Field of the Invention
The present invention relates to illumination technology and exposure technology used in the lithography step for fabricating various devices, e.g., semiconductor integrated circuits (LSI and the like), image pickup devices, or liquid crystal displays and, more particularly, to illumination technology and exposure technology for illuminating a mask pattern with light in a predetermined polarization state. Furthermore, the present invention relates to device fabrication technology using the exposure technology.
Related Background Art
For forming microscopic patterns of electronic devices such as semiconductor integrated circuits or liquid crystal displays, a method adopted is to project a demagnified image of a pattern on a reticle (or a photomask or the like) as a mask on which the pattern to be formed is drawn at a proportional magnification of about 4-5 times, through a projection optical system onto a wafer (or glass plate or the like) as a substrate to be exposed (photosensitive body) to effect exposure and transfer of the image. Projection exposure apparatus used for the exposure and transfer include those of a stationary exposure type such as steppers, and those of a scanning exposure type such as scanning steppers. The resolution of the projection optical system is proportional to a value obtained by dividing an exposure wavelength by a numerical aperture (NA) of the projection optical system. The numerical aperture (NA) of the projection optical system is given by multiplying a sine (sin) of a maximum angle of incidence of illumination light for exposure onto the wafer, by a refractive index of a medium through which the light passes.
Therefore, in order to meet the demand for miniaturization of the semiconductor integrated circuits and others, the exposure wavelength of the projection exposure apparatus has been decreased toward shorter wavelengths. The mainstream exposure wavelength at present is 248 nm of KrF excimer laser, and the shorter wavelength of 193 nm of ArF excimer laser is also close to practical use. There are also proposals on the projection exposure apparatus using exposure light sources in the so-called vacuum ultraviolet region such as the F2 laser with the much shorter wavelength of 157 nm and the Ar2 laser with the wavelength of 126 nm. Since it is also possible to achieve a higher resolution by a larger numerical aperture (larger NA) of the projection optical system instead of the use of shorter wavelength, there are also attempts to develop the projection optical system with a much larger NA, and the leading NA of the projection optical system at present is approximately 0.8.
On the other hand, there are also practically available techniques to enhance the resolution of the pattern to be transferred, even with use of the same exposure wavelength and the projection optical system with the same NA, so called super resolution techniques, such as a method using a so-called phase shift reticle, and annular illumination, dipole illumination, and quadrupole illumination to control angles of incidence of the illumination light onto the reticle in a predetermined distribution.
Among those, the annular illumination is to limit the incidence angle range of illumination light onto the reticle to predetermined angles, i.e., to limit the distribution of illumination light on the pupil plane of the illumination optical system to within a predetermined annular region centered on the optical axis of the illumination optical system, thereby offering the effect of improvement in the resolution and depth of focus (e.g., reference is made to Japanese Patent Application Laid-Open No. 61-91662). On the other hand, the dipole illumination and quadrupole illumination are applied to cases where the pattern on the reticle is one with specific directionality, and are arranged to limit, as well as the incidence angle range, the direction of incidence of the illumination light to a direction suitable for the directionality of the pattern, thereby achieving great improvement in the resolution and depth of focus (e.g., reference is made to Japanese Patent Application Laid-Open No. 4-101148 or U.S. Pat. No. 6,233,041 equivalent thereto and to Japanese Patent Application Laid-Open No. 4-225357 or U.S. Pat. No. 6,211,944 equivalent thereto).
There are other proposals of attempts to optimize the polarization state of the illumination light relative to the direction of the pattern on the reticle, thereby achieving improvement in the resolution and depth of focus. This method is to convert the illumination light into linearly polarized light with the polarization direction (direction of the electric field) along a direction orthogonal to the periodic direction of the pattern, i.e., along a direction parallel to the longitudinal direction of the pattern, thereby achieving improvement in contrast and others of the transferred image (e.g., Japanese Patent Application Laid-Open No. 5-109601 and Thimothy A. Brunner, et al.: “High NA Lithographic imaging at Brewster's angle,” SPIE (USA) Vol. 4691, pp. 1-24 (2002).
Concerning the annular illumination, there are also proposals of attempts to match the polarization direction of the illumination light in an annular region in which the illumination light is distributed on the pupil plane of the illumination optical system, with the circumferential direction of the annular region, thereby achieving improvement in the resolution, contrast, etc. of the projected image.
In effecting the annular illumination by the conventional technology as described above, there was the problem of large loss in quantity of the illumination light to lower illumination efficiency if the polarization state of the illumination light was made to be linear polarization substantially matched with the circumferential direction of the annular region on the pupil plane of the illumination optical system.
Specifically, the illumination light emitted from the recently mainstream narrow-band KrF excimer laser source is uniform, linearly polarized light. If the light is kept in that polarization state and guided to the reticle, the reticle will be illuminated with the uniform, linearly polarized light, and it is thus needless to mention that it is infeasible to obtain the linearly polarized light with the polarization direction matched with the circumferential direction of the annular region on the pupil plane of the illumination optical system as described above.
Therefore, in order to realize the aforementioned polarization state, it was necessary to adopt, for example, a method of converting the linearly polarized light emitted from the light source, once into randomly polarized light and thereafter, in each part of the annular region, selecting a desired polarization component from the illumination light of random polarization, using a polarization selecting element such as a polarization filter or a polarization beam splitter. This method used only energy in the predetermined linear polarization component out of the energy of the illumination light of random polarization, i.e., only approximately half energy as the illumination light onto the reticle, and thus posed the problem of large loss in quantity of the illumination light and large loss in exposure power on the wafer in turn, resulting in reduction in processing performance (throughput) of the exposure apparatus.
Similarly, in application of multipole illumination such as the dipole illumination or quadrupole illumination, there was also the problem of reduction in illumination efficiency if the polarization of the illumination light in each dipole or quadrupole region was attempted to be set in a predetermined state on the pupil plane of the illumination optical system.
Reference symbols in parentheses attached to respective elements of the present invention below correspond to configurations of embodiments of the present invention described later. It is, however, noted that each reference symbol is only an example of an element corresponding thereto and is by no means intended to limit each element to the configurations of the embodiments.
A first aspect of the present embodiment is to provide a projection exposure apparatus for projecting a pattern image on a first object on a second object, the projection exposure apparatus comprising: a projection optical system for projecting the image of pattern on the first object on the second object; and an illumination optical system for illuminating a first object with illumination light from a light source, and comprising at least two birefringent members arranged along a traveling direction of the illumination light, wherein a direction of a fast axis of at least one birefringent member out of the birefringent members is different from a direction of a fast axis of the other birefringent member, and wherein a specific illumination beam incident in a specific incidence angle range to the first object among the illumination light generated in a substantially single polarization state from the light source is light in a polarization state consisting primarily of S-polarization.
A second aspect of the present embodiment is to provide a projection exposure apparatus for projecting an image of a pattern on a first object onto a second object, comprising: a projection optical system for projecting the image of the pattern on the first object onto the second object; and an illumination optical system for illuminating the first object with light supplied from an outside light source, the illumination optical system comprising a diffractive optical element and a birefringent member arranged in order along a traveling direction of the light.
A third aspect of the present embodiment is to provide an illumination optical apparatus for illuminating a first object with illumination light from a light source, comprising: at least two birefringent members arranged along a traveling direction of the illumination light, wherein a direction of a fast axis of at least one birefringent member out of the birefringent members is different from a direction of a fast axis of the other birefringent member, and wherein a specific illumination beam incident in a specific incidence angle range onto the first object among the illumination light in a substantially single polarization state supplied from the light source is light in a polarization state consisting primarily of S-polarization.
A fourth aspect of the present invention is to provide an illumination optical apparatus for illuminating a first object with illumination light from a light source, comprising: a diffractive optical element and a birefringent member arranged in order along a traveling direction of the illumination light.
A fifth aspect of the embodiments is to provide an exposure method using the above projection exposure apparatus according to the above embodiments.
A sixth aspect of the embodiments is to provide a method of making a device using the exposure method according to the above embodiments.
According to the present embodiments, for example, thicknesses of the birefringent members are set in their respective predetermined distributions, whereby the polarization after passage of the illumination light emitted from the light source, through the plurality of birefringent members, can be, for example, in a state consisting primarily of polarization in the circumferential direction around the optical axis in an annular region centered around the optical axis. An exit surface of the birefringent members is located, for example, at a position near the pupil plane of the illumination optical system, whereby the first object is illuminated with the illumination light (specific illumination beam) having passed through the annular region and kept in the predetermined polarization state consisting primarily of S-polarization, with little loss in quantity of light.
In this case, the apparatus may comprise a beam limiting member (9a, 9b) for limiting the illumination light incident to the first object, to the specific illumination beam. This makes the first object illuminated under the condition of almost annular illumination. When in this annular illumination the illumination light is almost S-polarization on the first object, a projected image of a line-and-space pattern arranged at a fine pitch in an arbitrary direction on the first object is formed mainly by the illumination light with the polarization direction parallel to the longitudinal direction of the line pattern and, therefore, improvement is made in imaging characteristics such as the contrast, resolution, and depth of focus.
The beam limiting member may be configured to further limit the direction of incidence of the illumination light incident to the first object, to a plurality of specific, substantially discrete directions. Since this implements illumination such as the dipole illumination or quadrupole illumination, improvement is made in imaging characteristics of a line-and-space pattern arranged at a fine pitch in a predetermined direction.
The present invention will be more fully understood from the detailed description given hereinbelow and the accompanying drawings, which are given by way of illustration only and are not to be considered as limiting the embodiment.
Further scope of applicability of the embodiment will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will be apparent to those skilled in the art from this detailed description.
An example of preferred embodiment of the present invention will be described below with reference to the drawings. The present example is an application of the present invention to a case where exposure is performed by a projection exposure apparatus of the scanning exposure type (scanning stepper) according to the step-and-scan method.
In the description hereinafter, a coordinate system as to the projection optical system 25, reticle R, and wafer W is defined as follows in
First, the reticle R on which a pattern to be transferred by exposure is formed, is stuck and held on a reticle stage 21, and the reticle stage 21 moves at a constant speed in the Y-direction on a reticle base 22 and finely moves in the X-direction, in the Y-direction, and in the rotational direction about the Z-axis so as to compensate for a synchronization error, to effect scanning of reticle R. The X-directional and Y-directional positions and the angle of rotation of the reticle stage 21 are measured by means of moving mirror 23 provided thereon, and laser interferometer 24. Based on measurements of the laser interferometer and control information from main control system 34, a reticle stage driving system 32 controls the position and speed of reticle stage 21 through a driving mechanism (not shown) such as a linear motor. A reticle alignment microscope (not shown) for reticle alignment is disposed above the marginal region of the reticle R.
On the other hand, the wafer W is stuck and held through a wafer holder (not shown) on a wafer stage 27, and the wafer stage 27 is mounted on a wafer base 30 so that it can move at a constant speed in the Y-direction and achieve step movement in the X-direction and in the Y-direction. The wafer stage 27 is also provided with a Z-leveling mechanism for aligning the surface of wafer W with the image plane of the projection optical system 25, based on measurements of an unrepresented autofocus sensor. The X-directional and Y-directional positions and the angle of rotation of the wafer stage 27 are measured by means of moving mirror 28 provided thereon, and laser interferometer 29. Based on measurements of the laser interferometer and control information from main control system 34, a wafer stage driving system 33 controls the position and speed of the wafer stage 27 through a driving mechanism (not shown) such as a linear motor. For wafer alignment, an alignment sensor 31 of the off-axis method and, for example, the FIA (Field Image Alignment) method for detecting positions of marks for alignment on the wafer W is disposed in the vicinity of the projection optical system 25.
Prior to exposure by the projection exposure apparatus of the present example, alignment of the reticle R is carried out with the aforementioned reticle alignment microscope, and alignment of the wafer W is carried out by detecting the positions of the positioning marks formed along with a circuit pattern in a previous exposure step on the wafer W, by means of the alignment sensor 31. After that, the apparatus repeatedly carries out the operation of driving the reticle stage 21 and wafer stage 27 in a state in which the illumination light IL illuminates the illumination field on the reticle R, to synchronously scan the reticle R and one shot area on the wafer W in the Y-direction, and the operation of terminating emission of the illumination light IL and driving the wafer stage 27 to effect step movement of the wafer W in the X-direction and in the Y-direction. A ratio of scanning speeds of the reticle stage 21 and the wafer stage 27 during the synchronous scanning is equal to a projection magnification M of the projection optical system 25, in order to keep the imaging relation between the reticle R and the wafer W through the projection optical system 25. These operations result in effecting exposure to transfer the pattern image of the reticle R into all the shot areas on the wafer W by the step-and-scan method.
Next, a configuration of the illumination optical system ILS of the present example will be described in detail. In
The illumination light IL emitted from the exposure light source 1 travels along the optical axis of illumination system AX1 and through relay lenses 2, 3 to enter a polarization controlling member 4 (detailed later) as a polarization controlling mechanism. The illumination light IL emerging from the polarization controlling member 4 travels through a zoom optical system (5, 6) consisting of a combination of a concave lens 5 and a convex lens 6, and is then reflected by a mirror 7 for bending of optical path to enter a Diffractive Optical Element (DOE) 9a along the optical axis of illumination system AX2. The diffractive optical element 9a is comprised of a phase type diffraction grating, and the illumination light IL incident thereto travels as diffracted into predetermined directions.
As described later, a diffraction angle and direction of each diffracted light from the diffractive optical element 9a as a beam limiting member correspond to a position of the illumination light IL on the pupil plane 15 of the illumination optical system ILS and to an angle and direction of incidence of the illumination light IL to the reticle R. A plurality of diffractive optical elements, including the diffractive optical element 9a and another diffractive optical element 9b with different diffraction action, are arranged on a member 8 of turret shape. The apparatus is constructed for example as follows: the member 8 is driven by a replacing mechanism 10 under control of the main control system 34 to load the diffractive optical element 9a or the like at an arbitrary position on the member 8 to the position on the optical axis of illumination system AX2, whereby the incidence angle range and direction of the illumination light to the reticle R (or the position of the illumination light on the pupil plane 15) can be set to a desired range in accordance with the pattern of the reticle R. The incidence angle range can also be finely adjusted supplementarily by moving each of the concave lens 5 and the convex lens 6 constituting the aforementioned zoom optical system (5, 6) in the direction of the optical axis of illumination system AX1.
The illumination light (diffracted light) IL emerging from the diffractive optical element 9a travels along the optical axis of illumination system AX2 and through relay lens 11 to successively enter the first birefringent member 12 and second birefringent member 13 being the plurality of birefringent members in the present invention. The details of these birefringent members will be described later. In the present embodiment, a fly's eye lens 14 being an optical integrator (illuminance uniforming member) is disposed behind the birefringent member 13. The illumination light IL emerging from the fly's eye lens 14 travels via relay lens 16, field stop 17, and condenser lens 18 to a mirror 19 for bending of optical path, and the illumination light IL reflected thereon then travels along the optical axis of illumination system AX3 and through condenser lens 20 to illuminate the reticle R. The pattern on the reticle R illuminated in this manner is projected and transferred onto the wafer W by the projection optical system 25 as described above.
It is also possible to construct the field stop 17 as a scanning type, if necessary, and to effect scanning thereof in synchronization with the scanning of the reticle stage 21 and wafer stage 27. In this case, the field stop may be constructed of separate components of a fixed field stop and a movable field stop.
In this configuration, the exit-side surface of the fly's eye lens 14 is located near the pupil plane 15 of the illumination optical system ILS. The pupil plane 15 acts as an optical Fourier transform plane with respect to the pattern surface (reticle surface) of the reticle R through the optical members (relay lens 16, field stop 17, condenser lenses 18, 20, and mirror 19) in the illumination optical system ILS from the pupil plane 15 to the reticle R. Namely, the illumination light emerging from a point on the pupil plane 15 is converted into an approximately parallel beam to illuminate the reticle R while being incident at a predetermined incidence angle and incidence direction. The incidence angle and incidence direction are determined according to the position of the beam on the pupil plane 15.
The path bending mirrors 7, 19 are not always indispensable in terms of optical performance, but if the illumination optical system ILS is arranged on a line the total height of the exposure apparatus (the height in the Z-direction) will increase; therefore, they are arranged at appropriate positions in the illumination optical system ILS for the purpose of space saving. The optical axis of illumination system AX1 coincides with the optical axis of illumination system AX2 through reflection on the mirror 7, and the optical axis of illumination system AX2 further coincides with the optical axis of illumination system AX3 through reflection on the mirror 19.
