This disclosure relates to semiconductor integrated circuits (ICs), and more particularly to a high quality factor capacitive and inductive circuit structure for use within a semiconductor IC.
Modern integrated circuits (ICs) are often required to operate at frequencies well within the gigahertz range. With respect to frequencies of 10 GHz or less, a variety circuit structures are known to provide acceptable performance. Known inductor-capacitor (LC) circuit structures, for example, can be implemented that operate at 10 GHz or less with a suitably high quality (Q) factor. These LC circuit structures incorporate finger capacitors.
The Q factor of a circuit generally decreases as frequency increases. As frequencies increase beyond 10 GHz, performance of conventional LC circuit structures begins to degrade markedly. As an example, the Q factor of a conventional LC circuit structure that utilizes finger capacitors can be expected to decrease by as much as 67 percent when frequency is increased from approximately 10 GHz to approximately 32 GHz.
Techniques for improving the Q factor of an LC circuit structure at such high frequencies have included increasing the width of the bus line of the finger capacitors, increasing the width of the finger elements of the finger capacitors, or both. These techniques, however, consume significant area thereby reducing the area available within the IC for other circuitry and/or increasing the size of the IC itself. Further, increased widths of the bus line and/or finger elements increases parasitic capacitances in the LC circuit structure. Increased parasitic capacitance can degrade the tuning range of circuits such as voltage controlled oscillators and/or other circuits that typically rely upon or incorporate the LC circuit structure.
A circuit includes a first finger capacitor having a first bus line coupled to a first plurality of finger elements and a second bus line coupled to a second plurality of finger elements. The first bus line is parallel to the second bus line. The circuit also includes an inductor having a first leg oriented perpendicular to the first bus line and the second bus line. The first leg of the inductor is coupled to a center of the first bus line.
In one aspect, the first plurality of finger elements and the second plurality of finger elements are perpendicular to the bus lines. Individual ones of the first plurality of finger elements alternate with individual ones of the second plurality of finger elements.
In addition, the first bus line, the second bus line, the first plurality of finger elements, and the second plurality of finger elements can be implemented in a same plane. As such, the inductor may be implemented in at least a second plane different from the first plane and parallel to the first plane.
The circuit also can include a second finger capacitor having a third bus line coupled to a third plurality of finger elements and a fourth bus line coupled to a fourth plurality of finger elements. The third bus line and the fourth bus line are parallel to the first bus line. The first leg of the inductor is coupled to a center of the third bus line.
In another aspect, the circuit includes a second finger capacitor having a third bus line coupled to a third plurality of finger elements and a fourth bus line coupled to a fourth plurality of finger elements. The third bus line and the fourth bus line are parallel to the first bus line. The inductor can include a second leg parallel to the first leg where the second leg of the inductor is coupled to a center of the third bus line. The circuit also can include a first switch configured to selectively connect the second bus line to the fourth bus line.
In a further aspect, where the second finger capacitor is coupled to the second leg of the inductor, the circuit can include a third finger capacitor having a fifth bus line coupled to a fifth plurality of finger elements and a sixth bus line coupled to a sixth plurality of finger elements. The fifth bus line and the sixth bus line are parallel to the first bus line. The first leg of the inductor is coupled to a center of the fifth bus line. The circuit further can include a fourth finger capacitor having a seventh bus line coupled to a seventh plurality of finger elements and an eighth bus line coupled to an eighth plurality of finger elements. The seventh bus line and the eighth bus line are parallel to the first bus line. The second leg of the inductor is coupled to a center of the seventh bus line. The circuit also can include a second switch configured to selectively connect the sixth bus line to the eighth bus line.
