrates the locations of the stresses in an pFET device according to the invention; and



FIG. 3 illustrates the locations of the stresses in an nFET device according to the invention.





DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

The invention is directed to a semiconductor device and method of manufacture which provides tensile stresses near the nFET channel and compressive stresses near the pFET channel of CMOS devices. In one embodiment of the invention, the longitudinal tensile stresses are brought very close to the nFET channel while at the same time compressive stresses are brought very close to the pFET channel. Additionally, in the invention, a process and structure is provided to integrate both SiGe and Si:C materials into CMOS technology.


By way of example, a highly tensile Si:C film is provided (e.g., embedded) in the silicon substrate in the source/drain (S/D) regions to longitudinally apply tension on the nFET structure in the channel under the gate region thereof. Similarly, a highly compressive SiGe film is provided (e.g., embedded) in the silicon substrate in the S/D regions to longitudinally apply compression on the pFET in the channel under the gate region thereof. Similar to the SiGe layer, the Si:C layer is relatively thin (below its critical thickness) and is not relaxed. The transistor channel region of the nFET is strained by the stress from the Si:C layer, while the channel region of the pFET is provided with compressive stress from the SiGe.


Since the SiGe layer is embedded in the S/D region of the pFET, low resistance silicide can still be formed. Interestingly, embedded (e.g., sub-surface or coplanar-to-surface) Si:C films can put larger stresses than the above-surface Si:C counterparts because of the film surface not being free. In this invention, the different thicknesses and protrusions of the Si:C, whether embedded or coplanar with the surface or raised, are contemplated. It should be understood that by adjusting the concentrations of the Ge content in the SiGe layer, it is possible to adjust the compressive stress in the pFET channel. Similarly, it is possible to adjust the tensile stress in the nFET channel by adjusting the concentrations of C in the Si:C layer. This is due to the lattice constant of such materials.


In the invention, it is shown that Si:C has a correct stress, that it includes the correct amount of C content, and that it can be grown epitaxially and selectively. Also, in the invention, the Si:C is not used as a directly built up stacked layer under the channel but as a replacement material for nFET S/D regions that are in tension and therefore imposing tension in the channel region. This Si:C film therefore applies tensile stress to nFET channels while the SiGe applies compressive stress to the pFET channels.



FIGS. 1
a through 1e represent a fabrication process to form a device in accordance with the invention. In FIG. 1a, a silicon-on-insulator (SOI) 20 or the like is provided. The layer 20 is patterned to form shallow trench isolation features (STI) 25 using standard techniques of pad oxidation, pad nitride deposition, lithography based patterning, reactive ion etching (RIE) of the stack consisting of nitride, oxide, and silicon down to the buried oxide, edge oxidation, liner deposition, fill deposition, and chemical mechanical polish, for example. The STI formation process is well known in the art. The pad nitride is then stripped. The gate stacks comprising, for example, gate dielectric and poly silicon are formed on the structure to form the pFETs and the nFETs, in any well known method. TEOS caps 43 and 44 are formed with the pPETs and nFETs in a known manner.


Still referring to FIG. 1a, spacers are formed on the pFET and nFET stacks, respectively, using any well known process. By way of example, spacers 38 are formed on the side walls of the pFET stack 40a and spacers 42 are formed on the sidewalls of the nFET stack 45a. The spacers may be oxide or nitride spacers, for example.


In FIG. 1b, a thin liner 50 is blanket deposited over the structure including the pFET stack, nFET stack and S/D regions thereof, for example. The thin liner 50 is, in one embodiment, a Si3N4 liner or any of a nitride or oxide based material depending on the material of a hard mask. The thickness range of the thin liner is approximately 5 to 20 nm. The thin liner 50 may act as a protection layer. A hard mask 51 is then formed over the nFET stack 45a and S/D regions thereof.


Regions about the pFET stack 40a are etched to the liner 50. The liner 50 is then etched and S/D regions 52 are formed (etched) adjacent the stack 40a. The depth of S/D regions 52 is about 20 to 100 nm, depending on the thickness of the SOI layer. A highly compressive selective epitaxial SiGe layer 60 is grown in the regions 52 of the pFET stack 40a as shown in FIG. 1c, fully filling the S/D etched regions 52. The SiGe layer 60 may be grown to a thickness of about 10 to 100 nm thick, although other thicknesses are also contemplated by the invention. In one implementation, the SiGe layer is grown to a thickness above the surface of the gate oxide. The hard mask and remaining portions of the liner are removed using any well known process such as, for example, wet chemicals. In processing steps, dopants are ion implanted to form the S/D regions about the pFET stack 40a prior to removing the hard mask.