A first example of the first and second birefringent members 12, 13 in
The first birefringent member 12 is a member of disk shape made of a birefringent material such as a uniaxial crystal, and the optical axis thereof is in its in-plane direction (direction parallel to the plane normal to the optical axis of illumination system AX2). The size (diameter) in the in-plane direction of the first birefringent member 12 is larger than the beam size of the illumination light IL at the position where the birefringent member 12 is located.
The thickness of the first birefringent member 12 is not uniform in a plane parallel to the plane of
A beam passing through such a birefringent member generally has a path difference (polarization phase difference) between a linear polarization component with the polarization direction (i.e., “vibrating direction of the electric field of light,” which will also apply to the description hereinafter) coinciding with the direction of the fast axis nf, and a linear polarization component with the polarization direction coinciding with the direction of the slow axis ns. The refractive index of the birefringent member is low for linearly polarized light parallel to the fast axis nf, so that the traveling speed of the same polarized light is high. On the other hand, the refractive index of the birefringent member is high for linearly polarized light parallel to the slow axis ns, so that the traveling speed of the same polarized light is low. Therefore, there appears a path difference (polarization phase difference) between the two polarized beams. Therefore, the first birefringent member 12 functions as a first nonuniform wavelength plate in which the polarization phase difference given to transmitted light differs according to locations.
Incidentally, if the thickness of the first birefringent member 12 is optimized to make the path difference due to the birefringent member 12 equal to an integer multiple of a wavelength, the phases of the two beams cannot be substantially discriminated from each other, and a state substantially having no optical path difference can be realized. In the present example, the thickness T1 of the center part of the birefringent member 12 is set to such thickness. In the description hereinafter, as shown in
On the other hand, the shape of the birefringent member 12 is so set that the polarization phase difference becomes 0.5 (in the unit of the wavelength of the illumination light) at positions of ±1 apart in the X-direction from the center of the first birefringent member 12 (where 1 represents a reference length and is located inside the outer diameter of the first birefringent member 12). For realizing such shape, the present example defines the thickness TA of the birefringent member 12 as the thickness represented by the following function, for the position X in the X-direction.
TA=T1+α×(1.7×X4−0.7×X2) (1)
In the above equation, a is a proportionality coefficient, and the value of α varies depending upon the aforementioned index difference between the fast axis and the slow axis of the birefringent material used, or the like as the thickness T1 of the center part does.
When crystalline quartz being a uniaxial crystal is used as the birefringent material making the first birefringent member 12, the refractive indices of crystalline quartz are as follows: the refractive index of 1.6638 for an ordinary ray and the refractive index of 1.6774 for an extraordinary ray in the ArF excimer laser light with the wavelength of 193 nm. Therefore, the fast axis is the polarization direction of the ordinary ray and the slow axis the polarization direction of the extraordinary ray.
The wavelengths of the ordinary ray and extraordinary ray in crystalline quartz are obtained by diving the wavelength (193 nm) in vacuum by the respective refractive indices, and are thus 116.001 nm and 115.056 nm, respectively. Therefore, a path difference of 0.945 nm is made between the two rays with every travel through one wavelength in crystalline quartz. Accordingly, after travel through 122.7 (=116.001/0.945) wavelengths, the path difference of about one wavelength is created between the two rays. However, the path difference of just one wavelength or an integral multiple of the wavelength is equivalent to substantially no path difference between the two rays. The thickness of crystalline quartz corresponding to the 122.7 wavelengths is obtained by calculation of 122.7×193/1.6638, and is equivalent to 14239 nm, i.e., 14.239 μm. Similarly, for making a path difference of a half wavelength between the ordinary ray and the extraordinary ray, the thickness of crystalline quartz can be set to a half of the above thickness, i.e., 7.12 μm.
This confirms that when the first birefringent member 12 being the first nonuniform wavelength plate is made of crystalline quartz, the thickness T1 of the center part in Eq (1) above is set to an integer multiple of 14.239 μm and the thickness at the reference position (X=1) near the marginal region is set to a thickness 7.12 μm larger than it, i.e., the aforementioned proportionality coefficient α can be set to 7.12 μm.
At this time, the polarization phase difference ΔP1 made by the first birefringent member 12 is represented as follows as a function of position X in the X-direction.
ΔP1=0.5×(1.7×X4−0.7×X2) (2)
The thickness of the first birefringent member 12 is a spacing between its entrance surface 12a and exit surface 12b, and each of shapes of the entrance surface 12a and exit surface 12b may be arbitrary as long as they satisfy the aforementioned relation between thickness and X-directional position for formation of the phase difference. From the viewpoint of processing of surface shape, however, processing becomes easier if either surface is a plane, and it is thus desirable to make, for example, the exit surface 12b as a plane in practice, as shown in
At a position represented by each line segment among the positions identified by the respective XZ coordinates in
At the positions ±1 apart in the X-direction from the center, as shown in
For the illumination light passing near the positions ±0.6 apart in the X-direction from the center in the first birefringent member 12, as shown in
On the other hand, there is no path difference between the linear polarization in the direction of the fast axis nf and the linear polarization in the direction of the slow axis ns in a beam passing the center in the X-direction, and thus no conversion occurs for the polarization state of transmitted light. Therefore, a beam incident at the center in the X-direction into the birefringent member 12 emerges from the birefringent member 12 while maintaining the state consisting primarily of the linear polarization state in the X-direction. Then beams passing at positions except for the above positions of X=0, +0.6, and ±1 pass through the first birefringent member 12, in polarization states consisting primarily of elliptic polarization in different shapes according to the positions. The polarization states are as shown in
In
The thickness of the second birefringent member 13 is not uniform, either, and the thickness also varies according to positions in the direction of the function Z=X in the XZ coordinate system in
In the present example the thickness TB of the second birefringent member 13 is represented by the following function, for the position XZ in the XZ direction. As shown in
TB=T2+β×(2.5×XZ5−1.5×XZ3) (3)
In this equation, β is a proportionality coefficient and the value of β differs depending upon the aforementioned index difference between the fast axis and the slow axis of the birefringent material used, or the like as the thickness T2 of the center part does. Here the thickness T2 of the center part is so set that the polarization phase difference ΔP2 of the second birefringent member 13 is 0.25 (in the unit of the wavelength of the illumination light), i.e., that the center part functions as a quarter wavelength plate.
The birefringent member 13 is also so set that the polarization phase differences ΔP2 at the positions +1 (reference length) and −1 apart in the XZ direction are +0.75 and −0.25, respectively. This means that differences of +0.5 and −0.5, respectively, are made between the polarization phase differences at the positions of interest and at the center.
Namely, in the second birefringent member 13 of the present example the thickness thereof is so set that the polarization phase difference ΔP2 is represented by the following equation.
ΔP2=0.25+0.5×(2.5×XZ5−1.5×XZ3) (4)
In a case where the second birefringent member 13 is also made of crystalline quartz as in the case of the aforementioned example, the thickness T2 of the center part can be set to an (integer+¼) multiple of 14.239 μm and the proportionality coefficient β to 7.12 μm.
In
In the present embodiment, as shown in
Therefore, the illumination light IL passing through the first birefringent member 12 and the second birefringent member 13 is incident at incidence angles and incidence directions determined according to the locations, into the reticle R. Namely, a beam distributed on the origin (the position of X=0 and Z=0) in
Exterior circle C1 and interior circle C2 shown in
As apparent from
When comparing
In the practical exposure apparatus, the actual radius of the exterior circle C1 of the specific annular region 36 is determined by the numerical aperture (NA) on the reticle R side of the projection optical system 25 in
To determine the thickness shapes of the first birefringent member 12 and the second birefringent member 13 means that the shapes are proportionally enlarged or reduced in the XZ plane and unevenness amounts thereof are kept unchanged in the Y-direction (traveling direction of light).
In the first example of the first and second birefringent members 12, 13, as described above, the polarization directions of the illumination light distributed in the specific annular region can be made coincident with the circumferential direction of the annular region at each position, with no light quantity loss of the illumination beam, by the first and second nonuniform wavelength plates. In this case, the illumination light incident through the specific annular region 36 onto the reticle R among the illumination light, i.e., the specific illumination beam incident in the specific incidence angle range to the reticle R is light in the polarization state consisting primarily of S-polarization whose polarization direction lies along the direction normal to the entrance plane. This improves the contrast, resolution, depth of focus, etc. of the transferred image, depending upon the periodicity of the pattern to be transferred, in some cases (the details of which will be described later).
Next, the second example of the first and second birefringent members 12, 13 in the illumination optical system ILS in
In the present example the configurations of the first birefringent member 12 and the second birefringent member 13 are basically the same as those in the aforementioned first example. Namely, the first birefringent member 12 has the direction of the fast axis and the thickness shape as shown in
ΔP1=0.265×{1−cos(π×X2)} (5)
This polarization phase difference ΔP1 can be realized by expressing the thickness TA of the first birefringent member 12 by the following function for the X-directional position X.
TA=T1+γ×{1−cos(π×X2)} (6)
In this equation, γ represents a proportionality coefficient. In a case where the first birefringent member 12 is made of crystalline quartz, as in the first embodiment, the thickness T1 at the center can be set to an integer multiple of 14.239 μm and the proportionality coefficient γ to 3.77 μm. The value of 3.77 μm is obtained by multiplying the thickness of crystalline quartz for giving the polarization phase difference of one wavelength, 14.239 μm, by the coefficient of 0.265 in Eq (5) above.
ΔP2=0.25+0.5×sin(0.5×π×XZ3) (7)
The polarization phase difference ΔP2 can be realized by expressing the thickness TB of the second birefringent member 13 by the following function for the position XZ in the XZ direction.
TB=T2+δ×sin(0.5×π×XZ3) (8)
In this equation δ is a proportionality coefficient. When the second birefringent member 13 is made of crystalline quartz, the thickness T2 at the center can be set to an (integer+¼) multiple of 14.239 and the proportionality coefficient δ to 7.12 μm.
In the present example the first birefringent member 12 and the second birefringent member 13 also function as first and second nonuniform wavelength plates, respectively, in which the polarization phase difference given to the transmitted light differs according to locations. Then the linearly polarized light incident in a polarized state in the X-direction into the first birefringent member 12 is converted into the polarization distribution shown in
As seen from comparison between
However, since the first birefringent member 12 and second birefringent member 13 in the first example are represented by the functions of at most order 5, they offer the advantage that processing is easy and production cost is low, though they are slightly inferior in the polarization control performance.
In order to further reduce the production cost of the first and second birefringent members 12, 13, it is also possible, for example, to adopt a configuration wherein the surface shape of the first birefringent member 12 is a cylindrical surface (surface of a circular cross section in the X-direction) and wherein the surface shape of the second birefringent member 13 is a tapered surface (inclined plane). The polarization control performance in this case is worse than in the first embodiment, but satisfactory effect can be achieved thereby depending upon use of the projection exposure apparatus. Therefore, it can realize a high-performance exposure apparatus while achieving the reduction of production cost.
The configuration wherein the surface shape of the second birefringent member 13 is the tapered surface means that the polarization phase difference of a beam passing through the second birefringent member 13 is defined in a linear form (linear function) according to locations in the plane of the second birefringent member 13.
Incidentally, the shapes of the first birefringent member 12 and the second birefringent member 13 in
For example, the shapes of the first birefringent member 12 and second birefringent member 13 may be stepwise shapes with stepped shape changes at predetermined positions, instead of the shapes represented by the aforementioned continuous and differentiable continuous functions. Such stepwise shapes can be formed suitably by etching, instead of mechanical or mechanochemical polishing.
In order to implement the polarization states as described above, in the case where the illumination light is such that the polarization state of the beam incident to the first birefringent member 12 is the single polarization state consisting primarily of linear polarization, the first birefringent member 12 is preferably one that gives the polarization phase difference with 2-fold rotation symmetry around the optical axis of illumination system AX2. It is a matter of course that this embraces the nonuniform wavelength plate having the thickness of an even function in the X-direction and the constant thickness in the Y-direction, as shown in the above-described first and second examples.
The second birefringent member 13 is desirably the nonuniform wavelength plate that gives the polarization phase difference with 1-fold rotation symmetry about the optical axis of the illumination system AX2. The 1-fold rotation symmetry refers to a state in which the distribution of polarization phase differences is approximately symmetric with respect to one axis out of two axes orthogonal to the optical axis of illumination system AX2 and approximately antisymmetric with respect to the other axis. The antisymmetry generally refers to a function that provides equal absolute values but opposite signs with inversion of a coordinate axis, but the antisymmetry herein also embraces functions obtained by adding an offset of a constant to general antisymmetric functions. It is needless to mention that this encompasses the nonuniform wavelength plate having the thickness determined by an odd function with an offset in the XZ-direction and the constant thickness in the direction orthogonal thereto, as shown in the above-described first and second examples.
In the present embodiment, particularly, it is important to set the illumination light distributed in the aforementioned specific annular region to the predetermined polarization state; therefore, it is obvious as to the shapes of the first birefringent member 12 and the second birefringent member 13 that no particular problem will arise even if the shapes in the portions not corresponding to the foregoing specific annular region do not satisfy the above conditions.
The number of first birefringent member 12 and second birefringent member 13, and the directions of the fast axes thereof are not limited to those described in the above first and second examples, either. Specifically, three or more birefringent members may be arranged in series along the traveling direction of the illumination light (along the optical axis of illumination system AX2), and the rotational relation around the optical axis AX2 between the directions of the fast axes is not limited to 45°, either. In the case where three or more birefringent members are arranged in series along the traveling direction of the illumination light, a potential configuration is such that the direction of the fast axis of at least one birefringent member out of the plurality of birefringent members is different from the directions of the fast axes of the other birefringent members, in order to convert the polarization state of the illumination light into linear polarization nearly parallel to the circumferential direction in at least a partial region of the aforementioned specific annular region and, desirably, in the almost entire circumferential region.
Similarly, the materials of the birefringent members 12, 13 and others are not limited to crystalline quartz described above, either, but other birefringent materials are also applicable. It is also possible to use the intrinsic birefringence of fluorite to form the birefringent members. A material originally having no birefringence, e.g., synthetic quartz, comes to have the birefringent property when subjected to stress or the like. It can also be used for the birefringent members 12, 13 and others.
Furthermore, the birefringent members 12, 13 can also be made using a composite material obtained by bonding a material with birefringence onto a transparent substrate without birefringence. In this case, the aforementioned thicknesses are, of course, thicknesses of the material with birefringence. The bonding herein may be implemented not only by mechanical joining such as adhesion or press, but also by a method of forming a thin film with birefringence on the transparent substrate by means such as vapor deposition or the like. The thickness shapes and others of the first birefringent member 12 and second birefringent member 13 described in the above first and second examples vary depending upon the magnitude of birefringence of the material used, but, even in cases where materials except for crystalline quartz are used, the aforementioned shape determining method can also be applied and the shapes are determined thereby, of course.
The advantage of the illumination light in the annular illumination as described above, in which the polarization state of the illumination light distributed in the annular region is coincident with the circumferential direction of the annular region, will be described briefly with reference to
The 1-order diffracted light D1L located at the left end of the pupil plane 26 in
Namely, on the occasion of exposure of the pattern PX with the fine pitch in the X-direction, beams contributing to imaging of the pattern PX among the illumination light emitted from the annular region IL0 on the pupil plane 15 of the illumination optical system ILS are limited to those in the partial region ILR and partial region ILL, and the illumination light emitted from the other regions in the annular region IL0 is illumination light not contributing to imaging of the pattern PX.
Incidentally, aforementioned Non-patent Document 1 (Thimothy A. Brunner, et al.: “High NA Lithographic imaging at Brewster's angle,” SPIE Vol. 4691, pp. 1-24 (2002) and others report that on the occasion of exposure of a pattern with periodicity in the X-direction and with the longitudinal direction along the Y-direction like the pattern PX, the contrast of its projected image is improved by illumination with linear polarization having the polarization direction along the Y-direction on the reticle R.
Therefore, it is effective in improvement in the contrast of the projected image of the pattern PX and in improvement in the resolution and depth of focus in turn, to convert the illumination light distributed in the partial region ILR and in the partial region ILL in
When the reticle pattern is a periodic pattern with a fine pitch in the Y-direction resulting from 90° rotation of the pattern PX of
Furthermore, in a case where the reticle R includes not only the patterns in the X-direction and in the Y-direction but also patterns in intermediate directions (45° and 135° directions), it is desirable to use linear polarization with the polarization direction perfectly coincident with the circumferential direction of the annular region, taking orientations of these patterns into consideration as well.
