The present invention relates to the field of wire bonding equipment and, more particularly, to an improved wire bonder which uses linear and rotation movement of the bonding head for providing high speed bonding.
Wire bonding processes and machines are used extensively as a practical and expedient method to bond wires to semiconductors. One example of the use of wire bonders in a semiconductor manufacturing process is for attaching a semiconductor dies directly to a circuit board substrate. The substrate includes numerous traces which terminate in pads that are positioned adjacent to the place where the die is to be mounted. The package itself includes numerous die pads that are to be electrically connected to the pads on the circuit board. A wire bonder is used to attach a conductive wire, typically having a diameter of between 0.00051 to 0.030 inches, to each die pad and then to the pads on the circuit board. The configuration of the die and the location of the pads require that the wire bonds be formed at varying X, Y and Z locations.
Automatic wire bonders have been developed which utilize stored position data for each wire bond. The wire bonders use the position data to control the bonding operation. The most common bonder uses a vertically or rotary (Z direction) displaceable wire bonding head along with a translatable (in the X, Y direction) semiconductor work table. Three high speed motors (one associated with each direction of movement) are used to position the semiconductor device and bonding tool at the appropriate locations.
Generally, the speed of a bonding machine is measured by the number of units that are completed per hour (or, alternatively, the number of wires bonded per hour.) One way to reduce the costs associated with the manufacture of a semiconductor product is to increase the speed of the bonding machine to increase the number of units produced per hour. The high speeds of current machines require the bonding head and the table to move at accelerations of between 10 and 12 g's. Increasing the accelerations above this range has been difficult due to the large mass and inertia that is involved in moving the various components of the bonding machines.
A need, therefore, exists for an improved wire bonding machine which provides high speed bonding.
The present invention relates to a wire bonding machine for bonding a wire to a semiconductor device. The wire bonding machine includes a wire bonding head having a bonding tool mounted to it. The bonding tool is adapted to attach a wire end to a semiconductor device. At least a portion of the bonding head is pivotable about, or slides perpendicular to, a first horizontal axis so as to provide vertical displacement of the bonding tool. The bonding head is also rotatably mounted to the bonding machine so as to permit rotation of the bonding tool about a vertically oriented rotational axis.
The wire bonding machine also includes a work table for supporting at least one semiconductor device to be wire bonded. A conveyance system is incorporated to translate the work table in a direction relative to the bonding head and in a substantially orthogonal direction to the horizontal pivot axis of the bonding head.
The foregoing and other features of the invention and advantages of the present invention will become more apparent in light of the following detailed description of the preferred embodiments, as illustrated in the accompanying figures. As will be realized, the invention is capable of modifications in various respects, all without departing from the invention. Accordingly, the drawings and the description are to be regarded as illustrative in nature, and not as restrictive.
For the purpose of illustrating the invention, the drawings show a form of the invention which is presently preferred. However, it should be understood that this invention is not limited to the precise arrangements and instrumentalities shown in the drawings.
Referring now to the drawings, wherein like reference numerals illustrate corresponding or similar elements throughout the several views,
The bonding head 12 is positioned above a high speed conveyance system 16, which, in the illustrated embodiment, may include a conventional set of guide rails 18 and a motor drive (not shown), for translating the workpiece 20 (e.g., a semiconductor device) relative to the bonding head 12. Any conventional wire bonding conveyance system may be used in the present invention. More particularly, the workpiece 20 is mounted on a work table 22 that includes a fixture 24 which holds one or more workpieces 20. The fixture 24 (or magazine) may be supplied to the high speed conveyance system 16 by a magazine handler 30 as shown in
One difference between the present invention and current systems is that the conveyance system 16 provide translation of the work table 22 in one direction, e.g., the X-axis direction, for purposes of positioning the workpiece 20 and to provide the high speed bonding motion relative to the bonding tool 14. Contrary to conventional bonding machines which use the conveyance system to position the workpiece and control the X and Y position of the bonding tool 14 relative to the workpiece, the present invention uses the positional control of the bonding head 12 to control the Y and Z position of the bonding tool 14 relative to the workpiece 20. The bonding tool 14 is controllable along both the Y-axis and Z-axis for positioning the bonding tool 14 relative to the workpiece. As a consequence, the Y-axis positional control is split from the X-axis positional control and from the work table 22 entirely.
More particularly, the bonding head 12, in addition to controlling the vertical location (i.e., in the Z direction) of the bonding tool 14, also is rotatable in the X-Y plane, i.e., rotatable about a vertical rotational or pivot axis 26. This allows the bonding head 12 to provide control over the Y-axis position of the bonding tool 14 relative to the worktable 22 and, thus, the workpiece 20. A pivotal or rotational mount 28, such as a pin and/or bearing, attaches the bonding head 12 to the bonding machine so as to permit angular (rotational) movement of at least the bonding tool portion of the bonding head 12.
Referring to
It should also be apparent that the angular movement of the bonding head 12 provides, in addition to positional change in the Y-direction, some positional change in the X-direction too. Thus, the programming which controls the movement of the bonding tool 14 and worktable 12 to properly position the tool 14 for bonding, must take into account both the rotation of the bonding head 12 and translation of the worktable 22 when determining the position of the worktable 22 in the X-direction for achieving a bond.