Standing alone, the SiGe normally has a larger lattice constant than the SOI. That is, the lattice constant of the SiGe material does not match the lattice constant of the Si. However, in the structure of the invention, due to the growth of the SiGe layer, the lattice structure of the SiGe layer will tend to match the lattice structure of the underlying Si. This results in the SiGe layer and the channel regions adjacent or next to the SiGe being under compression. In one embodiment, the Ge content of the SiGe layer may be greater than 0% and upwards ratio to the Si content.


Still referring to the processing of the invention, in FIG. 1d, a thin liner 50 is again blanket deposited over the structure including the nFET, pFET and S/D regions thereof, for example. The thin liner 50 is, in one embodiment, a Si3N4 liner or any of a nitride or oxide material depending on the material of a hard mask. The thickness range of the thin liner is approximately 5 to 20 nm. The thin liner 50 may act as a protection layer.


A mask 51 is then formed over the pFET stack 40a, and the regions about the nFET stack 45a are etched to the liner 50. The liner is then etched and S/D regions 54 are formed (etched) adjacent the stack 45a. The depth of the S/D regions 54 is about 20 to 100 nm, depending on the thickness of the SOI layer. Any well known process may be used to etch the regions 54.


A highly tensile selective epitaxial Si:C layer is grown to a thickness of about 10 to 100 nm thick in the regions 54 of the nFET stack 45a as shown in FIG. 1e. It should be understood that the Si:C layer 62 may be epitaxial grown to other thicknesses, as contemplated by the invention. In one embodiment, the C content may be from greater than 0% to 4% in ratio to the Si content. The resist and remaining portions of the thin liner are removed using any well known process such as, for example using wet chemicals.


Standing alone, Si:C would normally have a smaller lattice constant than the underlying Si. That is, the lattice constant of the Si:C material does not match the lattice constant of the Si. However, in the structure of the invention, due to the growth of the Si:C layer within the S/D regions of the nFET stack 45a, the lattice structure of the Si:C layer will tend to match the lattice structure of the underlying Si. This results in the Si:C layer and the channel regions adjacent or next to the Si:C being under a tensile stress.


In one embodiment, the Si:C and/or the SiGe layer may be embedded within the device by, example, performing a RIE, wet etching or other processes or combinations thereof for processing optimization to recess such layers. Then, Si is selectively grown over the regions 52 and 54 using any well known process. Source and drain implanting may then be performed using any well process. Further processing can be performed to build the devices and interconnects.


As now should be understood, both the Si:C and SiGe layers may be embedded within the device or can be coplanar or raised from the device. In one embodiment, the Si:C and SiGe films are deposited to 10 to 100 nm thick, which provides a more cost-effective way to add stress (compressive or tensile) to the MOSFETs. In the raised embodiment, the Si:C and SiGe layers may be raised above the surface of the device to about 50 nm. It should be recognized that other thicknesses are also contemplated by the invention.


Also, it is also possible to in situ doping the SiGe with P type doping and Si:C with n type doping to form your source and drain regions of the pFET and nFET, respectively.


It should also be understood by those of ordinary skill in the art that the process steps of FIGS. 1d and 1e may be equally be performed prior to the process steps shown in FIGS. 1b and 1c. Also, further processing steps such as, for example, standard ion implantation can be performed to form the S/D regions of the pFETs and nFETs. The formation of the S/D regions, through the ion implantation, is self aligning due to the gate oxide in the nFET and pFET regions acting as a mask during this process.



FIG. 2 illustrates the locations of the stresses in an nFET device according to the invention. As shown in FIG. 2, compressive stresses are present in just below the pFET with a region of unrelaxed SiGe. More specifically, in the structure of the invention, the lattice structure of the SiGe layer matches the lattice structure of the underlying Si insulation layer. This results in the SiGe layer and the surrounding areas being under a compressive stress.