A circuit includes a first plurality of finger capacitors, wherein each finger capacitor of the first plurality of finger capacitors includes a first bus line coupled to a first plurality of finger elements and a second bus line parallel to the first bus line and coupled to a second plurality of finger elements. The circuit includes a second plurality of finger capacitors, wherein each finger capacitor of the second plurality of finger capacitors includes a third bus line coupled to a third plurality of finger elements and a fourth bus line parallel to the third bus line and coupled to a fourth plurality of finger elements. The third bus line is parallel to the first bus line. The circuit also includes an inductor having a first leg oriented perpendicular to the first bus line and a second leg parallel to the first leg. The first leg of the inductor is coupled to a center of each first bus line of the first plurality of finger capacitors. The second leg of the inductor is coupled to a center of each third bus line of the second plurality of finger capacitors.
The circuit also can include a plurality of switches. Each switch can be individually configurable to connect a second bus line to a fourth bus line.
A method includes providing a first finger capacitor of a circuit, wherein the first finger capacitor includes a first bus line coupled to a first plurality of finger elements and a second bus line coupled to a second plurality of finger elements. The first bus line is parallel to the second bus line. The method also can include providing an inductor having a first leg oriented perpendicular to the first bus line and the second bus line. The first leg of the inductor is coupled to a center of the first bus line.
In one aspect, the first plurality of finger elements and the second plurality of finger elements are perpendicular to the bus lines; and individual ones of the first plurality of finger elements alternate with individual ones of the second plurality of finger elements.
The method can include implementing the first bus line, the second bus line, the first plurality of finger elements, and the second plurality of finger elements in a same plane. The method further can include implementing the inductor in at least a second plane different from the first plane and parallel to the first plane.
In another aspect, the method can include providing a second finger capacitor having a third bus line coupled to a third plurality of finger elements and a fourth bus line coupled to a fourth plurality of finger elements. The third bus line and the fourth bus line are parallel to the first bus line. The first leg of the inductor is coupled to a center of the third bus line.
In a further aspect, the method can include providing a second finger capacitor having a third bus line coupled to a third plurality of finger elements and a fourth bus line coupled to a fourth plurality of finger elements. The third bus line and the fourth bus line are parallel to the first bus line. The inductor can include a second leg parallel to the first leg. The second leg of the inductor is coupled to a center of the third bus line.
The method further can include varying a capacitance of the circuit by selectively connecting the second bus line to the fourth bus line using a first switch.
In still another aspect, where the second finger capacitor is coupled to the second leg of the inductor, the method can include providing a third finger capacitor having a fifth bus line coupled to a fifth plurality of finger elements and a sixth bus line coupled to a sixth plurality of finger elements. The fifth bus line and the sixth bus line are parallel to the first bus line. The first leg of the inductor is coupled to a center of the fifth bus line. The method also can include providing a fourth finger capacitor having a seventh bus line coupled to a seventh plurality of finger elements and an eighth bus line coupled to an eighth plurality of finger elements. The seventh bus line and the eighth bus line are parallel to the first bus line. The second leg of the inductor is coupled to a center of the seventh bus line.
The method also can include varying the capacitance of the circuit by selectively connecting the sixth bus line to the eighth bus line using a second switch.
While the disclosure concludes with claims defining novel features, it is believed that the various features described herein will be better understood from a consideration of the description in conjunction with the drawings. The process(es), machine(s), manufacture(s) and any variations thereof described within this disclosure are provided for purposes of illustration. Any specific structural and functional details described are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the features described in virtually any appropriately detailed structure. Further, the terms and phrases used within this disclosure are not intended to be limiting, but rather to provide an understandable description of the features described.
This disclosure relates to semiconductor integrated circuits (ICs) and, more particularly, to a high quality factor capacitive and inductive circuit structure for use within a semiconductor IC. In accordance with the inventive arrangements disclosed herein, a circuit structure is described that provides a high quality (Q) factor throughout a wide range of frequencies including frequencies exceeding approximately 10 GHz. The circuit structure provides an improved Q factor compared to conventional circuit structures for frequencies in and around approximately 32 GHz and up to approximately 52 GHz.