In passing, the above-described polarization states do not always realize effective polarization states for the patterns perpendicular to the patterns with orientations suitable for the polarization states of the respective portions in the annular region IL0. For example, the illumination light polarized in the X-direction from the partial region ILU is not in a preferred polarization state for imaging of the pattern PX with the periodicity in the X-direction and with the longitudinal direction along the Y-direction. As apparent from
As shown in
Naturally, the illumination light from the partial regions ILR, ILU at the positions symmetric with the foregoing partial regions ILL, ILD with respect to the optical axis AX41 of the illumination optical system is also incident as S-polarization to the reticle R by virtue of symmetry, because each illumination light on the partial region ILR, ILU has the polarization direction coincident with the circumferential direction of the annular region IL0. It is the general property of the annular illumination that angles of incidence of the illumination light distributed on the annular region IL0, to the reticle R are in a predetermined angular region with the center at an angle φ from the optical axis AX41 of the illumination optical system (i.e., a normal to the reticle R). A beam incident at the angles of incidence to the reticle R will be referred to hereinafter as “specific illumination beam.” The angle φ and angular range can be determined based on the wavelength of the illumination light, the pitch of the pattern to be transferred, on the reticle R, and so on.
Incidentally, the foregoing first and second birefringent members 12, 13 convert the polarization state of the illumination light distributed in the specific annular region between the predetermined outside radius (exterior circle C1) and inside radius (interior circle C2) determined from the shapes peculiar to the members, into the polarization state consisting primarily of linear polarization parallel to the circumferential direction of the specific annular region, and it is not easy to change the radii (C2, C1).
In the case where there arises a need for changing the desired annular region, for example, on the basis of the pitch of the pattern to be transferred, on the reticle R, as described above, a desirable configuration is such that a plurality of conical prisms 41, 42 of a zoom type are disposed between the first and second birefringent members 12, 13 and the optical integrator such as the fly's eye lens 14 in
In this case, the illumination light distributed in the specific annular region with the center at an average radius RI after passage through the first and second birefringent members 12, 13 is enlarged to a radius RO on the entrance plane of the fly's eye lens 14 and on the pupil plane 15 of the illumination optical system being the exit plane of the fly's eye lens 14, by the zoom type conical prisms 41, 42. This radius RO can be enlarged by increasing the spacing DD between the two conical prisms 41, 42 and can be reduced by decreasing the spacing DD.
This makes it feasible to form the specific annular region as a distribution of the illumination light consisting of linear polarization parallel to the circumferential direction, with arbitrary radii on the pupil plane 15 of the illumination optical system, and to change the illumination condition for annular illumination in accordance with the pattern on the reticle R to be transferred.
It is a matter of course that a zoom optical system can be used instead of the foregoing zoom type conical prisms 41, 42.
Incidentally, the above embodiment was described on the premise that the illumination light quantity distribution formed on the pupil plane 15 of the illumination optical system ILS in
In order to condense the illumination light only into the further specific regions in the specific annular region in this manner, the diffractive optical element 9a in
In the case where the illumination light is condensed in the further specific regions in the specific annular region as described above, it is also possible to use, instead of the zoom type conical prisms 41, 42, an optical member group as a combination of a convex polyhedron prism and a concave polyhedron prism of pyramid shape or the like with a variable spacing similarly.
Since the illumination light distributed in the regions except for these specific regions is not suitable for exposure of the pattern as the exposed object, the light quantity distribution thereof is preferably substantially 0 in certain cases. On the other hand, manufacturing error or the like of the diffractive optical element 9a and others could produce diffracted light (hereinafter referred to as “error light”) in directions except for the desired directions from the diffractive optical element 9a and others and cause the illumination light to be distributed in the regions except for the above partial regions. It is thus also possible, for example, to adopt a configuration wherein a stop is disposed on the entrance surface side or on the exit surface side of the fly's eye lens 14 in
Incidentally, with attention to incidence of the illumination light to the reticle R, the limitation of the distribution of the illumination light quantity on the pupil plane 15 to within the further specific regions in the specific annular region results in further limiting the incidence directions thereof to only the aforementioned plurality of substantially discrete directions, in addition to the restriction on the range of incidence angles by the annular illumination. Naturally, in the case where the present invention is applied to the annular illumination, it is also possible to adopt the configuration wherein a stop is disposed on the entrance surface side or on the exit surface side of the fly's eye lens 14 to block the error light distributed in the regions except for the specific annular region.
The above embodiment was arranged to use the fly's eye lens 14 as an optical integrator, but it is also possible to use an internal reflection type integrator (e.g., glass rod) as an optical integrator. In this case, the exit plane of the glass rod is not located on the pupil plane 14 of the illumination optical system, but is located on a plane conjugate with the reticle R.
In the above embodiment the laser light source as the exposure light source 1 was arranged to emit the linearly polarized light polarized in the X-direction, but the laser light source, depending upon its type, can emit linearly polarized light polarized in the Z-direction in
Alternatively, the polarization controlling member 4 (polarization controlling mechanism) in
It is, however, noted that the polarization controlling member 4 is not necessarily able to convert a beam in an arbitrary polarization state emitted from the exposure light source 1, into the Z-directional polarization without loss in light quantity. Therefore, the exposure light source 1 needs to generate a beam in a single polarization state (beam that can be converted into linear polarization without loss in light quantity by a wavelength plate or the like), such as linear polarization, circular polarization, or elliptic polarization. However, where the intensity of the beam except for the aforementioned single polarization state is not so high relative to the total intensity of the illumination light, the adverse effect of the beam except for the single polarization state is not so significant on the imaging characteristics, and thus the beam emitted from the exposure light source 1 may contain the beam except for the single polarization state to some extent (e.g., approximately 20% or less of the total light quantity).
When consideration is given to operating circumstances of the projection exposure apparatus of the above embodiment, it is not always the best to set the polarization state of the illumination light so that the illumination light distributed in the specific annular region is linear polarization approximately parallel to the circumferential direction of the annular region or so that the specific illumination light is incident as S-polarization to the reticle R. Namely, there is a case where it is preferable to adopt normal illumination (illumination with a circular illumination light quantity distribution on the pupil plane 15 of the illumination optical system) instead of the annular region, depending upon the pattern on the reticle R to be exposed. In this case, it is sometimes preferable not to use the illumination light in the polarization state in the above embodiment.
For making the apparatus compatible with such operating conditions as well, the polarization controlling member 4 in
The beam IL2 traveling straight is then incident to the polarization beam splitter 4c and, because of the polarization characteristics thereof, the beam IL2 travels straight in the polarization beam splitter 4c and then travels as a beam IL4 upward in
When this polarization control optical system is loaded in the illumination optical system ILS in
Incidentally, without use of such polarization beam splitters, the following simple method can also offer an effect similar to that by the random polarization illumination. This can be implemented as follows: the polarization state of the illumination light IL incident to the first birefringent member 12 in
Alternatively, it is also feasible to achieve the effect similar to that by the random polarization illumination, by a configuration wherein the relation between the two birefringent members 12, 13 and the direction of linear polarization of the illumination light is rotated, for example, by 45° by a rotating mechanism 101 capable of wholly rotating the first birefringent member 12 and the second birefringent member 13 in
Incidentally, in the case of the normal illumination, there are also cases wherein the polarization state thereof is preferably set to linear polarization in a predetermined direction. For making the projection exposure apparatus of the above embodiment compatible with this illumination condition, the apparatus is provided with a rotating mechanism 101 capable of wholly rotating each of the birefringent members, such as the first birefringent member 12 and the second birefringent member 13 in
For setting the polarization in the linear polarization state in the one predetermined direction, it can also be implemented by wholly retracting the first birefringent member 12 and the second birefringent member 13 and others to outside the optical path of the illumination optical system. Namely, the setting of the linear polarization state in the one predetermined direction may be implemented by providing a replacing mechanism 102 and replacing the birefringent members and others all together thereby. When the apparatus is provided with the replacing mechanism 102, it is also possible to adopt a configuration wherein the replacing mechanism 102 is arranged to set plural sets of birefringent member groups therein and wherein they can be replaceably arranged on the position on the optical axis of illumination system AX2. In this case, it is a matter of course that each birefringent member group is preferably provided with the characteristics of converting the illumination light into linear polarization along the circumferential direction of the specific annular region, in the specific annular region with the outside radius and inside radius different among the groups.
Incidentally, a preferred case to use the illumination light of linear polarization in the one predetermined direction as described above is, for example, exposure of a phase shift reticle of a spatial frequency modulation type with a pattern aligned along a direction. In this case, in order to further improve the resolution and depth of focus of the pattern to be transferred by exposure, the coherence factor (σ value) of the illumination light is preferably not more than about 0.4.
When consideration is given again to the action of the birefringent members according to the present invention (first birefringent member 12 and second birefringent member 13) with reference to
Supposing the radius of the exterior circle C1 is equivalent, for example, to 0.9 as illumination a (σ value), the first birefringent member 12 and second birefringent member 13 emit the incident linear polarization in the X-direction, while keeping it almost in the original polarization state, within the range of the illumination beam of illumination σ=0.45. When linear polarization in the Z-direction (Z-polarization) is made incident to the first birefringent member 12, the polarization state of the illumination beam of approximately the above illumination σ=0.45 can be Z-polarization in the beam emitted from the second birefringent member 13.
Therefore, when the birefringent members as in the first and second examples (the first birefringent member 12 and second birefringent member 13) are used, the aforementioned polarization controlling member 4 or the like is used to switch the polarization direction of the incident light to the birefringent members, without retracting them to outside the optical path of the illumination optical system, whereby it becomes feasible to realize the illumination light being the illumination beam with the illumination σ of not more than about 0.4 and being light polarized in the X-direction or in the Z-direction (polarization in the X-direction or in the Y-direction, respectively, on the reticle R in
In this case, it is also a matter of course that, in order to limit the illumination σ to about 0.4, it is preferable to use such a diffractive optical element 9a that the direction characteristic of the generated diffracted light is an angular distribution corresponding thereto. This permits the apparatus to form illumination beams in a variety of practical polarization states without provision of the whole replacing mechanism, which is also the advantage of the present invention.
Next, an example of production steps of semiconductor devices using the projection exposure apparatus of the above embodiment will be described with reference to
In the next step S16, a photoresist is applied onto the wafer W and in step S18 thereafter, a reticle (assumed to be R2) is loaded on the reticle stage of the projection exposure apparatus of the above embodiment (
The above exposure step to pattern forming step (step S16 to step S20) are repeated the number of times necessary for production of desired semiconductor devices. Then semiconductor devices SP as products are fabricated through a dicing step (step S22) of separating chips CP on the wafer W from each other, a bonding step, and a packaging step and others (step S24).
Since the device fabrication method of the present example involves carrying out the exposure by the projection exposure apparatus of the above embodiment, the exposure step enables the reticle to be illuminated with the illumination light (exposure beam) in the predetermined polarization state with increased efficiency of utilization thereof. Therefore, the resolution and others are improved for periodic patterns with a fine pitch or the like, so that higher-integration and higher-performance semiconductor integrated circuits can be fabricated at low cost and at high throughput.
The projection exposure apparatus of the above embodiment can be produced as follows: the illumination optical system and projection optical system composed of a plurality of lenses are incorporated in the main body of the exposure apparatus, optical adjustment is carried out for the optics, the reticle stage and wafer stage comprised of a number of mechanical parts are attached to the main body of the exposure apparatus, wires and tubes are connected thereto, and overall conditioning processes (electric adjustment, confirmation of operation, etc.) are further carried out. The production of the projection exposure apparatus is preferably carried out in a clean room in which the temperature, cleanliness, etc. are controlled.
The present invention is applicable not only to the projection exposure apparatus of the scanning exposure type, but also to the projection exposure apparatus of the full exposure type such as steppers. The magnification of the projection optical system used may be a demagnification rate, a 1:1 magnification, or an enlargement magnification. Furthermore, the present invention is also applicable, for example, to the liquid immersion type exposure apparatus as disclosed in International Publication (WO) 99/49504 or the like. As shown in
The usage of the projection exposure apparatus of the present invention is not limited to the exposure apparatus for fabrication of semiconductor devices, but it is also commonly applicable, for example, to exposure apparatus for display devices such as liquid crystal display devices formed on rectangular glass plates, or plasma displays, and to exposure apparatus for fabricating various devices such as image pickup devices (CCDs or the like), micromachines, thin film magnetic heads, and DNA chips. Furthermore, the present invention is also applicable to the exposure step (exposure apparatus) in production of masks (photomasks including X-ray masks, reticles, etc.) with mask patterns for various devices by the photolithography step.
It is needless to mention that the illumination optical system (2-20) in the projection exposure apparatus in the aforementioned embodiment is also applicable to the illumination optical apparatus for illuminating the first object such as the reticle R.
It is a matter of course that the present invention is not limited to the above embodiment and can be modified in a variety of configurations without departing from the spirit and scope of the present invention. The entire disclosure of Japanese Patent Application No. 2003-367963 filed Oct. 28, 2003, including the specification, scope of claims, drawings, and abstract is incorporated by reference herein in its entirety.
The device fabrication method of the present invention enables enhancement of utilization efficiency of the exposure beam (illumination light) and permits a predetermined pattern to be formed with high accuracy. Therefore, it permits various devices such as semiconductor integrated circuits to be fabricated with high accuracy and high processing performance (throughput).