FIG. 3 illustrates the locations of the stresses in a nFET device according to the invention. As shown in FIG. 3, tensile stresses are present in the channel of the nFET. More specifically, in the structure of the invention, the lattice structure of the Si:C layer will match the lattice structure of the underlying Si insulation layer 20 to form a tensile stress component in the nFET channel.


While the invention has been described in terms of embodiments, those skilled in the art will recognize that the invention can be practiced with modifications and in the spirit and scope of the appended claims. For example, the invention can be readily applicable to bulk substrates.

Claims
  • 1. A method of manufacturing a semiconductor structure, comprising the steps of: forming a p-type field-effect-transistor (pFET) channel and a n-type field-effect-transistor (nFET) channel in a substrate;forming a pFET stack in the pFET channel and an nFET stack in the nFET channel;after the pFET stack is formed, providing a first layer of material at source/drain regions associated with the pFET stack, the first layer of material having a lattice constant different than a base lattice constant of the substrate to create a compressive state within the pFET channel; andafter the nFET stack is formed, providing a second layer of material at the source/drain regions associated with the nFET stack, the second layer of material having a lattice constant different than the base lattice constant of the substrate to create a tensile state at the nFET channel,wherein the first layer of material is formed by placing a mask over the nFET stack, etching the regions of the pFET, and selectively growing the first layer of material within the source/drain regions of the pFET; andwherein the second layer of material is formed by placing a mask over the pFET stack, etching regions of the nFET, and selectively growing the second layer of material within the source/drain regions of the nFET.
  • 2. The method of claim 1, wherein the first layer of material is SiGe having a content of Ge approximately greater than 0% in ratio to Si.
  • 3. The method of claim 1, wherein the second layer of material is Si:C.
  • 4. The method of claim 3, wherein the Si:C has a content of C of about 4% or less.
  • 5. The method of claim 1, wherein the first layer of material is unrelaxed SiGe and the second layer of material is unrelaxed Si:C and each of the first and second layers of material is formed at a thickness of between about 10 to 100 nm.
  • 6. The method of claim 1, wherein before the nFET stack and the pFET stack are masked, depositing a nitride or oxide based liner over the nFET and pFET stacks.
  • 7. The method of claim 6, wherein: before the first layer of material is provided, etching regions about the pFET stack to the nitride or oxide based liner; andbefore the second layer of material is provided, etching regions about the nFET stack to the nitride or oxide based liner.
  • 8. A method of manufacturing a semiconductor structure, comprising the steps of: forming a p-type field-effect-transistor (pFET) channel and a n-type field-effect-transistor (nFET) channel in a substrate;forming a pFET structure and an nFET structure on the substrate associated with the pFET channel and the nFET channel, respectively;etching regions of the pFET structure and the nFET structure;after the pFET structure is formed and the pFET structure is covered by a protective layer, masking the nFET structure and forming a first material with a lattice constant different than a base lattice constant of the substrate in the regions of the pFET structure to provide a compressive stress in the pFET channel;after the nFET structure is formed and the nFET structure is covered by the protective layer, masking the pFET structure and forming a second material with a lattice constant different than the base lattice constant of the substrate in the regions of the nFET structure to provide a tensile stress in the nFET channel; anddoping source and drain regions of the nFET and pFET structures.
  • 9. The method of claim 8, wherein the first material is SiGe and the second material is Si:C.
  • 10. The method of claim 8, wherein: the first material creates a compressive stress within the pFET channel; and the second material creates a tensile stress within the nFET channel.
  • 11. The method of claim 8, wherein the first material and the second material are embedded in the substrate.
  • 12. The method of claim 8, wherein the first material and the second material are raised above a surface of the substrate.
  • 13. The method of claim 8, wherein the first material and the second material each have a thickness of between about 10 to 100 nm.
  • 14. The method of claim 8, wherein the first material is unrelaxed SiGe.
  • 15. The method of claim 8, further comprising the step of in situ doping the first material with p-type doping and the second material with n-type doping to form the source and drain regions of the pFET and nFET structures, respectively.
  • 16. The method of claim 8, wherein the protective layer comprises a nitride or oxide based liner.
  • 17. A method of manufacturing a semiconductor structure, comprising the steps of: forming a p-type field-effect-transistor (pFET) channel and a n-type field-effect-transistor (nFET) channel in a substrate;forming a pFET stack in the pFET channel and an nFET stack in the nFET channel;forming a protection layer over the pFET stack and the nFET stack;after the protection layer and the pFET stack is formed, providing a first layer of material at source/drain regions associated with the pFET stack, the first layer of material having a lattice constant different than a base lattice constant of the substrate to create a compressive state within the pFET channel; andafter the protection layer and the nFET stack is formed, providing a second layer of material at the source/drain regions associated with the nFET stack, the second layer of material having a lattice constant different than the base lattice constant of the substrate to create a tensile state at the nFET channel,wherein the first layer of material is formed by placing a mask over the protection layer and the nFET stack, etching the regions of the pFET, and selectively growing the first layer of material within the source/drain regions of the pFET; andwherein the second layer of material is formed by placing a mask over the protection layer and the pFET stack, etching regions of the nFET, and selectively growing the second layer of material within the source/drain regions of the nFET.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of copending U.S. application Ser. No. 10/689,506, filed on Oct. 20, 2003, the contents of which are hereby incorporated by reference in their entirety.