The bonding head 12 is mounted to the bonding machine 10 through a conventional attachment which permits the bonding tool 14 to move vertically (i.e., in the Z-direction) relative to the work piece 20. U.S. Pat. No. 4,266,710, the disclosure of which is incorporated herein by reference in its entirety, describes one type of mounting arrangement that could be used in the present invention. The mounting arrangement may include a pivot or hinge mount which permits the bonding tool 14 to move up and down in the Z-direction (toward and away from the workpiece) so as to permit the bonding of the wires to the semiconductor device at various vertical positions. Those skilled in the art are familiar with such mounting arrangements as well as other mechanisms for vertical positioning of a bonding tool and, therefore, no further discussion is needed. The present invention can be readily incorporated into many conventional wire bonders, such as Kulicke & Soffa's 8028 Ball Bonder or Maxμm IC Ball Bonder.
Preferably, the pivotal or hinged mounting of the bonding tool 14 or head 12 (for Z-axis positioning) is located outboard of the rotational mounting location (i.e., outboard of the rotational axis 26). This reduces the mass of components and/or material that needs to be moved to raise and lower the bonding tool 14.
In order to rotate the bonding head 12 about the rotational axis 26, the present invention incorporates a motor drive assembly 28. The motor drive assembly 28 is preferably mounted or engaged with the bonding head 12 on the opposite side of the rotational axis 26 from the bonding tool 12. By mounting the motor drive assembly 28 on the opposite side of the rotational axis 26 from the bonding tool 12, it is possible to reduce the force needed to rotate the bonding tool 14. More particularly, it is desirable to substantially balance the mass of the components of the bonding head 12 on opposite sides of the rotational axis 26. This balancing of the masses reduces dynamic vibration causes by the motion of the boning head, as well as reduces the braking force needed to overcome the momentum of the bonding head 12 when reciprocating the bonding head 12 back and forth. Thus, locating the bonding tool 14 and the motor drive assembly 28 on opposites sides of the rotational axis 26 greatly increases the rotational acceleration of the bonding head 12.
Those skilled in the art would be readily capable of mounting the motor drive assembly 28 to the bonding head 12 so as to maximize the speed and capabilities of the bonding tool 14 and bonding head 12 in light of the teachings provided herein.
As described above, the present invention controls translation of the work table 22 (and, thus, the work piece 20) along the X-axis by translating the table along guide rails 18. Referring to
Referring now to
Turning now to
Alternatively, the camera may be mounted to the bonding head 12, such that it reciprocates with the head. A further embodiment is contemplated wherein the camera 50 is mounted to a separate rotary head which permits the camera 50 to be rotated in the theta (θ) direction about a Z-axis. The camera would be mounted in much the same manner as the second bonding head in
Conventional software is used to retrieve, store and extract position data for use by the bonding head. Accordingly, no further discussion is needed.
In an alternate embodiment (not shown), two bonding heads could be balanced on opposite sides of the rotational axis such that as the bonding tool on a first head is translated down the bonding tool on the opposite head would be raised up. Thus, two workpieces can be bonded at the same time. Separate cameras would be necessary for each bonding head and each workpiece should be mounted on a work table that can be independently controlled.
The present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicating the scope of the invention.
The present invention is related to and claims priority from co-pending U.S. Provisional Patent Application Ser. No. 60/427,788, filed Nov. 19, 2002, incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4266710 | Bilane et al. | May 1981 | A |
4361261 | Elles et al. | Nov 1982 | A |
4422568 | Elles et al. | Dec 1983 | A |
4550871 | Chan et al. | Nov 1985 | A |
4792079 | Bansemir | Dec 1988 | A |
5156318 | Suzuki et al. | Oct 1992 | A |
5699951 | Miyoshi | Dec 1997 | A |
5735449 | Magni | Apr 1998 | A |
5839640 | Kinnaird | Nov 1998 | A |
5897048 | Cheng et al. | Apr 1999 | A |
5901896 | Gal | May 1999 | A |
5909837 | Safabakhsh et al. | Jun 1999 | A |
5931372 | Miller | Aug 1999 | A |
5979739 | Jin et al. | Nov 1999 | A |
6109501 | Cheng et al. | Aug 2000 | A |
6122307 | Koseki | Sep 2000 | A |
6126432 | Okada et al. | Oct 2000 | A |
6434726 | Goossen | Aug 2002 | B1 |
6460751 | Thürlemann | Oct 2002 | B1 |
6616030 | Miller | Sep 2003 | B2 |
6640423 | Johnson et al. | Nov 2003 | B1 |
6774651 | Hembree | Aug 2004 | B1 |
6913838 | McCullough et al. | Jul 2005 | B2 |
20020162875 | Miller | Nov 2002 | A1 |
20030084563 | Ohkubo et al. | May 2003 | A1 |
20050247758 | Beatson et al. | Nov 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20040129754 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
60427788 | Nov 2002 | US |