The circuit structure includes an inductor and one or more finger capacitors. Each finger capacitor includes a first bus line and a second bus line. Finger elements of the finger capacitor are coupled to each of the first bus line and the second bus line. The inductor includes legs that are coupled to the finger capacitor(s). More particularly, the leg of the inductor is coupled to a center of the bus line of each finger capacitor that is used.
By coupling the legs of the inductor to the center of the bus lines of the finger capacitors, current is injected into each finger capacitor from the inductor at the center of the finger capacitor. In consequence, the length of the path that the current travels within the finger capacitor is reduced to approximately one-half that of other circuit structures that inject current into the edge of the bus line of the finger capacitor. The reduced length of the current path results in reduced series resistance for the circuit structure, thereby increasing the Q factor. Coupling the inductor leg(s) to centers of bus lines, as described within this disclosure, can increase the Q factor of a circuit structure by approximately 60% over edge-connected configurations at selected frequencies.
For purposes of simplicity and clarity of illustration, elements shown in the figures are not necessarily drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numbers are repeated among the figures to indicate corresponding, analogous, or like features.
As pictured in
Bus line 105 and finger elements 115 are pictured in
A portion of an inductor is formed over finger capacitor 100. The portion of the inductor is a leg 125 portion of the inductor. Leg 125 is implemented in a different conductive layer than finger capacitor 100. In the example shown, leg 125 is formed in a metal layer above finger capacitor 100. For purposes of illustration, leg 125 is shown in semi-transparent form to more clearly illustrate the placement of leg 125 with respect to finger capacitor 100 and the connection formed between leg 125 and finger capacitor 100.
Leg 125 is located above a center of bus line 110. As defined herein, the “center” of a bus line is a line that bisects the bus line into two equal lengths or halves. The center of bus line 110 and, at least in this example, the center of bus line 105, is illustrated using dashed line 135. Dashed line 135 bisects bus line 105, bus line 110, and leg 125.
Leg 125 is coupled to finger capacitor 100 using a via structure 130. Via structure 130 attaches bus line 110 to leg 125. Via structure 130 further is bisected by line 135 and, as such, like bus lines 105 and 110, is symmetric about line 135. In one aspect, via structure 130 is implemented as a single, larger via sometimes referred to as a “trench” via. Via 130-1 in
Current from leg 125 is injected into bus line 110 at the center through via structure 130. As such, current travels outward to each respective end of bus line 110 from the center marked by line 135. Current further flows down through fingers 120. As noted, this reduces the path that current travels compared to conventional LC circuit structures that inject current into an edge of a bus line as illustrated by arrow 150. Injecting current at the location of arrow 150, i.e., at an edge of bus line 110, results in a longer path for the current to travel, increased resistance, and lower Q factor than the exemplary implementation pictured in
In the example of
In the example presented in
Finger capacitor array 405 includes finger capacitors 410, 415, 420, and 425. In one aspect, being part of finger capacitor array 405, each of finger capacitors 410, 415, 420, and 425 can be implemented as a same, e.g., a “unit,” finger capacitor. For example, finger capacitors 410, 415, 420, and 425 are identical having the same capacitive value or a value within a defined tolerance range of one another. In the example pictured in
Each of finger capacitors 410, 415, 420, and 425 includes a bus line 430 and a bus line 435. A plurality of finger elements are coupled to each of bus lines 430 and 435. A leg 440 of an inductor is illustrated in semi-transparent form to better show via structures 445 that attach a center of each of bus line 435 to leg 440.
Each of finger capacitors 410, 415, 420, and 425 is implemented substantially as described with reference to
In the example shown, inductor 505 includes a single loop or turn. It should be appreciated, however, that inductor 505 is not intended to be limited by the number of loops shown. Inductor 505 may include one or more additional full loops and/or one or more additional partial loops. In addition, the shape of loop 510, or loops as the case may be, of inductor 505 is not intended to be limited to octagonal. Loop 510 can be formed with a circular shape, a square shape, an oval shape, a spiral shape, or the like in accordance with the constraints of the particular IC fabrication technology that is used.