US Referenced Citations (132)
Number Name Date Kind
3602841 McGroddy Aug 1971 A
4665415 Esaki et al. May 1987 A
4853076 Tsauer et al. Aug 1989 A
4855245 Neppl et al. Aug 1989 A
4952524 Lee et al. Aug 1990 A
4958213 Eklund Sep 1990 A
5006913 Sugahara et al. Apr 1991 A
5060030 Hoke Oct 1991 A
5081513 Jackson et al. Jan 1992 A
5108843 Ohtaka et al. Apr 1992 A
5134085 Gilgen et al. Jul 1992 A
5310446 Konishi et al. May 1994 A
5354695 Leedy Oct 1994 A
5371399 Burroughes et al. Dec 1994 A
5391510 Hsu et al. Feb 1995 A
5459346 Asakawa et al. Oct 1995 A
5471948 Burroughes et al. Dec 1995 A
5557122 Shrivastava et al. Sep 1996 A
5561302 Candelaria Oct 1996 A
5565697 Asakawa et al. Oct 1996 A
5571741 Leedy Nov 1996 A
5592007 Leedy Jan 1997 A
5592018 Leedy Jan 1997 A
5670798 Schetzina Sep 1997 A
5679965 Schetzina Oct 1997 A
5683934 Candelaria Nov 1997 A
5840593 Leedy Nov 1998 A
5861651 Brasen et al. Jan 1999 A
5880040 Sun et al. Mar 1999 A
5940736 Brady et al. Aug 1999 A
5946559 Leedy Aug 1999 A
5960297 Saki Sep 1999 A
5989978 Peidous Nov 1999 A
6008126 Leedy et al. Dec 1999 A
6025280 Brady et al. Feb 2000 A
6046464 Schetzina Apr 2000 A
6066545 Doshi et al. May 2000 A
6090684 Ishitsuka et al. Jul 2000 A
6107143 Park et al. Aug 2000 A
6117722 Wuu et al. Sep 2000 A
6133071 Nagai Oct 2000 A
6165383 Chou Dec 2000 A
6165826 Chau et al. Dec 2000 A
6221735 Manley et al. Apr 2001 B1
6228694 Doyle et al. May 2001 B1
6246095 Brady et al. Jun 2001 B1
6255169 Li et al. Jul 2001 B1
6261964 Wu et al. Jul 2001 B1
6265317 Chiu et al. Jul 2001 B1
6274444 Wang Aug 2001 B1
6281532 Doyle et al. Aug 2001 B1
6284623 Zhang et al. Sep 2001 B1
6284626 Kim Sep 2001 B1
6319794 Akatsu et al. Nov 2001 B1
6361885 Chou Mar 2002 B1
6362082 Doyle et al. Mar 2002 B1
6368931 Kuhn et al. Apr 2002 B1
6403486 Lou Jun 2002 B1
6403975 Brunner et al. Jun 2002 B1
6406973 Lee Jun 2002 B1
6461936 Von Ehrenwall Oct 2002 B1
6475869 Yu Nov 2002 B1
6476462 Shimizu et al. Nov 2002 B2
6483171 Forbes et al. Nov 2002 B1
6493497 Ramdani et al. Dec 2002 B1
6498358 Lach et al. Dec 2002 B1
6501121 Yu et al. Dec 2002 B1
6506652 Jan et al. Jan 2003 B2
6509618 Jan et al. Jan 2003 B2
6521964 Jan et al. Feb 2003 B1
6531369 Ozkan et al. Mar 2003 B1
6531740 Bosco et al. Mar 2003 B2
6573172 En et al. Jun 2003 B1
6717216 Doris et al. Apr 2004 B1
6724019 Oda et al. Apr 2004 B2
6774409 Baba et al. Aug 2004 B2
6825529 Chidambarrao et al. Nov 2004 B2