From the invention thus described, it will be obvious that the invention may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended for inclusion within the scope of the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2003-367963 | Oct 2003 | JP | national |
This is a continuation of U.S. application Ser. No. 11/410,952, filed Apr. 26, 2006 (now U.S. Pat. No. 9,140,992), which is a Continuation-in-part of PCT/JP2004/015853 filed Oct. 26, 2004. This application claims the benefit of Japanese Patent Application No. 2003-367963, filed Oct. 28, 2003. The entire disclosure of each of the prior applications is hereby incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3146294 | Koester et al. | Aug 1964 | A |
3180216 | Osterberg | Apr 1965 | A |
3758201 | MacNeille | Sep 1973 | A |
3892469 | Lotspeich | Jul 1975 | A |
3892470 | Lotspeich | Jul 1975 | A |
4103260 | Buchman | Jul 1978 | A |
4175830 | Marie | Nov 1979 | A |
4198123 | Kremen | Apr 1980 | A |
4211471 | Marie | Jul 1980 | A |
4286843 | Reytblatt | Sep 1981 | A |
4346164 | Tabarelli et al. | Aug 1982 | A |
4744615 | Fan et al. | May 1988 | A |
4755027 | Schafer | Jul 1988 | A |
4952815 | Nishi | Aug 1990 | A |
4981342 | Fiala | Jan 1991 | A |
5072126 | Progler | Dec 1991 | A |
5216541 | Takesue et al. | Jun 1993 | A |
5251222 | Hester et al. | Oct 1993 | A |
5253110 | Ichihara et al. | Oct 1993 | A |
5272501 | Nishi et al. | Dec 1993 | A |
5312513 | Florence et al. | May 1994 | A |
5345292 | Shiozawa et al. | Sep 1994 | A |
5365371 | Kamon | Nov 1994 | A |
5382999 | Kamon | Jan 1995 | A |
5436761 | Kamon | Jul 1995 | A |
5448336 | Shiraishi | Sep 1995 | A |
5459000 | Unno | Oct 1995 | A |
5467166 | Shiraishi | Nov 1995 | A |
5473465 | Ye | Dec 1995 | A |
5541026 | Matsumoto | Jul 1996 | A |
5559583 | Tanabe | Sep 1996 | A |
5602673 | Swan | Feb 1997 | A |
5610683 | Takahashi | Mar 1997 | A |
5610684 | Shiraishi | Mar 1997 | A |
5621498 | Inoue et al. | Apr 1997 | A |
5627626 | Inoue et al. | May 1997 | A |
5631721 | Stanton et al. | May 1997 | A |
5663785 | Kirk et al. | Sep 1997 | A |
5673103 | Inoue et al. | Sep 1997 | A |
5675401 | Wangler et al. | Oct 1997 | A |
5677755 | Oshida et al. | Oct 1997 | A |
5677757 | Taniguchi et al. | Oct 1997 | A |
5684567 | Shiozawa | Nov 1997 | A |
5691803 | Song et al. | Nov 1997 | A |
5707501 | Inoue et al. | Jan 1998 | A |
5739898 | Ozawa et al. | Apr 1998 | A |
5838408 | Inoue et al. | Nov 1998 | A |
5841500 | Patel | Nov 1998 | A |
5933219 | Unno | Aug 1999 | A |
5969441 | Loopstra et al. | Oct 1999 | A |
6031658 | Riza | Feb 2000 | A |
6191829 | Hashimoto | Feb 2001 | B1 |
6191880 | Schuster | Feb 2001 | B1 |
6208407 | Loopstra | Mar 2001 | B1 |
6211944 | Shiraishi | Apr 2001 | B1 |
6229647 | Takahashi et al. | May 2001 | B1 |
6233041 | Shiraishi | May 2001 | B1 |
6238063 | Tanitsu et al. | May 2001 | B1 |
6252647 | Shiraishi | Jun 2001 | B1 |
6252712 | Furter et al. | Jun 2001 | B1 |
6259512 | Mizouchi | Jul 2001 | B1 |
6304317 | Taniguchi et al. | Oct 2001 | B1 |
6333776 | Taniguchi | Dec 2001 | B1 |
6341007 | Nishi et al. | Jan 2002 | B1 |
6361909 | Gau et al. | Mar 2002 | B1 |
6366404 | Hiraiwa et al. | Apr 2002 | B1 |
6373614 | Miller | Apr 2002 | B1 |
6392800 | Schuster | May 2002 | B2 |
6400441 | Nishi et al. | Jun 2002 | B1 |
6404482 | Shiraishi | Jun 2002 | B1 |
6406148 | Marshall et al. | Jun 2002 | B1 |
6452662 | Mulkens et al. | Sep 2002 | B2 |
6466303 | Omura et al. | Oct 2002 | B1 |
6483573 | Schuster | Nov 2002 | B1 |
6498869 | Yao | Dec 2002 | B1 |
6522483 | Kreuzer | Feb 2003 | B2 |
6535273 | Maul | Mar 2003 | B1 |
6538247 | Iizuka | Mar 2003 | B2 |
6549269 | Nishi et al. | Apr 2003 | B1 |
6577379 | Boettiger et al. | Jun 2003 | B1 |
6583931 | Hiraiwa et al. | Jun 2003 | B2 |
6590634 | Nishi et al. | Jul 2003 | B1 |
6597430 | Nishi et al. | Jul 2003 | B1 |
6606144 | Omura | Aug 2003 | B1 |
6636295 | Shiozawa | Oct 2003 | B2 |
6646690 | Takezawa | Nov 2003 | B1 |
6661499 | Omura et al. | Dec 2003 | B2 |
6665119 | Kurtz et al. | Dec 2003 | B1 |
6674513 | Omura | Jan 2004 | B2 |
6674514 | Shinoda | Jan 2004 | B2 |
6680798 | Kreuzer | Jan 2004 | B2 |
6698891 | Kato | Mar 2004 | B2 |
6710855 | Shiraishi | Mar 2004 | B2 |
6762824 | Mori | Jul 2004 | B2 |
6769273 | Nakagawa et al. | Aug 2004 | B1 |
6771350 | Nishinaga | Aug 2004 | B2 |
6774984 | Gerhard | Aug 2004 | B2 |
6831731 | Omura et al. | Dec 2004 | B2 |
6836365 | Goto | Dec 2004 | B2 |
6836380 | Kreuzer | Dec 2004 | B2 |
6842223 | Tyminski | Jan 2005 | B2 |
6844982 | Omura | Jan 2005 | B2 |
6856379 | Schuster | Feb 2005 | B2 |
6864961 | Omura | Mar 2005 | B2 |
6870668 | Ozawa | Mar 2005 | B2 |
6876437 | Kawahara | Apr 2005 | B2 |
6885493 | Ljungblad et al. | Apr 2005 | B2 |
6891655 | Grebinski et al. | May 2005 | B2 |
6900915 | Nanjyo et al. | May 2005 | B2 |
6913373 | Tanaka et al. | Jul 2005 | B2 |
6930758 | Schuster et al. | Aug 2005 | B2 |
6934009 | Terashi | Aug 2005 | B2 |
6958806 | Mulder et al. | Oct 2005 | B2 |
6965484 | Shaver | Nov 2005 | B2 |
6970233 | Blatchford | Nov 2005 | B2 |
6977718 | LaFontaine | Dec 2005 | B1 |
6999157 | Kohno | Feb 2006 | B2 |
7009686 | Kawashima et al. | Mar 2006 | B2 |
7031077 | Kreuzer | Apr 2006 | B2 |
7038763 | Mulder et al. | May 2006 | B2 |
7061583 | Mulkens et al. | Jun 2006 | B2 |
7095546 | Mala et al. | Aug 2006 | B2 |
7098992 | Ohtsuki et al. | Aug 2006 | B2 |
7130025 | Tsuji | Oct 2006 | B2 |
7145720 | Krahmer et al. | Dec 2006 | B2 |
7217503 | Saitoh et al. | May 2007 | B2 |
7239446 | Kreuzer | Jul 2007 | B2 |
7245353 | Mulkens et al. | Jul 2007 | B2 |
7245355 | Mulkens et al. | Jul 2007 | B2 |
7295286 | Matsuura | Nov 2007 | B2 |
7345740 | Wagner et al. | Mar 2008 | B2 |
7408616 | Gruner et al. | Aug 2008 | B2 |
7433046 | Everett et al. | Oct 2008 | B2 |
7446858 | Kudo et al. | Nov 2008 | B2 |
7508493 | Takeuchi et al. | Mar 2009 | B2 |
7847921 | Gruner et al. | Dec 2010 | B2 |
8270077 | Fiolka et al. | Sep 2012 | B2 |
8279524 | Fiolka et al. | Oct 2012 | B2 |
8289623 | Fiolka et al. | Oct 2012 | B2 |
8320043 | Fiolka et al. | Nov 2012 | B2 |
20010012154 | Schuster | Aug 2001 | A1 |
20010019404 | Schuster et al. | Sep 2001 | A1 |
20010035942 | Hara et al. | Nov 2001 | A1 |
20010046038 | Mulkens et al. | Nov 2001 | A1 |
20010052968 | Shiozawa | Dec 2001 | A1 |
20020001134 | Shinoda | Jan 2002 | A1 |
20020008863 | Taniguchi et al. | Jan 2002 | A1 |
20020024008 | Iizuka | Feb 2002 | A1 |
20020027719 | Kreuzer | Mar 2002 | A1 |
20020080338 | Taniguchi | Jun 2002 | A1 |
20020085176 | Hiraiwa et al. | Jul 2002 | A1 |
20020085276 | Tanitsu et al. | Jul 2002 | A1 |
20020101572 | Shiraishi | Aug 2002 | A1 |
20020126380 | Schuster | Sep 2002 | A1 |
20020152452 | Socha | Oct 2002 | A1 |
20020167653 | Mulkens et al. | Nov 2002 | A1 |
20020176166 | Schuster | Nov 2002 | A1 |
20020177048 | Saitoh et al. | Nov 2002 | A1 |
20020177054 | Saitoh et al. | Nov 2002 | A1 |
20020186462 | Gerhard | Dec 2002 | A1 |
20020191288 | Gruner et al. | Dec 2002 | A1 |
20020196416 | Shiraishi | Dec 2002 | A1 |
20030007158 | Hill | Jan 2003 | A1 |
20030011756 | Omura et al. | Jan 2003 | A1 |
20030025890 | Nishinaga | Feb 2003 | A1 |
20030038225 | Mulder et al. | Feb 2003 | A1 |
20030038931 | Toyoda et al. | Feb 2003 | A1 |
20030043356 | Shiraishi | Mar 2003 | A1 |
20030053036 | Fujishima et al. | Mar 2003 | A1 |
20030086071 | McGuire | May 2003 | A1 |
20030098959 | Hagiwara et al. | May 2003 | A1 |
20030103196 | Hirukawa | Jun 2003 | A1 |
20030128349 | Unno | Jul 2003 | A1 |
20030133099 | Shiode | Jul 2003 | A1 |
20030160949 | Komatsuda et al. | Aug 2003 | A1 |
20030174400 | Patel et al. | Sep 2003 | A1 |
20030206289 | Matsuyama | Nov 2003 | A1 |
20030214571 | Ishikawa et al. | Nov 2003 | A1 |
20030227607 | Kato et al. | Dec 2003 | A1 |
20040004771 | Omura | Jan 2004 | A1 |
20040012764 | Mulder et al. | Jan 2004 | A1 |
20040053148 | Morohoshi | Mar 2004 | A1 |
20040057034 | Zinn et al. | Mar 2004 | A1 |
20040057036 | Kawashima et al. | Mar 2004 | A1 |
20040100629 | Stokowski et al. | May 2004 | A1 |
20040104654 | Lee et al. | Jun 2004 | A1 |
20040119954 | Kawashima et al. | Jun 2004 | A1 |
20040120044 | Kreuzer | Jun 2004 | A1 |
20040150806 | Brunotte et al. | Aug 2004 | A1 |
20040160582 | Lof et al. | Aug 2004 | A1 |
20040169924 | Flagello et al. | Sep 2004 | A1 |
20040174512 | Toyoda et al. | Sep 2004 | A1 |
20040180278 | Sato et al. | Sep 2004 | A1 |
20040184019 | Totzeck et al. | Sep 2004 | A1 |
20040207386 | Durr | Oct 2004 | A1 |
20040227923 | Flagello et al. | Nov 2004 | A1 |
20040240073 | Gerhard | Dec 2004 | A1 |
20050024612 | Hirukawa et al. | Feb 2005 | A1 |
20050041232 | Yamada et al. | Feb 2005 | A1 |
20050094268 | Fiolka et al. | May 2005 | A1 |
20050095749 | Krellmann et al. | May 2005 | A1 |
20050122499 | Omura et al. | Jun 2005 | A1 |
20050128458 | Blatchford | Jun 2005 | A1 |
20050146704 | Gruner et al. | Jul 2005 | A1 |
20050168790 | Latypov et al. | Aug 2005 | A1 |
20050171138 | Lee et al. | Aug 2005 | A1 |
20050237509 | Blatchford | Oct 2005 | A1 |
20050237527 | Mori | Oct 2005 | A1 |
20050264885 | Albert | Dec 2005 | A1 |
20050270608 | Shiozawa et al. | Dec 2005 | A1 |
20060012769 | Suzuki | Jan 2006 | A1 |
20060050261 | Brotsack | Mar 2006 | A1 |
20060055834 | Tanitsu et al. | Mar 2006 | A1 |
20060055909 | Fiolka et al. | Mar 2006 | A1 |
20060072095 | Kudo et al. | Apr 2006 | A1 |
20060077370 | Mulkens et al. | Apr 2006 | A1 |
20060092398 | McCarthy | May 2006 | A1 |
20060132748 | Fukuhara | Jun 2006 | A1 |
20060139611 | Wagner et al. | Jun 2006 | A1 |
20060146384 | Schultz et al. | Jul 2006 | A1 |
20060158624 | Toyoda | Jul 2006 | A1 |
20060164711 | Govil et al. | Jul 2006 | A1 |
20060170901 | Tanitsu et al. | Aug 2006 | A1 |
20060203214 | Shiraishi | Sep 2006 | A1 |
20060232841 | Toishi et al. | Oct 2006 | A1 |
20060291057 | Fiolka | Dec 2006 | A1 |
20070008511 | De Boeij et al. | Jan 2007 | A1 |
20070019179 | Fiolka et al. | Jan 2007 | A1 |
20070058151 | Eurlings et al. | Mar 2007 | A1 |
20070081114 | Fiolka et al. | Apr 2007 | A1 |
20070146676 | Tanitsu et al. | Jun 2007 | A1 |
20070183017 | Hembd | Aug 2007 | A1 |
20070201338 | Yaoita et al. | Aug 2007 | A1 |
20070263199 | Fiolka et al. | Nov 2007 | A1 |
20070296936 | Kato et al. | Dec 2007 | A1 |
20070296941 | Omura | Dec 2007 | A1 |
20080021948 | Wilson et al. | Jan 2008 | A1 |
20080024747 | Kudo et al. | Jan 2008 | A1 |
20080030706 | Yamamoto | Feb 2008 | A1 |
20080030707 | Tanaka et al. | Feb 2008 | A1 |
20080068572 | Kudo et al. | Mar 2008 | A1 |
20080316459 | Fiolka et al. | Dec 2008 | A1 |
20080316598 | Fiolka et al. | Dec 2008 | A1 |
20090002675 | Fiolka et al. | Jan 2009 | A1 |
20090073411 | Tanitsu | Mar 2009 | A1 |
20090073414 | Tanitsu et al. | Mar 2009 | A1 |
20090073441 | Tanitsu et al. | Mar 2009 | A1 |
20090091730 | Tanaka | Apr 2009 | A1 |
20090097007 | Tanaka | Apr 2009 | A1 |
20090109417 | Tanitsu | Apr 2009 | A1 |
20090116093 | Tanitsu | May 2009 | A1 |
20090122292 | Shiraishi | May 2009 | A1 |
20090128886 | Hirota | May 2009 | A1 |
20090147233 | Toyoda | Jun 2009 | A1 |
20090147234 | Toyoda | Jun 2009 | A1 |
20090147235 | Toyoda | Jun 2009 | A1 |
20090185154 | Tanitsu | Jul 2009 | A1 |
20090185156 | Kudo et al. | Jul 2009 | A1 |
20090284729 | Shiraishi | Nov 2009 | A1 |
20090316132 | Tanitsu et al. | Dec 2009 | A1 |
20090323041 | Toyoda | Dec 2009 | A1 |
20100141921 | Omura | Jun 2010 | A1 |
20100141926 | Omura | Jun 2010 | A1 |
20100142051 | Omura | Jun 2010 | A1 |
20110037962 | Tanitsu | Feb 2011 | A1 |
20110069296 | Gruner et al. | Mar 2011 | A1 |
20110188019 | Fiolka et al. | Aug 2011 | A1 |
20110205519 | Kanayamaya et al. | Aug 2011 | A1 |
20110273693 | Toyoda | Nov 2011 | A1 |
20110273697 | Tanitsu et al. | Nov 2011 | A1 |
20110273698 | Toyoda | Nov 2011 | A1 |
20110299055 | Toyoda | Dec 2011 | A1 |
Number | Date | Country |
---|---|---|
1453645 | Nov 2003 | CN |
1501175 | Jun 2004 | CN |
1573571 | Feb 2005 | CN |
206 607 | Feb 1984 | DE |
242 880 | Feb 1984 | DE |
221 563 | Apr 1985 | DE |
224 448 | Jul 1985 | DE |
100 29 938 | Jul 2001 | DE |
101 23 725 | Nov 2002 | DE |
10343333 | Apr 2005 | DE |
102006015213 | Oct 2007 | DE |
0 023 231 | Feb 1981 | EP |
0 208 552 | Jan 1987 | EP |
0 230 931 | Aug 1987 | EP |
0 564 264 | Oct 1993 | EP |