Leg 515 is positioned above, and connects to, a finger capacitor element 525. Finger capacitor element 525 may be implemented as a finger capacitor as described with reference to
A conventional LC circuit structure locates the finger capacitor array to the side of the leg of the inductor. Referring to
Finger capacitor array 604 includes finger capacitors 622, 624, 626, and 628. Each of finger capacitors 622, 624, 626, and 628 includes a bus line 630 and a bus line 632. A plurality of finger elements are coupled to each of bus lines 630 and 632. A second leg 634 of the inductor is illustrated in semi-transparent form to better show via structures 636 that attach a center of each bus line 630 to leg 634 thereby forming a connection between finger capacitor array 604 and leg 634.
Finger capacitor arrays 602 and 604 are implemented substantially as described with reference to
Including switches 640, 642, 644, and 646 as shown in
By opening and/or closing particular ones of switches 640, 642, 644, and 646, the capacitance of circuit 600 may be varied thereby allowing circuit 600 to be tuned after fabrication. In one aspect, switches 640, 642, 644, and 646 are programmable by loading a bitstream and/or other configuration data into the particular IC in which circuit 600 is included. In another aspect, one or more or all of switches 640, 642, 644, and 646 can be controlled by control signals generated by other circuitry within the IC to provide dynamic control of the switches during operation of the IC while in the field. In any case, the capacitance of circuit structure 600 can be varied when operating in the field as may be desired responsive to various conditions detected by the IC and/or responsive to signals and/or conditions within the IC.
It should be appreciated that the number of finger capacitors in each of finger capacitor arrays 602 and 604 is selected for purposes of illustration only. Fewer or more finger capacitors may be included. In either case, however, the number of finger capacitors in each of finger capacitor arrays 602 and 604 may be matched, or equal. In this regard, the number of switches included varies with the number of finger capacitors included within finger capacitor arrays 602 and 604.
It also should be appreciated that not all finger capacitors need include a switch. For example, one or more pairs of finger capacitors (e.g., finger capacitors 612 and 622; finger capacitors 610 and 624, etc.) may be connected using a hardwired connection, while others are switchable. In still another aspect, all of the finger capacitor pairs may have a hardwired connection so as not to be switchable.
In the example shown, inductor 705 includes a single loop or turn. As discussed with reference to
Leg 715 is positioned above, and connected to, a finger capacitor element 725. Finger capacitor element 725 may be implemented as a finger capacitor as described with reference to
Leg 720 is positioned above, and connected to, a finger capacitor element 730. Finger capacitor element 730 may be implemented as a finger capacitor as described with reference to
Circuit 700 further includes a plurality of switches 735. Switches 735 can be implemented as described with reference to
In a conventional LC circuit configuration, the finger capacitor arrays are not located beneath the legs of the inductor. Referring to
Accordingly, in block 805, a first finger capacitor is provided. The first finger capacitor has a first bus line coupled to a first plurality of finger elements and a second bus line coupled to a second plurality of finger elements. The first bus line is parallel to the second bus line. In block 810, an inductor is provided. The inductor has a first leg oriented perpendicular to the first bus line and the second bus line. The first leg is coupled to a center of the first bus line. In block 815, the first plurality of finger elements and the second plurality of finger elements are formed perpendicular to the bus lines. Individual ones of the first plurality of finger elements alternate with individual ones of the second plurality of finger elements.
In block 820, a second finger capacitor is provided. The second finger capacitor has a third bus line coupled to a third plurality of finger elements and a fourth bus line coupled to a fourth plurality of finger elements. The third bus line and the fourth bus line are parallel to the first bus line. The inductor further includes a second leg parallel to the first leg. The second leg of the inductor is coupled to a center of the third bus line. In block 825, a capacitance of the circuit is varied by selectively connecting the second bus line to the fourth bus line using a switch.
In another aspect, the first finger capacitor is implemented as a first array of finger capacitors. Each finger capacitor in the first array of finger capacitors can include a first bus line, a second bus line, a first plurality of finger elements, and a second plurality of finger elements as described. A center of the first bus line of each finger capacitor of the first array of finger capacitors can be connected to the first leg of the inductor.