6831292 Currie et al. Dec 2004 B2
6891192 Chen et al. May 2005 B2
6921913 Yeo et al. Jul 2005 B2
6946371 Langdo et al. Sep 2005 B2
6955952 Yeo et al. Oct 2005 B2
6974981 Chidambarrao et al. Dec 2005 B2
6977194 Belyansky et al. Dec 2005 B2
6982465 Kumagai et al. Jan 2006 B2
7015082 Doris et al. Mar 2006 B2
7022561 Huang et al. Apr 2006 B2
7105394 Hachimine et al. Sep 2006 B2
7115954 Shimizu et al. Oct 2006 B2
7342289 Huang et al. Mar 2008 B2
20010009784 Ma et al. Jul 2001 A1
20020063292 Armstrong et al. May 2002 A1
20020074598 Doyle et al. Jun 2002 A1
20020086472 Roberds et al. Jul 2002 A1
20020086497 Kwok Jul 2002 A1
20020090791 Doyle et al. Jul 2002 A1
20020125502 Baba et al. Sep 2002 A1
20030022460 Park Jan 2003 A1
20030032261 Yeh et al. Feb 2003 A1
20030040158 Saitoh Feb 2003 A1
20030057184 Yu et al. Mar 2003 A1
20030067035 Tews et al. Apr 2003 A1
20030080361 Murthy et al. May 2003 A1
20030102490 Kubo et al. Jun 2003 A1
20030162348 Yeo et al. Aug 2003 A1
20040113174 Chidambarrao et al. Jun 2004 A1
20040173815 Yeo et al. Sep 2004 A1
20040235236 Hoffmann et al. Nov 2004 A1
20040238914 Deshpande et al. Dec 2004 A1
20040253776 Hoffmann et al. Dec 2004 A1
20040256614 Ouyang et al. Dec 2004 A1
20040262683 Bohr et al. Dec 2004 A1
20040262784 Doris et al. Dec 2004 A1
20050035470 Ko et al. Feb 2005 A1
20050040460 Chidambarrao et al. Feb 2005 A1
20050051851 Chen et al. Mar 2005 A1
20050082634 Doris et al. Apr 2005 A1
20050093030 Doris et al. May 2005 A1
20050098829 Doris et al. May 2005 A1
20050106799 Doris et al. May 2005 A1
20050145954 Zhu et al. Jul 2005 A1
20050148146 Doris et al. Jul 2005 A1
20050184345 Lin et al. Aug 2005 A1
20050194699 Belyansky et al. Sep 2005 A1
20050236668 Zhu et al. Oct 2005 A1
20050245017 Belyansky et al. Nov 2005 A1
20050280051 Chidambarrao et al. Dec 2005 A1
20050282325 Belyansky et al. Dec 2005 A1
20060017138 Ting Jan 2006 A1
20060027868 Doris et al. Feb 2006 A1
20060057787 Doris et al. Mar 2006 A1
20060060925 Doris et al. Mar 2006 A1
Foreign Referenced Citations (10)
Number Date Country
6476755 Mar 1989 JP
10107294 Apr 1998 JP
10511506 Nov 1998 JP
11163343 Jun 1999 JP
2001501033 Jan 2001 JP
2003152177 May 2003 JP
2003243532 Aug 2003 JP
2004031753 Jan 2004 JP
477025 Feb 2002 TW
WO2005010982 Feb 2005 WO
Related Publications (1)
Number Date Country
20070264783 A1 Nov 2007 US
Continuations (1)
Number Date Country
Parent 10689506 Oct 2003 US
Child 11782429 US