0 656 555 | Jun 1995 | EP |
0 744 664 | Nov 1996 | EP |
0 764 858 | Mar 1997 | EP |
0 779 530 | Jun 1997 | EP |
0 937 999 | Aug 1999 | EP |
1 014 196 | Jun 2000 | EP |
1 071 292 | Jan 2001 | EP |
1069600 | Jan 2001 | EP |
1 139 521 | Oct 2001 | EP |
1 211 561 | Jun 2002 | EP |
1 260 849 | Nov 2002 | EP |
1 280 007 | Jan 2003 | EP |
1 489 462 | Dec 2004 | EP |
1 577 709 | Sep 2005 | EP |
1 662 553 | May 2006 | EP |
1 674 935 | Jun 2006 | EP |
1 681 710 | Jul 2006 | EP |
1 693 885 | Aug 2006 | EP |
1 798 758 | Jun 2007 | EP |
1 840 945 | Oct 2007 | EP |
1 953 805 | Aug 2008 | EP |
2 474 708 | Jul 1981 | FR |
856621 | Dec 1960 | GB |
S44-4993 | Feb 1969 | JP |
56-6666 | Jan 1981 | JP |
557-117238 | Jul 1982 | JP |
S57-152129 | Sep 1982 | JP |
S57-153433 | Sep 1982 | JP |
S58-45502 | Mar 1983 | JP |
S58-49932 | Mar 1983 | JP |
S58-115945 | Jul 1983 | JP |
S58-202448 | Nov 1983 | JP |
S59-19912 | Feb 1984 | JP |
S59-155843 | Sep 1984 | JP |
S59-226317 | Dec 1984 | JP |
S61-44429 | Mar 1986 | JP |
S61-45923 | Mar 1986 | JP |
S61-91662 | May 1986 | JP |
S61-94342 | Jun 1986 | JP |
S61-156736 | Jul 1986 | JP |
S61-196532 | Aug 1986 | JP |
S61-217434 | Sep 1986 | JP |
S61-251025 | Nov 1986 | JP |
S61-270049 | Nov 1986 | JP |
S62-2539 | Jan 1987 | JP |
S62-2540 | Jan 1987 | JP |
S62-17705 | Jan 1987 | JP |
S62-65326 | Mar 1987 | JP |
S62-100161 | May 1987 | JP |
S62-120026 | Jun 1987 | JP |
S62-121417 | Jun 1987 | JP |
S62-122215 | Jun 1987 | JP |
S62-153710 | Jul 1987 | JP |
S62-183522 | Aug 1987 | JP |
S62-188316 | Aug 1987 | JP |
S62-203526 | Sep 1987 | JP |
62-265722 | Nov 1987 | JP |
S63-12134 | Jan 1988 | JP |
S63-36526 | Feb 1988 | JP |
S63-73628 | Apr 1988 | JP |
S63-128713 | Jun 1988 | JP |
S63-131008 | Jun 1988 | JP |
S63-141313 | Jun 1988 | JP |
S63-157419 | Jun 1988 | JP |
S63-160192 | Jul 1988 | JP |
S63-231217 | Sep 1988 | JP |
S63-275912 | Nov 1988 | JP |
S63-292005 | Nov 1988 | JP |
S64-18002 | Jan 1989 | JP |
S64-26704 | Jan 1989 | JP |
S64-68926 | Mar 1989 | JP |
H01-91419 | Apr 1989 | JP |
H01-115033 | May 1989 | JP |
H01-147516 | Jun 1989 | JP |
H01-127379 | Aug 1989 | JP |
H01-202833 | Aug 1989 | JP |
H01-214042 | Aug 1989 | JP |
H01-255404 | Oct 1989 | JP |
H01-258550 | Oct 1989 | JP |
H01-276043 | Nov 1989 | JP |
H01-278240 | Nov 1989 | JP |
H01-286478 | Nov 1989 | JP |
H01-292343 | Nov 1989 | JP |
H01-314247 | Dec 1989 | JP |
H01-319964 | Dec 1989 | JP |
H02-42382 | Feb 1990 | JP |
H02-65149 | Mar 1990 | JP |
H02-65222 | Mar 1990 | JP |
H02-97239 | Apr 1990 | JP |
H02-106917 | Apr 1990 | JP |
H02-116115 | Apr 1990 | JP |
H02-139146 | May 1990 | JP |
H02-166717 | Jun 1990 | JP |
H02-261073 | Oct 1990 | JP |
H02-264901 | Oct 1990 | JP |
H02-285320 | Nov 1990 | JP |
H02-287308 | Nov 1990 | JP |
H02-298431 | Dec 1990 | JP |
H02-311237 | Dec 1990 | JP |
H03-41399 | Feb 1991 | JP |
H03-64811 | Mar 1991 | JP |
H03-72298 | Mar 1991 | JP |
H03-94445 | Apr 1991 | JP |
H03-132663 | Jun 1991 | JP |
H03-134341 | Jun 1991 | JP |
H03-167419 | Jul 1991 | JP |
H03-168640 | Jul 1991 | JP |
H03-211812 | Sep 1991 | JP |
H03-263810 | Nov 1991 | JP |
H04-11613 | Jan 1992 | JP |
H04-32154 | Feb 1992 | JP |
H04-065603 | Mar 1992 | JP |
H04-96315 | Mar 1992 | JP |
H04-101148 | Apr 1992 | JP |
H04-130710 | May 1992 | JP |
H04-132909 | May 1992 | JP |
H04-133414 | May 1992 | JP |
H04-152512 | May 1992 | JP |
H04-179115 | Jun 1992 | JP |
H04-80052 | Jul 1992 | JP |
H04-186244 | Jul 1992 | JP |
H04-211110 | Aug 1992 | JP |
H04-225357 | Aug 1992 | JP |
H04-235558 | Aug 1992 | JP |
H04-265805 | Sep 1992 | JP |
H04-273245 | Sep 1992 | JP |
H04-273427 | Sep 1992 | JP |
H04-117212 | Oct 1992 | JP |
H04-280619 | Oct 1992 | JP |
H04-282539 | Oct 1992 | JP |
H04-296092 | Oct 1992 | JP |
H04-297030 | Oct 1992 | JP |
H04-305915 | Oct 1992 | JP |
H04-305917 | Oct 1992 | JP |
H04-330961 | Nov 1992 | JP |
H04-343307 | Nov 1992 | JP |
H04-350925 | Dec 1992 | JP |
H05-21314 | Jan 1993 | JP |
H05-45886 | Feb 1993 | JP |
H05-62877 | Mar 1993 | JP |
H05-90128 | Apr 1993 | JP |
H05-109601 | Apr 1993 | JP |
H05-127086 | May 1993 | JP |
H05-129184 | May 1993 | JP |
H05-134230 | May 1993 | JP |
H05-160002 | Jun 1993 | JP |
H05-175098 | Jul 1993 | JP |
H05-199680 | Aug 1993 | JP |
H05-217837 | Aug 1993 | JP |
H05-217840 | Aug 1993 | JP |
H05-241324 | Sep 1993 | JP |
H05-243364 | Sep 1993 | JP |
H05-259069 | Oct 1993 | JP |
H05-283317 | Oct 1993 | JP |
H05-304072 | Nov 1993 | JP |
H05-319774 | Dec 1993 | JP |
H05-323583 | Dec 1993 | JP |
H05-326370 | Dec 1993 | JP |
H06-29204 | Feb 1994 | JP |
H06-42918 | Feb 1994 | JP |
H06-53120 | Feb 1994 | JP |
H06-29102 | Apr 1994 | JP |
H06-97269 | Apr 1994 | JP |
H06-104167 | Apr 1994 | JP |
H06-118623 | Apr 1994 | JP |
H06-120110 | Apr 1994 | JP |
H06-36054 | May 1994 | JP |
H06-124126 | May 1994 | JP |
H06-124872 | May 1994 | JP |
H06-124873 | May 1994 | JP |
H06-140306 | May 1994 | JP |
H06-148399 | May 1994 | JP |
H06-163350 | Jun 1994 | JP |
H06-168866 | Jun 1994 | JP |
H06-177007 | Jun 1994 | JP |
H06-181157 | Jun 1994 | JP |
H06-186025 | Jul 1994 | JP |
H06-188169 | Jul 1994 | JP |
H06-196388 | Jul 1994 | JP |
H06-204113 | Jul 1994 | JP |
H06-204121 | Jul 1994 | JP |
H06-229741 | Aug 1994 | JP |
H06-241720 | Sep 1994 | JP |
H06-244082 | Sep 1994 | JP |
H06-267825 | Sep 1994 | JP |
H06-281869 | Oct 1994 | JP |
H06-283403 | Oct 1994 | JP |
H06-291023 | Oct 1994 | JP |
H06-310399 | Nov 1994 | JP |
H06-325894 | Nov 1994 | JP |
H06-326174 | Nov 1994 | JP |
H06-349701 | Dec 1994 | JP |
H07-057992 | Mar 1995 | JP |
H07-57993 | Mar 1995 | JP |
H07-69621 | Mar 1995 | JP |
H07-92424 | Apr 1995 | JP |
H07-122469 | May 1995 | JP |
H07-132262 | May 1995 | JP |
H07-134955 | May 1995 | JP |
H07-135158 | May 1995 | JP |
H07-135165 | May 1995 | JP |
H07-147223 | Jun 1995 | JP |
H07-161622 | Jun 1995 | JP |
H07-167998 | Jul 1995 | JP |
H07-168286 | Jul 1995 | JP |
H07-174974 | Jul 1995 | JP |
H07-176468 | Jul 1995 | JP |
H07-183201 | Jul 1995 | JP |
H07-183214 | Jul 1995 | JP |
H07-190741 | Jul 1995 | JP |
H07-201723 | Aug 1995 | JP |
H07-220989 | Aug 1995 | JP |
H07-220990 | Aug 1995 | JP |
H07-220995 | Aug 1995 | JP |
H07-221010 | Aug 1995 | JP |
H07-230945 | Aug 1995 | JP |
H07-239212 | Sep 1995 | JP |
H07-243814 | Sep 1995 | JP |
H07-245258 | Sep 1995 | JP |
H07-263315 | Oct 1995 | JP |
H07-283119 | Oct 1995 | JP |
H07-297272 | Nov 1995 | JP |
H07-307268 | Nov 1995 | JP |
H07-318847 | Dec 1995 | JP |
H07-335748 | Dec 1995 | JP |
H08-10971 | Jan 1996 | JP |
H08-17709 | Jan 1996 | JP |
H08-22948 | Jan 1996 | JP |
H08-37149 | Feb 1996 | JP |
H08-37227 | Feb 1996 | JP |
H08-46751 | Feb 1996 | JP |
H08-63231 | Mar 1996 | JP |
H08-115868 | May 1996 | JP |
H08-136475 | May 1996 | JP |
H08-151220 | Jun 1996 | JP |
H08-162397 | Jun 1996 | JP |
H08-166475 | Jun 1996 | JP |
H08-171054 | Jul 1996 | JP |
H08-203803 | Aug 1996 | JP |
H08-279549 | Oct 1996 | JP |
H08-288213 | Nov 1996 | JP |
H08-297699 | Nov 1996 | JP |
H08-316125 | Nov 1996 | JP |
H08-316133 | Nov 1996 | JP |
H08-330224 | Dec 1996 | JP |
H08-334695 | Dec 1996 | JP |
H08-335552 | Dec 1996 | JP |
H09-7933 | Jan 1997 | JP |
H09-15834 | Jan 1997 | JP |
H09-22121 | Jan 1997 | JP |
H09-61686 | Mar 1997 | JP |
H09-82626 | Mar 1997 | JP |
H09-83877 | Mar 1997 | JP |
H09-92593 | Apr 1997 | JP |
H09-108551 | Apr 1997 | JP |
H09-115794 | May 1997 | JP |
H09-134870 | May 1997 | JP |
H09-148406 | Jun 1997 | JP |
H09-151658 | Jun 1997 | JP |
H09-160004 | Jun 1997 | JP |
H09-160219 | Jun 1997 | JP |
H09-162106 | Jun 1997 | JP |
H09-178415 | Jul 1997 | JP |
H09-184787 | Jul 1997 | JP |
H09-184918 | Jul 1997 | JP |
H09-186082 | Jul 1997 | JP |
H09-190969 | Jul 1997 | JP |
H09-213129 | Aug 1997 | JP |
H09-219358 | Aug 1997 | JP |
H09-227294 | Sep 1997 | JP |
H09-232213 | Sep 1997 | JP |
H09-243892 | Sep 1997 | JP |
H09-246672 | Sep 1997 | JP |
H09-251208 | Sep 1997 | JP |
H09-281077 | Oct 1997 | JP |
H09-325255 | Dec 1997 | JP |
H09-326338 | Dec 1997 | JP |
H10-2865 | Jan 1998 | JP |
H10-3039 | Jan 1998 | JP |
H10-20195 | Jan 1998 | JP |
H10-32160 | Feb 1998 | JP |
H10-38517 | Feb 1998 | JP |
H10-38812 | Feb 1998 | JP |
H10-55713 | Feb 1998 | JP |
H10-62305 | Mar 1998 | JP |
H10-64790 | Mar 1998 | JP |
H10-79337 | Mar 1998 | JP |
H10-82611 | Mar 1998 | JP |
H10-503300 | Mar 1998 | JP |
H10-92735 | Apr 1998 | JP |
H10-97969 | Apr 1998 | JP |
H10-104427 | Apr 1998 | JP |
H10-116760 | May 1998 | JP |
H10-116778 | May 1998 | JP |
H10-116779 | May 1998 | JP |
H10-125572 | May 1998 | JP |
H10-134028 | May 1998 | JP |
H10-135099 | May 1998 | JP |
H10-163099 | Jun 1998 | JP |
H10-163302 | Jun 1998 | JP |
H10-169249 | Jun 1998 | JP |
H10-189427 | Jul 1998 | JP |
H10-189700 | Jul 1998 | JP |
H10-206714 | Aug 1998 | JP |
H10-208993 | Aug 1998 | JP |
H10-209018 | Aug 1998 | JP |
H10-214783 | Aug 1998 | JP |
H10-228661 | Aug 1998 | JP |
H10-255319 | Sep 1998 | JP |
H10-294268 | Nov 1998 | JP |
H10-303114 | Nov 1998 | JP |
H10-340846 | Dec 1998 | JP |
H11-3849 | Jan 1999 | JP |
H11-3856 | Jan 1999 | JP |
H11-8194 | Jan 1999 | JP |
H11-14876 | Jan 1999 | JP |
H11-16816 | Jan 1999 | JP |
H11-40657 | Feb 1999 | JP |
H11-54426 | Feb 1999 | JP |
H11-74185 | Mar 1999 | JP |
H11-87237 | Mar 1999 | JP |
H11-111601 | Apr 1999 | JP |
H11-111818 | Apr 1999 | JP |
H11-111819 | Apr 1999 | JP |
H11-121328 | Apr 1999 | JP |
H11-135400 | May 1999 | JP |
H11-142556 | May 1999 | JP |
H11-150062 | Jun 1999 | JP |
H11-159571 | Jun 1999 | JP |
H11-162831 | Jun 1999 | JP |
H11-163103 | Jun 1999 | JP |
H11-164543 | Jun 1999 | JP |
H11-166990 | Jun 1999 | JP |
H11-98 | Jul 1999 | JP |
H11-176727 | Jul 1999 | JP |
H11-176744 | Jul 1999 | JP |
H11-195602 | Jul 1999 | JP |
H11-204390 | Jul 1999 | JP |
H11-204432 | Jul 1999 | JP |
H11-218466 | Aug 1999 | JP |
H11-219882 | Aug 1999 | JP |
H11-233434 | Aug 1999 | JP |
H11-238680 | Aug 1999 | JP |
H11-239758 | Sep 1999 | JP |
H11-260686 | Sep 1999 | JP |
H11-260791 | Sep 1999 | JP |
H11-264756 | Sep 1999 | JP |
H11-283903 | Oct 1999 | JP |
H11-288879 | Oct 1999 | JP |
H11-307610 | Nov 1999 | JP |
H11-312631 | Nov 1999 | JP |
H11-354624 | Dec 1999 | JP |
2000-003874 | Jan 2000 | JP |
2000-012453 | Jan 2000 | JP |
2000-021742 | Jan 2000 | JP |
2000-021748 | Jan 2000 | JP |
2000-029202 | Jan 2000 | JP |
2000-032403 | Jan 2000 | JP |
2000-036449 | Feb 2000 | JP |
2000-058436 | Feb 2000 | JP |
2000-058441 | Feb 2000 | JP |
2000-081320 | Mar 2000 | JP |
2000-092815 | Mar 2000 | JP |
2000-097616 | Apr 2000 | JP |
2000-106340 | Apr 2000 | JP |
2000-114157 | Apr 2000 | JP |
2000-121491 | Apr 2000 | JP |
2000-147346 | May 2000 | JP |
2000-154251 | Jun 2000 | JP |
2000-180371 | Jun 2000 | JP |
2000-206279 | Jul 2000 | JP |
2000-208407 | Jul 2000 | JP |
2000-240717 | Sep 2000 | JP |
2000-243684 | Sep 2000 | JP |
2000-252201 | Sep 2000 | JP |
2000-283889 | Oct 2000 | JP |
2000-286176 | Oct 2000 | JP |
2000-311853 | Nov 2000 | JP |
2000-323403 | Nov 2000 | JP |
2001-007015 | Jan 2001 | JP |
2001-020951 | Jan 2001 | JP |
2001-023996 | Jan 2001 | JP |
2001-037201 | Feb 2001 | JP |
2001-044097 | Feb 2001 | JP |
2001-074240 | Mar 2001 | JP |
2001-083472 | Mar 2001 | JP |
2001-085307 | Mar 2001 | JP |
2001-097734 | Apr 2001 | JP |
2001-100311 | Apr 2001 | JP |
2001-110707 | Apr 2001 | JP |
2001-118773 | Apr 2001 | JP |
2001-135560 | May 2001 | JP |
2001-144004 | May 2001 | JP |
2001-167996 | Jun 2001 | JP |
2001-176766 | Jun 2001 | JP |
2001-203140 | Jul 2001 | JP |
2001-218497 | Aug 2001 | JP |
2001-228401 | Aug 2001 | JP |
2001-228404 | Aug 2001 | JP |
2001-230323 | Aug 2001 | JP |
2001-242269 | Sep 2001 | JP |
2001-265581 | Sep 2001 | JP |
2001-267227 | Sep 2001 | JP |
2001-272764 | Oct 2001 | JP |
2001-274083 | Oct 2001 | JP |
2001-282526 | Oct 2001 | JP |
2001-296105 | Oct 2001 | JP |
2001-297976 | Oct 2001 | JP |
2001-304332 | Oct 2001 | JP |
2001-307982 | Nov 2001 | JP |
2001-307983 | Nov 2001 | JP |
2001-313250 | Nov 2001 | JP |
2001-338868 | Dec 2001 | JP |
2001-345262 | Dec 2001 | JP |
2002-014005 | Jan 2002 | JP |
2002-015978 | Jan 2002 | JP |
2002-016124 | Jan 2002 | JP |
3246615 | Jan 2002 | JP |
2002-043213 | Feb 2002 | JP |
2002-057097 | Feb 2002 | JP |
2002-066428 | Mar 2002 | JP |
2002-071513 | Mar 2002 | JP |
2002-075816 | Mar 2002 | JP |
2002-75835 | Mar 2002 | JP |
2002-075859 | Mar 2002 | JP |