Similarly, the second finger capacitor is implemented as a second array of finger capacitors. Each finger capacitor in the second array of finger capacitors can include a third bus line, a fourth bus line, a third plurality of finger elements, and a fourth plurality of finger elements as described. A center of the third bus line of each finger capacitor of the second array of finger capacitors can be connected to the second leg of the inductor.
Line 2 represents the Q factor of a finger capacitor device in an LC circuit structure as described within this disclosure with reference to
This disclosure relates to semiconductor ICs and, more particularly, to a high quality factor LC circuit structure for use within a semiconductor IC. A high quality factor is achieved, at least in part, by connecting the finger capacitors to the inductor at a center of one bus line of each finger capacitor. By attaching the finger capacitors to the inductor at the center of the bus lines as opposed to the edges, current from the inductor is injected into each finger capacitor at the center of the finger capacitor. Injecting current into the center of the bus line reduces the length of the path that the current travels within the finger capacitor, thereby reducing the series resistance for the finger capacitor, and increasing Q factor.
For purposes of explanation, specific nomenclature is set forth to provide a thorough understanding of the various inventive concepts disclosed herein. The terminology used herein, however, is for the purpose of illustrating the features described and is not intended to be limiting.
For example, the terms “a” and “an,” as used herein, are defined as one or more than one. The term “plurality,” as used herein, is defined as two or more than two. The term “another,” as used herein, is defined as at least a second or more. The term “coupled,” as used herein, is defined as connected, whether directly without any intervening elements or indirectly with one or more intervening elements, unless otherwise indicated. Two elements also can be coupled mechanically, electrically, or communicatively linked through a communication channel, pathway, network, or system.
The term “and/or” as used herein refers to and encompasses any and all possible combinations of one or more of the associated listed items. It will be further understood that the terms “includes” and/or “including,” when used in this disclosure, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. It will also be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms, as these terms are only used to distinguish one element from another.
The term “if” may be construed to mean “when” or “upon” or “in response to determining” or “in response to detecting,” depending on the context. Similarly, the phrase “if it is determined” or “if [a stated condition or event] is detected” may be construed to mean “upon determining” or “in response to determining” or “upon detecting [the stated condition or event]” or “in response to detecting [the stated condition or event],” depending on the context.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of process(es), machine(s), manufacture(s), and/or systems utilizing one or more of the features described herein. In some alternative implementations, the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed.
The features disclosed within this specification can be embodied in other forms without departing from the spirit or essential attributes thereof. Accordingly, reference should be made to the following claims, rather than to the foregoing specification, as indicating the scope of such features and implementations.
Number | Name | Date | Kind |
---|---|---|---|
1899176 | Bailey | Feb 1933 | A |
3593319 | Barber | Jul 1971 | A |
4156249 | Koo | May 1979 | A |
4249196 | Durney et al. | Feb 1981 | A |
4409608 | Yoder | Oct 1983 | A |
4427457 | Carlson et al. | Jan 1984 | A |
4470096 | Guertin | Sep 1984 | A |
4470099 | Sawairi | Sep 1984 | A |
4571543 | Raymond et al. | Feb 1986 | A |
4639686 | Beckenbach et al. | Jan 1987 | A |
4700457 | Matsukawa | Oct 1987 | A |
4731696 | Himes et al. | Mar 1988 | A |
4827323 | Tigelaar et al. | May 1989 | A |
4831431 | Hanlon | May 1989 | A |
4878151 | Gallichio | Oct 1989 | A |
4914546 | Alter | Apr 1990 | A |
4937649 | Shiba et al. | Jun 1990 | A |
4994688 | Horiguchi et al. | Feb 1991 | A |
5005103 | Kwon et al. | Apr 1991 | A |
5021920 | Smith | Jun 1991 | A |
5077225 | Lee | Dec 1991 | A |
5083184 | Eguchi | Jan 1992 | A |
5089878 | Lee | Feb 1992 | A |
5117114 | Street et al. | May 1992 | A |
5119169 | Kozono et al. | Jun 1992 | A |
5142639 | Kohyama et al. | Aug 1992 | A |
5155658 | Inam et al. | Oct 1992 | A |
5166858 | Frake et al. | Nov 1992 | A |
5172299 | Yamada et al. | Dec 1992 | A |
5177410 | Hashiguchi et al. | Jan 1993 | A |
5189594 | Hoshiba | Feb 1993 | A |
5208725 | Akcasu | May 1993 | A |
5275974 | Ellul et al. | Jan 1994 | A |
5583359 | Ng et al. | Dec 1996 | A |
5712813 | Zhang | Jan 1998 | A |
5868388 | Wood et al. | Feb 1999 | A |
5939766 | Stolmeijer et al. | Aug 1999 | A |
6037621 | Wilson | Mar 2000 | A |
6064108 | Martinez | May 2000 | A |
6066537 | Poh | May 2000 | A |
6297524 | Vathulya et al. | Oct 2001 | B1 |
6303456 | Pricer et al. | Oct 2001 | B1 |
6303457 | Christensen et al. | Oct 2001 | B1 |
6383858 | Gupta et al. | May 2002 | B1 |
6385033 | Javanifard et al. | May 2002 | B1 |
6410954 | Sowlati et al. | Jun 2002 | B1 |
6417556 | Long et al. | Jul 2002 | B1 |
6437431 | Mbouombouo et al. | Aug 2002 | B1 |
6448873 | Mostove | Sep 2002 | B1 |
6542351 | Kwang | Apr 2003 | B1 |
6548400 | Brennan et al. | Apr 2003 | B2 |
6570210 | Sowlati et al. | May 2003 | B1 |
6597562 | Hu et al. | Jul 2003 | B1 |
6625006 | Aram et al. | Sep 2003 | B1 |
6653681 | Appel | Nov 2003 | B2 |
6661079 | Bikulcius | Dec 2003 | B1 |
6690570 | Hajimiri et al. | Feb 2004 | B2 |
6737698 | Paul et al. | May 2004 | B1 |
6747307 | Vathulya et al. | Jun 2004 | B1 |
6765778 | Du et al. | Jul 2004 | B1 |
6819542 | Tsai et al. | Nov 2004 | B2 |
6822312 | Sowlati et al. | Nov 2004 | B2 |
6880134 | Drennan | Apr 2005 | B2 |
6882015 | Bernstein et al. | Apr 2005 | B2 |
6897505 | Aton | May 2005 | B2 |
6903918 | Brennan | Jun 2005 | B1 |
6927125 | Jones et al. | Aug 2005 | B2 |
6933551 | Stribley et al. | Aug 2005 | B1 |