2002-091922 | Mar 2002 | JP |
2002-093686 | Mar 2002 | JP |
2002-093690 | Mar 2002 | JP |
2002-100561 | Apr 2002 | JP |
2002-118058 | Apr 2002 | JP |
2002-141270 | May 2002 | JP |
2002-158157 | May 2002 | JP |
2002-162655 | Jun 2002 | JP |
2002-170495 | Jun 2002 | JP |
2002-190438 | Jul 2002 | JP |
2002-195912 | Jul 2002 | JP |
2002-198284 | Jul 2002 | JP |
2002-202221 | Jul 2002 | JP |
2002-203763 | Jul 2002 | JP |
2002-208562 | Jul 2002 | JP |
2002-520810 | Jul 2002 | JP |
2002-222754 | Aug 2002 | JP |
2002-227924 | Aug 2002 | JP |
2002-231619 | Aug 2002 | JP |
2002-258487 | Sep 2002 | JP |
2002-261004 | Sep 2002 | JP |
2002-263553 | Sep 2002 | JP |
2002-277742 | Sep 2002 | JP |
2002-289505 | Oct 2002 | JP |
2002-305140 | Oct 2002 | JP |
2002-323658 | Nov 2002 | JP |
2002-324743 | Nov 2002 | JP |
2002-329651 | Nov 2002 | JP |
2002-334836 | Nov 2002 | JP |
2002-353105 | Dec 2002 | JP |
2002-357715 | Dec 2002 | JP |
2002-359174 | Dec 2002 | JP |
2002-359176 | Dec 2002 | JP |
2002-362737 | Dec 2002 | JP |
2002-365783 | Dec 2002 | JP |
2002-367523 | Dec 2002 | JP |
2002-367886 | Dec 2002 | JP |
2002-373849 | Dec 2002 | JP |
2003-015040 | Jan 2003 | JP |
2003-015314 | Jan 2003 | JP |
2003-017003 | Jan 2003 | JP |
2003-017404 | Jan 2003 | JP |
2003-028673 | Jan 2003 | JP |
2003-35822 | Feb 2003 | JP |
2003-043223 | Feb 2003 | JP |
2003-045219 | Feb 2003 | JP |
2003-045712 | Feb 2003 | JP |
2003-059799 | Feb 2003 | JP |
2003-059803 | Feb 2003 | JP |
2003-059821 | Feb 2003 | JP |
2003-059826 | Feb 2003 | JP |
2003-068600 | Mar 2003 | JP |
2003-068604 | Mar 2003 | JP |
2003-068607 | Mar 2003 | JP |
2003-075703 | Mar 2003 | JP |
2003-081654 | Mar 2003 | JP |
2003-084445 | Mar 2003 | JP |
2003-090978 | Mar 2003 | JP |
2003-098651 | Apr 2003 | JP |
2003-100597 | Apr 2003 | JP |
2003-114387 | Apr 2003 | JP |
2003-124095 | Apr 2003 | JP |
2003-130132 | May 2003 | JP |
2003-149363 | May 2003 | JP |
2003-151880 | May 2003 | JP |
2003-161882 | Jun 2003 | JP |
2003-163158 | Jun 2003 | JP |
2003-166856 | Jun 2003 | JP |
2003-173957 | Jun 2003 | JP |
2003-188087 | Jul 2003 | JP |
2003-224961 | Aug 2003 | JP |
2003-229347 | Aug 2003 | JP |
2003-233001 | Aug 2003 | JP |
2003-234285 | Aug 2003 | JP |
2003-238577 | Aug 2003 | JP |
2003-240906 | Aug 2003 | JP |
2003-249443 | Sep 2003 | JP |
2003-258071 | Sep 2003 | JP |
2003-262501 | Sep 2003 | JP |
2003-263119 | Sep 2003 | JP |
2003-272837 | Sep 2003 | JP |
2003-273338 | Sep 2003 | JP |
2003-282423 | Oct 2003 | JP |
2003-297727 | Oct 2003 | JP |
2003-532281 | Oct 2003 | JP |
2003-532282 | Oct 2003 | JP |
2003-311923 | Nov 2003 | JP |
2004-007417 | Jan 2004 | JP |
2004-014642 | Jan 2004 | JP |
2004-014876 | Jan 2004 | JP |
2004-015187 | Jan 2004 | JP |
2004-022708 | Jan 2004 | JP |
2004-038247 | Feb 2004 | JP |
2004-039952 | Feb 2004 | JP |
2004-040039 | Feb 2004 | JP |
2004-045063 | Feb 2004 | JP |
2004-051717 | Feb 2004 | JP |
2004-063847 | Feb 2004 | JP |
2004-071851 | Mar 2004 | JP |
2004-078136 | Mar 2004 | JP |
2004-085612 | Mar 2004 | JP |
2004-087987 | Mar 2004 | JP |
2004-095653 | Mar 2004 | JP |
3102327 | Mar 2004 | JP |
2004-098012 | Apr 2004 | JP |
2004-101362 | Apr 2004 | JP |
2004-103674 | Apr 2004 | JP |
2004-111569 | Apr 2004 | JP |
2004-119497 | Apr 2004 | JP |
2004-119717 | Apr 2004 | JP |
2004-128307 | Apr 2004 | JP |
2004-134682 | Apr 2004 | JP |
2004-140145 | May 2004 | JP |
2004-145269 | May 2004 | JP |
2004-146702 | May 2004 | JP |
2004-152705 | May 2004 | JP |
2004-153064 | May 2004 | JP |
2004-153096 | May 2004 | JP |
2004-163555 | Jun 2004 | JP |
2004-165249 | Jun 2004 | JP |
2004-165416 | Jun 2004 | JP |
2004-172471 | Jun 2004 | JP |
2004-177468 | Jun 2004 | JP |
2004-179172 | Jun 2004 | JP |
2004-187401 | Jul 2004 | JP |
2004-193252 | Jul 2004 | JP |
2004-193425 | Jul 2004 | JP |
2004-198748 | Jul 2004 | JP |
2004-205698 | Jul 2004 | JP |
2004-207696 | Jul 2004 | JP |
2004-207711 | Jul 2004 | JP |
2004-520618 | Jul 2004 | JP |
2004-221253 | Aug 2004 | JP |
2004-224421 | Aug 2004 | JP |
2004-228497 | Aug 2004 | JP |
2004-241666 | Aug 2004 | JP |
2004-247527 | Sep 2004 | JP |
2004-258670 | Sep 2004 | JP |
2004-259828 | Sep 2004 | JP |
2004-259966 | Sep 2004 | JP |
2004-259985 | Sep 2004 | JP |
2004-260043 | Sep 2004 | JP |
2004-260081 | Sep 2004 | JP |
2004-260115 | Sep 2004 | JP |
2004-294202 | Oct 2004 | JP |
2004-301825 | Oct 2004 | JP |
2004-302043 | Oct 2004 | JP |
2004-303808 | Oct 2004 | JP |
2004-304135 | Oct 2004 | JP |
2004-307264 | Nov 2004 | JP |
2004-307265 | Nov 2004 | JP |
2004-307266 | Nov 2004 | JP |
2004-307267 | Nov 2004 | JP |
2004-319724 | Nov 2004 | JP |
2004-320017 | Nov 2004 | JP |
2004-327660 | Nov 2004 | JP |
2004-335808 | Nov 2004 | JP |
2004-335864 | Nov 2004 | JP |
2004-336922 | Nov 2004 | JP |
2004-342987 | Dec 2004 | JP |
2004-349645 | Dec 2004 | JP |
2004-356410 | Dec 2004 | JP |
2005-005295 | Jan 2005 | JP |
2005-005395 | Jan 2005 | JP |
2005-5521 | Jan 2005 | JP |
2005-011990 | Jan 2005 | JP |
2005-012190 | Jan 2005 | JP |
2005-012228 | Jan 2005 | JP |
2005-019628 | Jan 2005 | JP |
2005-019864 | Jan 2005 | JP |
2005-026634 | Jan 2005 | JP |
2005-051147 | Feb 2005 | JP |
2005-055811 | Mar 2005 | JP |
2005-064210 | Mar 2005 | JP |
2005-064391 | Mar 2005 | JP |
2005-079222 | Mar 2005 | JP |
2005-079584 | Mar 2005 | JP |
2005-079587 | Mar 2005 | JP |
2005-086148 | Mar 2005 | JP |
2005-091023 | Apr 2005 | JP |
2005-093324 | Apr 2005 | JP |
2005-093522 | Apr 2005 | JP |
2005-093948 | Apr 2005 | JP |
2005-097057 | Apr 2005 | JP |
2005-108925 | Apr 2005 | JP |
2005-108934 | Apr 2005 | JP |
2005-114882 | Apr 2005 | JP |
2005-116570 | Apr 2005 | JP |
2005-116571 | Apr 2005 | JP |
2005-116831 | Apr 2005 | JP |
2005-123586 | May 2005 | JP |
2005-127460 | May 2005 | JP |
2005-136404 | May 2005 | JP |
2005-140999 | Jun 2005 | JP |
2005-150759 | Jun 2005 | JP |
2005-156592 | Jun 2005 | JP |
2005-166871 | Jun 2005 | JP |
2005-167254 | Jun 2005 | JP |
2005-175176 | Jun 2005 | JP |
2005-175177 | Jun 2005 | JP |
2005-191344 | Jul 2005 | JP |
2005-203483 | Jul 2005 | JP |
2005-209705 | Aug 2005 | JP |
2005-209706 | Aug 2005 | JP |
2005-524112 | Aug 2005 | JP |
2005-233979 | Sep 2005 | JP |
2005-234359 | Sep 2005 | JP |
2005-236088 | Sep 2005 | JP |
2005-243770 | Sep 2005 | JP |
2005-243904 | Sep 2005 | JP |
2005-251549 | Sep 2005 | JP |
2005-257740 | Sep 2005 | JP |
2005-259789 | Sep 2005 | JP |
2005-259830 | Sep 2005 | JP |
2005-268700 | Sep 2005 | JP |
2005-268741 | Sep 2005 | JP |
2005-268742 | Sep 2005 | JP |
2005-276932 | Oct 2005 | JP |
2005-302826 | Oct 2005 | JP |
2005-303167 | Oct 2005 | JP |
2005-311020 | Nov 2005 | JP |
2005-315918 | Nov 2005 | JP |
2005-340605 | Dec 2005 | JP |
2005-366813 | Dec 2005 | JP |
2006-001821 | Jan 2006 | JP |
2006-005197 | Jan 2006 | JP |
2006-017895 | Jan 2006 | JP |
2006-019702 | Jan 2006 | JP |
2006-024706 | Jan 2006 | JP |
2006-024819 | Jan 2006 | JP |
2006-032750 | Feb 2006 | JP |
2006-41302 | Feb 2006 | JP |
2006-054364 | Feb 2006 | JP |
2006-073584 | Mar 2006 | JP |
2006-073951 | Mar 2006 | JP |
2006-080281 | Mar 2006 | JP |
2006-086141 | Mar 2006 | JP |
2006-086442 | Mar 2006 | JP |
2006-100363 | Apr 2006 | JP |
2006-100686 | Apr 2006 | JP |
2006-113437 | Apr 2006 | JP |
2006-513442 | Apr 2006 | JP |
2006-120985 | May 2006 | JP |
2006-128192 | May 2006 | JP |
2006-135165 | May 2006 | JP |
2006-140366 | Jun 2006 | JP |
2006-170811 | Jun 2006 | JP |
2006-170899 | Jun 2006 | JP |
2006-177865 | Jul 2006 | JP |
2006-184414 | Jul 2006 | JP |
2006-194665 | Jul 2006 | JP |
2006-250587 | Sep 2006 | JP |
2006-253572 | Sep 2006 | JP |
2006-269762 | Oct 2006 | JP |
2006-278820 | Oct 2006 | JP |
2006-289684 | Oct 2006 | JP |
2006-524349 | Oct 2006 | JP |
2006-332355 | Dec 2006 | JP |
2006-349946 | Dec 2006 | JP |
2006-351586 | Dec 2006 | JP |
2007-005830 | Jan 2007 | JP |
2007-043980 | Feb 2007 | JP |
2007-048819 | Feb 2007 | JP |
2007-051300 | Mar 2007 | JP |
2007-087306 | Apr 2007 | JP |
2007-093546 | Apr 2007 | JP |
2007-103153 | Apr 2007 | JP |
2007-113939 | May 2007 | JP |
2007-119851 | May 2007 | JP |
2007-120333 | May 2007 | JP |
2007-120334 | May 2007 | JP |
2007-142313 | Jun 2007 | JP |
2007-144864 | Jun 2007 | JP |
2007-515768 | Jun 2007 | JP |
2007-170938 | Jul 2007 | JP |
2007-187649 | Jul 2007 | JP |
2007-207821 | Aug 2007 | JP |
2007-227637 | Sep 2007 | JP |
2007-235041 | Sep 2007 | JP |
2007-527549 | Sep 2007 | JP |
2007-274881 | Oct 2007 | JP |
2007-280623 | Oct 2007 | JP |
2007-295702 | Nov 2007 | JP |
2008-003740 | Jan 2008 | JP |
2008-058580 | Mar 2008 | JP |
2008-064924 | Mar 2008 | JP |
2008-103737 | May 2008 | JP |
2008-180492 | Aug 2008 | JP |
2009-017540 | Jan 2009 | JP |
2009-060339 | Mar 2009 | JP |
2010-514716 | May 2010 | JP |
2010-226117 | Oct 2010 | JP |
4582096 | Nov 2010 | JP |
4747844 | Aug 2011 | JP |
2011-233911 | Nov 2011 | JP |
4976015 | Jul 2012 | JP |
4976094 | Jul 2012 | JP |
5-226225 | Jul 2013 | JP |
1995-0009365 | Apr 1995 | KR |
10-2011-0036050 | Apr 1997 | KR |
1997-0016641 | Apr 1997 | KR |
2001-53240 | Aug 1999 | KR |
2000-0048227 | Jul 2000 | KR |
2001-0051438 | Jun 2001 | KR |
10-2002-0042462 | Jun 2002 | KR |
10-2003-0036105 | May 2003 | KR |
10-0474578 | Jun 2005 | KR |
10-2006-0132598 | Dec 2006 | KR |
10-2010-0061551 | Jun 2010 | KR |
480585 | Mar 2002 | TW |
516097 | Jan 2003 | TW |
518662 | Jan 2003 | TW |
200301848 | Jul 2003 | TW |
094100817 | Aug 2005 | TW |
9711411 | Mar 1997 | WO |
9815952 | Apr 1998 | WO |
9824115 | Jun 1998 | WO |
9859364 | Dec 1998 | WO |
9923692 | May 1999 | WO |
9927568 | Jun 1999 | WO |
9931716 | Jun 1999 | WO |
9934255 | Jul 1999 | WO |
9949366 | Sep 1999 | WO |
9949504 | Sep 1999 | WO |
9950712 | Oct 1999 | WO |
9966370 | Dec 1999 | WO |
0002092 | Jan 2000 | WO |
0011706 | Mar 2000 | WO |
0067303 | Nov 2000 | WO |
0103170 | Jan 2001 | WO |
0110137 | Feb 2001 | WO |
0120733 | Mar 2001 | WO |
0122480 | Mar 2001 | WO |
0123935 | Apr 2001 | WO |
0127978 | Apr 2001 | WO |
0135451 | May 2001 | WO |
0159502 | Aug 2001 | WO |
0165296 | Sep 2001 | WO |
0181977 | Nov 2001 | WO |
0216993 | Feb 2002 | WO |
02063664 | Aug 2002 | WO |
02069049 | Sep 2002 | WO |
02080185 | Oct 2002 | WO |
02084720 | Oct 2002 | WO |
02084850 | Oct 2002 | WO |
02093209 | Nov 2002 | WO |
02101804 | Dec 2002 | WO |
03003429 | Jan 2003 | WO |
03023832 | Mar 2003 | WO |
03063212 | Jul 2003 | WO |
03077036 | Sep 2003 | WO |
03085708 | Oct 2003 | WO |
2004051717 | Jun 2004 | WO |
2004053596 | Jun 2004 | WO |
2004053950 | Jun 2004 | WO |
2004053951 | Jun 2004 | WO |
2004053952 | Jun 2004 | WO |
2004053953 | Jun 2004 | WO |
2004053954 | Jun 2004 | WO |
2004053955 | Jun 2004 | WO |
2004053956 | Jun 2004 | WO |
2004053957 | Jun 2004 | WO |
2004053958 | Jun 2004 | WO |
2004053959 | Jun 2004 | WO |
2004071070 | Aug 2004 | WO |
2004086468 | Oct 2004 | WO |
2004086470 | Oct 2004 | WO |
2004090956 | Oct 2004 | WO |
2004091079 | Oct 2004 | WO |
2004094940 | Nov 2004 | WO |
2004104654 | Dec 2004 | WO |
2004105106 | Dec 2004 | WO |
2004105107 | Dec 2004 | WO |
2004107048 | Dec 2004 | WO |
2004107417 | Dec 2004 | WO |
2004109780 | Dec 2004 | WO |
2004114380 | Dec 2004 | WO |
2005006415 | Jan 2005 | WO |
2005006418 | Jan 2005 | WO |
2005008754 | Jan 2005 | WO |
2005022615 | Mar 2005 | WO |
2005026843 | Mar 2005 | WO |
2005027207 | Mar 2005 | WO |
2005029559 | Mar 2005 | WO |
2005031467 | Apr 2005 | WO |
2005036619 | Apr 2005 | WO |
2005036620 | Apr 2005 | WO |
2005-036622 | Apr 2005 | WO |
2005-036623 | Apr 2005 | WO |
2005041276 | May 2005 | WO |
2005041277 | May 2005 | WO |
2005048325 | May 2005 | WO |
2005048326 | May 2005 | WO |
2005050718 | Jun 2005 | WO |
2005057636 | Jun 2005 | WO |
2005067013 | Jul 2005 | WO |
2005069081 | Jul 2005 | WO |
2005071671 | Aug 2005 | WO |
2005071717 | Aug 2005 | WO |
2005076045 | Aug 2005 | WO |
2005076321 | Aug 2005 | WO |
2005076323 | Aug 2005 | WO |
2005081291 | Sep 2005 | WO |
2005081292 | Sep 2005 | WO |
2005104195 | Nov 2005 | WO |
2006-006730 | Jan 2006 | WO |
2006-016551 | Feb 2006 | WO |
2006019124 | Feb 2006 | WO |
2006025341 | Mar 2006 | WO |
2006-028188 | Mar 2006 | WO |
2006-030727 | Mar 2006 | WO |
2006030910 | Mar 2006 | WO |
2006035775 | Apr 2006 | WO |
2006-049134 | May 2006 | WO |
2006051909 | May 2006 | WO |
2006-064851 | Jun 2006 | WO |