6933869 | Starr et al. | Aug 2005 | B1 |
6949781 | Chang et al. | Sep 2005 | B2 |
6963122 | Soenen et al. | Nov 2005 | B1 |
6972463 | Cheng | Dec 2005 | B2 |
6974744 | Aram et al. | Dec 2005 | B1 |
7009832 | Chen et al. | Mar 2006 | B1 |
7013436 | Morton et al. | Mar 2006 | B1 |
7027287 | Georgakos | Apr 2006 | B2 |
7038296 | Laws | May 2006 | B2 |
7050290 | Tang et al. | May 2006 | B2 |
7116544 | Sutardja | Oct 2006 | B1 |
7154734 | Schultz et al. | Dec 2006 | B2 |
7161228 | Pettit | Jan 2007 | B1 |
7170178 | Bely et al. | Jan 2007 | B2 |
7193263 | Barth | Mar 2007 | B2 |
7195971 | Bernstein et al. | Mar 2007 | B2 |
7202548 | Lee | Apr 2007 | B2 |
7205854 | Liu | Apr 2007 | B2 |
7238981 | Marotta | Jul 2007 | B2 |
7259945 | Cleveland | Aug 2007 | B2 |
7259956 | Fong et al. | Aug 2007 | B2 |
7271465 | Jessie et al. | Sep 2007 | B2 |
7274085 | Hsu et al. | Sep 2007 | B1 |
7286071 | Hsueh et al. | Oct 2007 | B1 |
7298001 | Liu et al. | Nov 2007 | B1 |
7348624 | Sakaguchi et al. | Mar 2008 | B2 |
7394274 | Muniandy et al. | Jul 2008 | B2 |
7439570 | Anthony | Oct 2008 | B2 |
7485914 | Huang et al. | Feb 2009 | B2 |
7564264 | Morrison et al. | Jul 2009 | B1 |
7564675 | Chen et al. | Jul 2009 | B2 |
7663233 | Lim | Feb 2010 | B2 |
7768054 | Benetik | Aug 2010 | B2 |
7944732 | de Jong et al. | May 2011 | B2 |
7956438 | Quinn | Jun 2011 | B2 |
7994609 | Quinn | Aug 2011 | B2 |
7994610 | Quinn | Aug 2011 | B1 |
8207592 | Quinn | Jun 2012 | B2 |
8362589 | Quinn | Jan 2013 | B2 |
8653844 | Sadoughi et al. | Feb 2014 | B2 |
8941974 | Wu et al. | Jan 2015 | B2 |
20020171510 | Kushitani et al. | Nov 2002 | A1 |
20030132475 | Kanamori | Jul 2003 | A1 |
20030183863 | Nakao et al. | Oct 2003 | A1 |
20030183884 | Miyazawa | Oct 2003 | A1 |
20050077581 | Chang et al. | Apr 2005 | A1 |
20050135042 | Chiu-Kit Fong et al. | Jun 2005 | A1 |
20050161725 | Da Dalt | Jul 2005 | A1 |
20060203424 | Chen et al. | Sep 2006 | A1 |
20070096720 | Clements et al. | May 2007 | A1 |
20070181973 | Hung et al. | Aug 2007 | A1 |
20070190760 | Coolbaugh et al. | Aug 2007 | A1 |
20070278551 | Anthony | Dec 2007 | A1 |
20070296013 | Chang et al. | Dec 2007 | A1 |
20080084255 | El Rai et al. | Apr 2008 | A1 |
20080123245 | Lee et al. | May 2008 | A1 |
20080128857 | Bi | Jun 2008 | A1 |
20080239619 | Okamoto et al. | Oct 2008 | A1 |
20090057826 | Kim et al. | Mar 2009 | A1 |
20090322447 | Daley et al. | Dec 2009 | A1 |
20100072572 | Baumgartner et al. | Mar 2010 | A1 |
20100125989 | Huang et al. | May 2010 | A1 |
20100127348 | Quinn | May 2010 | A1 |
20100127349 | Quinn | May 2010 | A1 |
20120212877 | Lu | Aug 2012 | A1 |
20120229203 | Sadoughi et al. | Sep 2012 | A1 |
20130093047 | Huang et al. | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
25 48 563 | May 1977 | DE |
100 46 910 | Oct 2001 | DE |
10145 462 | Apr 2003 | DE |
1 149 569 | Apr 1969 | GB |
1 469 944 | Apr 1977 | GB |
57-106804 | Jul 1982 | JP |
58-051552 | Mar 1983 | JP |
59-91718 | Jun 1984 | JP |
61-259560 | Nov 1986 | JP |
61-263251 | Nov 1986 | JP |
63-070550 | Mar 1988 | JP |
01-084616 | Mar 1989 | JP |
01-096943 | Apr 1989 | JP |
01-298322 | Dec 1989 | JP |
01-313917 | Dec 1989 | JP |
02-231755 | Sep 1990 | JP |
02-268439 | Nov 1990 | JP |
02-307275 | Dec 1990 | JP |
03-008360 | Jan 1991 | JP |
03-071612 | Mar 1991 | JP |
04-268756 | Sep 1992 | JP |
07-283076 | Oct 1995 | JP |
09-199973 | Jul 1997 | JP |
11-274887 | Oct 1999 | JP |
2001-267503 | Sep 2001 | JP |
WO 03090280 | Oct 2003 | WO |
Entry |
---|
Amintoosi, Mahmood et al., “Using pattern matching for tiling and packing problems” European Journal of Operational Research, Jul. 10, 2007, pp. 950-960, vol. 83, No. 3, Elsevier, Atlanta, Georgina, USA. |
Aparicio, Robert et al., “Capacity Limits and Matching Properties of Integrated Capacitors,” IEEE Journal of Solid-State Circuits, Mar. 2002, pp. 384-393, vol. 37, No. 3, IEEE, Piscataway, New Jersey, USA. |
Bersuker, Gennadi et al., “Mechanism of Electron Trapping and Characteristics of Traps in HfO2 Gate Stacks,” IEEE Transactions on Device and Materials Reliability, Mar. 2007, pp. 138-145, vol. 7, No. 1, IEEE, Piscataway, New Jersey, USA. |
Chan, Chi Hou et al., “Analysis of MMIC Structures Using an Efficient Iterative Approach,” IEEE Transactions on Microwave Theory and Techniques, Jan. 1988, pp. 96-105, vol. 36, No. 1, IEEE, Piscataway, New Jersey, USA. |
Fukuda, Hiroshi et al., “Enumeration of Polyominoes, Polyiamonds and Polyhexes for Isohedral Tilings with Rotational Symmetry,” Computational Geometry and Graph Theory, Jun. 11, 2007, pp. 68-78, Springer Berlin Heidelberg, Berlin Heidelberg, Germany. |
Imamura, Akira et al., “Bending-Comb Capacitor with a Small Parasitic Inductance,” Proc. of the 2002 Symposium on VLSI Circuits Digest of Technical Papers, Jun. 13, 2002, pp. 22-25, IEEE, Piscataway, New Jersey, USA. |
Jacobsen, Jesper Lykke, “Tetromino tilings and the Tutte polynomial,” Journal of Physics A: Mathematical and Theoretical, Feb. 16, 2007, pp. 1439-1446, vol. 40, No. 7, IOP Publishing, Bristol, United Kingdom. |
Keane, John et al., “An On-Chip NBTI Sensor for Measuring pMOS Threshold Voltage Degradation;” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Oct. 30, 2009, p. 947-956, IEEE, Piscataway, New Jersey, USA. |
Rajagopalan, Jay et al., “Optimization of Metal-Metal Comb-Capacitors for RF Applications,” Wireless Design & Development, Mar. 4, 2001, pp. 1-4, Wireless Design and Development, Madison, Wisconsin, USA. |
Rhoads, Glenn C., “Planar tilings by polyominoes, polyhexes and polyiamonds,” Journal of Computational and Applied Mathematics, Feb. 15, 2005, pp. 329-353, vol. 174, No. 2, Elsevier, Atlanta, Georgina, USA. |
Samavati, Hirad et al., “Fractal Capacitors,” IEEE Journal of Solid-State Circuit, Dec. 1998, pp. 2035-2041, vol. 33, No. 12, IEEE, Piscataway, New Jersey, USA. |
Sowlati, Tirdad et al., “High Density Capacitance Structures in Submicron CMOS for Low Power RF Applications,” Proc. of the International Symposium on Low Power Electronics and Design, Aug. 6, 2001, pp. 243-246, IEEE, Piscataway, New Jersey, USA. |
Wakayama, Myles H. et al., “A 30-MHz Low-Jitter High-Linearity CMOS Voltage-Controlled Oscillator”, IEEE Journal of Solid-State Circuits, Dec. 1987, pp. 1074-1081, vol. sc-22, No. 6, IEEE, Piscataway, New Jersey, USA. |
Number | Date | Country | |
---|---|---|---|
20150145615 A1 | May 2015 | US |