2006-068233 | Jun 2006 | WO |
2006-077958 | Jul 2006 | WO |
2006-080285 | Aug 2006 | WO |
2006085524 | Aug 2006 | WO |
2006100889 | Sep 2006 | WO |
2006-118108 | Nov 2006 | WO |
2007003563 | Jan 2007 | WO |
2007018127 | Feb 2007 | WO |
2007055120 | May 2007 | WO |
2007055237 | May 2007 | WO |
2007055373 | May 2007 | WO |
2007066692 | Jun 2007 | WO |
2007066758 | Jun 2007 | WO |
2007097198 | Aug 2007 | WO |
2007132862 | Nov 2007 | WO |
2007141997 | Dec 2007 | WO |
2008041575 | Apr 2008 | WO |
2008059748 | May 2008 | WO |
2008061681 | May 2008 | WO |
2006-343023 | Jun 2008 | WO |
2008065977 | Jun 2008 | WO |
2008074673 | Jun 2008 | WO |
2008075613 | Jun 2008 | WO |
2008078688 | Jul 2008 | WO |
2008090975 | Jul 2008 | WO |
2008139848 | Nov 2008 | WO |
2009153925 | Dec 2009 | WO |
2009157154 | Dec 2009 | WO |
2010001537 | Jan 2010 | WO |
Entry |
---|
Jan. 12, 2016 Office Action issued in Taiwanese Patent Application No. 103116064. |
Jan. 27, 2016 Office Action issued in Taiwanese Patent Application No. 103116066. |
Feb. 1, 2016 Office Action issued in Korean Patent Application No. 10-2015-7005285. |
Mar. 29, 2011 Office Action issued in Japanese Patent Application No. P2007-251263. |
Mar. 29, 2011 Notice of Allowance issued in Japanese Patent Application No. 2005-505207. |
Apr. 5, 2011 Office Action issued in Japanese Patent Application No. P2009-149426. |
Apr. 6, 2011 Office Action issued in Taiwanese Patent Application No. 093131323. |
Apr. 8, 2011 Office Action issued in Chinese Patent Application No. 200810211496.01. |
Apr. 15, 2011 Office Action issued in European Patent Application No. 04 817 303.3. |
Apr. 26, 2011 Office Action issued in Chinese Patent Application No. 200710110951.4. |
Apr. 26, 2011 Office Action issued in U.S. Appl. No. 11/902,282. |
May 24, 2011 Office Action issued in U.S. Appl. No. 12/382,277. |
May 3, 2011 International Search Report Issued in PCT/JP2011/053595. |
Apr. 20, 2011 Office Action issued in Chinese Patent Application No. 200710110949.7. |
Apr. 25, 2011 Office Action issued in Korean Patent Application No. 10-2011-7001502. |
Jun. 9, 2011 Office Action issued in U.S. Appl. No. 11/902,277. |
Jun. 10, 2011 Office Action issued in U.S. Appl. No. 12/289,515. |
Apr. 25, 2011 Office Action issued in Korean Patent Application No. 10-2010-7008438. |
Apr. 26, 2011 Office Action issued in Chinese Patent Application No. 200710110950.X. |
Apr. 28, 2011 Office Action issued in Korean Patent Application No. 10-2010-7001898. |
Apr. 28, 2011 Office Action issued in Korean Patent Application No. 10-2006-7012265. |
Apr. 28, 2011 Office Action issued in Korean Patent Application No. 10-2010-7001907. |
May 11, 2011 Office Action issued in European Patent Application No. 04724369.6. |
May 18, 2011 International Search Report issued in PCT/JP2011/053588. |
Apr. 28, 2011 Office Action issued in Korean Patent Application No. 10-2009-7023904. |
Jun. 14, 2011 Office Action issued in Korean Patent Application No. 2011-7006842. |
Jun. 15, 2011 Notice of Allowance issued in U.S. Appl. No. 12/289,518. |
May 28, 2013 Office Action filed issued in Japanese Patent Application No. 2011-144669. |
May 28, 2013 Office Action issued in Japanese Patent Application No. 2010-094216. |
Jun. 4, 2013 Office Action issued in Chinese Patent Application No. 200710110950.X. |
Jul. 23, 2013 Office Action issued in U.S. Appl. No. 12/458,635. |
Jul. 15, 2013 Notice of Allowance issued in U.S. Appl. No. 13/067,958. |
Jul. 15, 2013 Office Action issued in Chinese Patent Application No. 200910173718.X. |
Jul. 22, 2013 Notice of Allowance issued in U.S. Appl. No. 12/289,515. |
Aug. 1, 2013 Office Action issued U.S. Appl. No. 12/318,216. |
Aug. 6, 2013 Office Action issued in U.S. Appl. No. 13/889,798. |
Jul. 1, 2013 Preparatory Document (1), Patent Invalidation Action 2013HEO3937 submitted in Korean Patent Application No. 10-2006-7008368. |
Jul. 1, 2013 Preparatory Document (1), Patent Invalidation Action 2013HEO3920 submitted in Korean Patent Application No. 10-2007-7022489. |
Jul. 1, 2013 Preparatory Document (1), Patent Invalidation Action 2013HEO3944 submitted in Korean Patent Application No. 10-2008-7019081. |
Jul. 1, 2013 Preparatory Document (1), Patent Invalidation Action 2013HEO3951 submitted in Korean Patent Application No. 10-2008-7019082. |
Jul. 4, 2013 Definition of Technical Terms. |
Jul. 4, 2013 Doosan Encyclopedia, “Optic Axis”. |
Bass, “Handbook of Optics”, 1995, pp. 1-9, McGraw-Hill. |
Buhrer, “Four Waveplate Dual Tuner for Birefringent Filters and Multiplexers,” Applied Optics, Sep. 1, 1987, pp. 3628-3632, vol. 26, No. 17, Optical Society of America. |
Niziev et al., “Influence of Beam Polarization on Laser Cutting Efficiency,” Journal of Physics D Applied Physics 32, Jul. 1999, pp. 1455-1461. |
Bagini et al., “The Simon-Mukunda Polarization Gadget,” European Journal of Physics, Apr. 1996, pp. 279-284, vol. 17, IOP Publishing Ltd and The European Physical Society. |
McGuire, Jr. et al., “Analysis of Spatial Pseudodepolarizers in Imaging Systems,” Optical Engineering, Dec. 1990, pp. 1478-1484, vol. 29, No. 12, Society of Photo-Optical Instrumentation Engineers. |
Sep. 11, 2013 Office Action issued U.S. Appl. No. 13/890,603. |
Aug. 23, 2013 Reply Brief, Patent Invalidation Action 2013HEO3975 submitted in Korean Patent Application No. 10-2007-7022489. |
Aug. 23, 2013 Reply Brief, Patent Invalidation Action 2013HEO3982 submitted in Korean Patent Application No. 10-2008-7019081. |
Oct. 10, 2013 Office Action issued in U.S. Appl. No. 13/890,547. |
Oct. 15, 2013 Office Action issued in U.S. Appl. No. 13/889,965. |
Oct. 15, 2013 Office Action issued in U.S. Appl. No. 13/137,342. |
Oct. 16, 2013 Office Action issued in U.S. Appl. No. 13/137,003. |
Oct. 17, 2013 Notice of Allowance issued in Korean Patent Application No. 2012-7008342. |
Oct. 21, 2013 Office Action issued in U.S. Appl. No. 13/137,002. |
Oct. 29, 2013 Office Action issued in U.S. Appl. No. 13/890,142. |
Oct. 17, 2013 Notice of Allowance issued in U.S. Appl. No. 11/902,277. |
Oct. 18, 2013 Office Action issued in U.S. Appl. No. 11/902,282. |
Oct. 29, 2013 Office Action issued in U.S. Appl. No. 13/890,547. |
Nov. 5, 2013 Office Action issued in Japanese Patent Application No. P2012-080675. |
Nov. 5, 2013 Office Action issued in Japanese Patent Application No. P2012-080678. |
Nov. 7, 2013 Office Action issued in U.S. Appl. No. 12/289,518. |
Nov. 8, 2013 Office Action issued in U.S. Appl. No. 13/912,832. |
Nov. 12, 2013 Office Action issued in U.S. Appl. No. 13/889,860. |
Nov. 13, 2013 Office Action issued in U.S. Appl. No. 13/889,965. |
Nov. 20, 2013 Office Action issued in U.S. Appl. No. 12/289,515. |
Oh, “Notarial Certificate of affiant Professor H.G. Oh,” Oct. 22, 2013. |
Totzeck, “Declaration of Dr. Michael Totzeck,” Oct. 8, 2013. |
“Korean Patent Office Guidelines for Examination” 2010. |
Oct. 25, 2013 Preparatory Document (2-1), Invalidation Action 2013HEO03937 submitted in Korean Patent Application No. 10-2006-7008368. |
Oct. 25, 2013 Preparatory Document (2-2), Invalidation Action 2013HEO03937 submitted in Korean Patent Application No. 10-2006-7008368. |
Dec. 13, 2013 Office Action issued in European Patent Application No. 09015058.2. |
Dec. 4, 2013 Office Action issued in Chinese Patent Application No. 200710110950.X. |
Dec. 17, 2013 Office Action issued in Korean Patent Application No. 10-2013-7026632. |
Dec. 18, 2013 Office Action issued in Korean Patent Application No. 10-2012-7034127. |
Mar. 14, 2014 Office Action issued in U.S. Appl. No. 13/889,798. |
Jan. 23, 2014 “Submission Document for Korean Patent Invalidation Action No. 2013HEO3920” issued in Korean Patent Application No. 10-2007-7022489. |
Jan. 23, 2014 “Submission Document for Korean Patent Invalidation Action No. 2013HEO3937” issued in Korean Patent Application No. 10-2006-7008368. |
Jan. 23, 2014 “Submission Document for Korean Patent Invalidation Action No. 2013HEO3944” issued in Korean Patent Application No. 10-2008-7019081. |
Jan. 23, 2014 “Submission Document for Korean Patent Invalidation Action No. 2013HEO3951” issued in Korean Patent Application No. 10-2008-7019082. |
Jan. 23, 2014 “Submission Document for Korean Patent Invalidation Action No. 2013HEO3975” issued in Korean Patent Application No. 10-2007-7022489. |
Jan. 23, 2014 “Submission Document for Korean Patent Invalidation Action No. 2013HEO3982” issued in Korean Patent Application No. 10-2008-7019081. |
Apr. 4, 2014 Office Action issued in Chinese Patent Application No. 200910173718.X. |
Apr. 16, 2014 Office Action issued in U.S. Appl. No. 12/458,635. |
Apr. 23, 2014 Submission Document, Patent Invalidation Action No. 2013HEO3920, issued in Korean Patent Application No. 10-2007-7022489. |
Apr. 23, 2014 Submission Document, Patent Invalidation Action No. 2013HEO3937, issued in Korean Patent Application No. 10-2006-7008368. |
Apr. 23, 2014 Submission Document, Patent Invalidation Action No. 2013HEO3944, issued in Korean Patent Application No. 10-2008-7019081. |
Apr. 23, 2014 Submission Document, Patent Invalidation Action No. 2013HEO3951, issued in Korean Patent Application No. 10-2008-7019082. |
Apr. 23, 2014 Submission Document, Patent Invalidation Action No. 2013HEO3975, issued in Korean Patent Application No. 10-2007-7022489. |
Apr. 23, 2014 Submission Document, Patent Invalidation Action No. 2013HEO3982, issued in Korean Patent Application No. 10-2008-7019081. |
Apr. 29, 2014 Office Action issued in European Patent Application No. 13156325.6. |
Apr. 29, 2014 Office Action issued in European Patent Application No. 13156324.9. |
Apr. 29, 2014 Office Action issued in European Patent Application No. 13156322.3. |
May 15, 2014 Decision Rendered by Division II of Korean Patent Court for Korean Patent Invalidation Action No. 2013HEO3920. |
May 15, 2014 Decision Rendered by Division II of Korean Patent Court for Korean Patent Invalidation Action No. 2013HEO3937. |
May 15, 2014 Decision Rendered by Division II of Korean Patent Court for Korean Patent Invalidation Action No. 2013HEO3944. |
May 15, 2014 Decision Rendered by Division II of Korean Patent Court for Korean Patent Invalidation Action No. 2013HEO3951. |
May 15, 2014 Decision Rendered by Division II of Korean Patent Court for Korean Patent Invalidation Action No. 2013HEO3975. |
May 15, 2014 Decision Rendered by Division II of Korean Patent Court for Korean Patent Invalidation Action No. 2013HEO3982. |
Feb. 13, 2014 Office Action issued in Chinese Patent Application No. 200910126047.1. |
Jun. 3, 2014 Office Action issued in Japanese Patent Application No. P2013-157042. |
Jun. 3, 2014 Office Action issued in Japanese Patent Application No. P2013-157044. |
Jul. 12, 2010 Office Action issued in European Patent Application No. 06711 853.9. |
Oct. 8, 2010 Office Action issued in European Patent Application No. 06822564.8. |
Oct. 7, 2009 Office Action issued in European Patent Application No. 04 799453.8. |
Sep. 25, 2007 Office Action issued in European Patent Application No. 04 799453.8. |
Jan. 18, 2010 Office Action issued in Korean Patent Application No. 10-2008-701908.1. |
Nov. 15, 2007 Office Action issued in Korean Patent Application No. 10-2007-7022489. |
Apr. 3, 2008 Office Action issued in Korean Patent Application No. 1 0-2006-7008368. |
Jan. 4, 2008 Office Action issued in Korean Patent Application No. 10-2006-7008368. |
Feb. 2, 2007 Office Action issued in Korean Patent Application No. 10-2006-7008368. |
Jan. 18, 2010 Office Action issued in Korean Patent Application No. 10-2008-7019082. |
Dec. 3, 2010 Office Action issued in Korean Patent Application No. 10-2008-7029536. |
Nov. 19, 2010 Office Action issued in Korean Patent Application No. 10-2008-7029535. |
Oct. 27, 2010 Office Action issued in Korean Patent Application No. 10-2005-7009937. |
Mar. 27, 2009 Office Action issued in Chinese Patent Application No. 2007101956440. |
Dec. 14, 2010 Office Action issued in Chinese Patent Application No. 200380104450.5. |
Jun. 13, 2008 Office Action issued in Chinese Patent Application No. 2003801044505. |
Jan. 18, 2008 Office Action issued in Chinese Patent Application No. 2003801044505. |
Jun. 29, 2007 Office Action issued in Chinese Patent Application No. 2003801044505. |
Oct. 24, 2008 Office Action issued in Chinese Patent Application No. 2007101109529. |
Nov. 13, 2009 Office Action issued in Chinese Patent Application No. 200810211496.1. |
Jul. 25, 2008 Office Action issued in Chinese Patent Application No. 200710110949.7. |
Aug. 21, 2009 Office Action issued in Chinese Patent Application No. 200810126659.6. |
May 5, 2010 Office Action issued in Chinese Patent Application No. 200810126659.6. |
Dec. 4, 2009 Office Action issued in Chinese Patent Application No. 2007101109529. |
Apr. 13, 2010 Office Action issued in Chinese Patent Application No. 2007101109529. |
Jun. 5, 2009 Office Action issued in Chinese Patent Application No. 2007101109497. |
Jun. 5, 2009 Office Action issued in Chinese Patent Application No. 2007101109482. |
Jul. 25, 2008 Office Action issued in Chinese Patent Application No. 2007101109482. |
Jun. 5, 2009 Office Action issued in Chinese Patent Application No. 2007101109529. |
Jun. 5, 2009 Office Action issued in Chinese Patent Application No. 2007101109514. |
Jul. 25, 2008 Office Action issued in Chinese Patent Application No. 2007101109514. |
Jun. 5, 2009 Office Action issued in Chinese Patent Application No. 200710110950X. |
Jul. 25, 2008 Office Action issued in Chinese Patent Application No. 200710110950X. |
Jun. 5, 2009 Office Action issued in Chinese Patent Application No. 2007101956421. |
Apr. 28, 2010 Office Action issued in Chinese Patent Application No. 200710195642.1. |
Dec. 18, 2009 Office Action issued in Chinese Patent Application No. 2007101956421. |
Dec. 18, 2009 Office Action issued in Chinese Patent Application No. 2007101956417. |
Jun. 5, 2009 Office Action issued in Chinese Patent Application No. 2007101956417. |
Dec. 18, 2009 Office Action issued in Chinese Patent Application No. 2007101956440. |
Aug. 7, 2009 Office Action issued in Chinese Patent Application No. 2007101956440. |
Jan. 8, 2010 Office Action issued in Chinese Patent Application No. 2003801044505. |
Oct. 26, 2004 Office Action issued in Chinese Patent Application No. 200480031414.5. |
Jun. 10, 2010 Office Action issued in Chinese Patent Application No. 200810211497.6. |
Feb. 6, 1996 Office Action issued in Taiwanese Patent Application No. 093109836. |
Jul. 27, 2009 Office Action issued in Taiwanese Patent Application No. 092133642. |
Mar. 17, 2008 Office Action issued in Taiwanese Patent Application No. 092133642. |
Jul. 13, 2006 Office Action issued in Taiwanese Patent Application No. 092133642. |
May 4, 2005 Office Action issued in Taiwanese Patent Application No. 092133642. |
Dec. 3, 2004 Office Action issued in Taiwanese Patent Application No. 092133642. |
Jan. 28, 2010 Office Action issued in Japanese Patent Application No. 2008-077129. |
Jun. 23, 2015 Office Action issued in Japanese Application No. 2014-158994. |
Nov. 16, 2015 Office Action issued in Korean Application No. 10-2014-7003559. |
Dec. 1, 2015 Office Action issued in Korean Patent Application No. 10-2014-7036570. |
Jan. 5, 2016 Office Action issued in Japanese Application No. P2015-018675. |
Mar. 23, 2016 Office Action issued in U.S. Appl. No. 13/890,142. |
Mar. 24, 2016 Office Action issued in U.S. Appl. No. 13/890,547. |
Oct. 21, 2014 Office Action issued in Japanese Application No. 2013-272100. |
Nov. 5, 2014 Office Action issued in Chinese Application No. 200910126047.1. |
Dec. 2, 2014 Office Action issued in Japanese Application No. 2013-272068. |
Dec. 10, 2014 Office Action issued in U.S. Appl. No. 12/289,518. |
Feb. 5, 2014 Office Action issued in U.S. Appl. No. 12/382,277. |
Feb. 6, 2014 Office Action issued in U.S. Appl. No. 13/890,547. |
Jan. 6, 2014 Office Action issued in Chinese Application No. 200910173717.5. |
Jan. 29, 2015 Office Action issued in U.S. Appl. No. 13/889,860. |
The Second Division of Korean Patent Court, “Preparatory Document (3), Re: Patent Invalidation Action 2013HE03920, Plaintiff: Carl Zeiss SMT GmbH, Defendant: Nikon Corporation”, Dec. 13, 2013. |
The Second Division of Korean Patent Court, “Preparatory Document (2), Re: Patent Invalidation Action 2013HE03920, Plaintiff: Carl Zeiss SMT GmbH, Defendant: Nikon Corporation”, Oct. 30, 2013. |
The Second Division of Korean Patent Court, “Preparatory Document (3), Re: Patent Invalidation Action 2013HE03937, Plaintiff: Carl Zeiss SMT GmbH, Defendant: Nikon Corporation”, Dec. 13, 2013. |
The Second Division of Korean Patent Court, “Preparatory Document (3), Re: Patent Invalidation Action 2013HE03944, Plaintiff: Carl Zeiss SMT GmbH, Defendant: Nikon Corporation”, Dec. 13, 2013. |
The Second Division of Korean Patent Court, “Preparatory Document (2), Re: Patent Invalidation Action 2013HE03944, Plaintiff: Carl Zeiss SMT GmbH, Defendant: Nikon Corporation”, Oct. 30, 2013. |
The Second Division of Korean Patent Court, “Preparatory Document (3), Re: Patent Invalidation Action 2013HE0395I Plaintiff: Carl Zeiss SMT GmbH, Defendant: Nikon Corporation”, Dec. 13, 2013. |
Feb. 6, 2014 Office Action issued in U.S. Appl. No. 13/890,142. |
The Second Division of Korean Patent Court, “Preparatory Document (2), Re: Patent Invalidation Action 2013HE0395I, Plaintiff: Carl Zeiss SMT GmbH, Defendant: Nikon Corporation”, Oct. 30, 2013. |
The Second Division of Korean Patent Court, “Reference Document, Re: Patent Invalidation Action 2013HE03975, Plaintiff: Nikon Corporation, Defendant: Carl Zeiss SMT GmbH”, Jan. 14, 2014. |
Feb. 2, 2015 Office Action issued in U.S. Appl. No. 13/912,832. |
Feb. 5, 2015 Office Action issued in U.S. Appl. No. 12/289,515. |
Feb. 10, 2015 Office Action issued in Korean Patent Application No. 10-2014-7003559. |
Feb. 11, 2015 Office Action issued in Korean Patent Application No. 10-2010-7008441. |
Mar. 24, 2015 Office Action issued in Japanese Patent Application No. P2014-087750. |
Apr. 6, 2015 Office Action issued in U.S. Appl. No. 14/048,563. |
Brunner, Timothy A., et al. “High NA Lithographic Imaging at Brewster's Angle.” SPIE (U.S.A.), vol. 4691, pp. 1-24, 2002. |
Tsuruta T. “Applied Optics II,” Baifukan Co., Ltd., pp. 166-167. Jul. 1990. |
May 31, 2010 Korean Office Action issued in Korean Patent Application No. 10-2008-7019081. |
May 31, 2010 Office Action issued in Korean Patent Application No. 10-2008-7019082. |
Sep. 29, 2010 European Search Report issued in European Patent Application No. 10174843.2. |
Aug. 23, 2010 Chinese Office Action issued in Chinese Patent Application No. 200810211496.1. |
Oct. 4, 2010 European Search Report issued in European Patent Application No. 05703646.9. |
Jul. 20, 2010 Korean Office Action issued in Korean Patent Application No. 10-2010-7008438. |
Jul. 20, 2010 Korean Office Action issued in Korean Patent Application No. 10-2010-7008441. |
Jul. 20, 2010 Korean Office Action issued in Korean Patent Application No. 10-2010-7008444. |
Jul. 20, 2010 Notice of Allowance issued in U.S. Appl. No. 12/289,515. |
Aug. 3, 2010 Notice of Allowance issued in Japanese Patent Application No. 2006-553907. |
Oct. 26, 2010 Notice of Reasons for Rejection issued in Japanese Patent Application No. 2005-517637. |
Oct. 26, 2010 Notice of Reasons for Rejection issued in Japanese Patent Application No. 2006-262588. |
Oct. 26, 2010 Notice of Reasons for Rejection issued in Japanese Patent Application No. 2006-262590. |
Oct. 8, 2010 Office Action issued in Chinese Patent Application No. 200810126659.6. |
Nov. 3, 2010 European Search Report issued in European Patent Application No. EP 09 01 5058.2. |
Nov. 12, 2010 Office Action issued in Chinese Patent Application No. 200710110948.2. |
Dec. 7, 2010 Search Report issued in European Patent Application No. 10012876.8. |
Oct. 18, 2010 Office Action issued in U.S. Appl. No. 12/382,277. |
Nov. 30, 2010 Notice of Allowance issued in Korean Patent Application No. 10-2008-7019082. |
Jan. 14, 2011 Office Action issued in U.S. Appl. No. 12/320,480. |
Jan. 14, 2011 Office Action issued in U.S. Appl. No. 12/320,468. |
Feb. 1, 2011 Office Action issued in Japanese Patent Application No. P2006-262588. |
Feb. 8, 2011 Office Action in U.S. Appl. No. 12/320,465. |
Jun. 14, 2010 Office Action issued in Japanese Patent Application No. 2010-006125. |
Apr. 15, 2010 Office Action issued in Japanese Patent Application No. 2007-251263. |
Mar. 24, 2011 Office Action issued in Japanese Patent Application No. 2007-251263. |
Jan. 28, 2010 Office Action issued in Japanese Patent Application No. 2005-515005. |
Feb. 20, 2009 Office Action issued in Japanese Patent Application No. 2005-505207. |
Mar. 8, 2010 Office Action issued in Japanese Patent Application No. 2005-505207. |
Aug. 5, 2009 Office Action issued in Japanese Patent Application No. 2004-570728. |
Nov. 9, 2009 Office Action issued in Japanese Patent Application No. 2003-402584. |
Nov. 10, 2009 Office Action issued in Japanese Patent Application No. 2003-390672. |
Apr. 24, 2012 Office Action issued in Japanese Patent Application No. 2009-149426. |
Sep. 27, 2011 Office Action issued in Japanese Patent Application No. 2010-003941. |
Feb. 14, 2012 Office Action issued in Japanese Patent Application No. 2010-003941. |
Sep. 27, 2011 Office Action issued in Japanese Patent Application No. 2010-003938. |
Feb. 14, 2012 Office Action issued in Japanese Patent Application No. 2010-003938. |
Mar. 6, 2012 Office Action issued in Japanese Patent Application No. 2007-544009. |
Sep. 20, 2011 Office Action issued in Japanese Patent Application No. 2009-225810. |
May 31, 2011 Office Action issued in Japanese Patent Application No. 2009-225810. |
Jul. 14, 2008 Notice of Allowance issued in U.S. Appl. No. 11/246,642. |
Feb. 20, 2007 Office Action issued in U.S. Appl. No. 11/246,642. |
May 17, 2007 Office Action issued in U.S. Appl. No. 11/246,642. |
Dec. 4, 2007 Office Action issued in U.S. Appl. No. 11/246,642. |
Jun. 20, 2008 Corrected Notice of Allowance issued in U.S. Appl. No. 11/140,103. |
Apr. 25, 2007 Office Action issued in U.S. Appl. No. 11/140,103. |
Jul. 12, 2007 Office Action issued in U.S. Appl. No. 11/140,103. |
Feb. 14, 2008 Office Action issued in U.S. Appl. No. 11/140,103. |
Nov. 6, 2008 Office Action issued in U.S. Appl. No. 12/155,301. |
Apr. 16, 2009 Office Action issued in U.S. Appl. No. 12/155,301. |
Sep. 14, 2009 Office Action issued in U.S. Appl. No. 12/155,301. |
Apr. 22, 2010 Office Action issued in U.S. Appl. No. 12/155,301. |
Aug. 31, 2011 Office Action issued in U.S. Appl. No. 12/093,303. |
Jan. 4, 2010 Notice of Allowance issued in U.S. Appl. No. 11/644,966. |
Apr. 14, 2010 Notice of Allowance issued in U.S. Appl. No. 11/644,966. |
Feb. 8, 2011 Notice of Allowance issued in U.S. Appl. No. 11/644,966. |
Apr. 22, 2008 Office Action issued in U.S. Appl. No. 11/644,966. |
Nov. 30, 2010 Notice of Allowance issued in U.S. Appl. No. 12/289,518. |
Nov. 18, 2010 Notice of Allowance issued in U.S. Appl. No. 12/289,515. |
Mar. 23, 2011 Notice of Allowance issued in U.S. Appl. No. 12/289,515. |
Nov. 28, 2011 Office Action issued in U.S. Appl. No. 12/801,043. |
Aug. 2, 2010 Notice of Allowance issued in U.S. Appl. No. 11/644,966. |
Jul. 6, 2011 Written Rebuttal against the Written Answer filed by the Respondent in JP Patent Application. No. 10-2006-7008368. |
Oct. 18, 2011 Exhibit: the printout of Wikipedia “Polarizer.”. |
Sep. 4, 2003Exhibit: DE10206061 A1. |
Jan. 25, 1993 Exhibit: U.S. Pat. No. 4,370,026. |
Jul. 6, 2011 Written Rebuttal against the Written Answer filed by the Respondent in JP Appln. No. 10-2007-7022489. |
Aug. 22, 2011 Written Rebuttal against the Written Answer filed by the Respondent in JP Patent Application. No. 10-2008-7019081. |
Aug. 22, 2011 Written Rebuttal against the Written Answer filed by the Respondent in JP Patent Application. No. 10-2008-7019082. |
Jan. 10, 2002 Exhibit: the Korean Language Dictionary published by Minjungseorim. |
Apr. 30, 1993 Exhibit: JP05-109601. |
Sep. 14, 2011 Exhibit No. 8: Marc D. Himel et al., “Design and Fabrication of of Customized Illumination Patterns for Low k1 Lithography: A Diffractive Approach”, Proceedings of SPIE, vol. 4346, pp. 1436-1442. |
Dec. 26, 2000 Exhibit No. 10: Korean Patent Publication No. 2000-76783. |
Apr. 30, 2012 Office Action issued in Korean Patent Application No. 10-2010-7001907. |
May 21, 2012 Office Action issued in Chinese Patent Application No. 201010128876.6. |
Jun. 8, 2012 Office Action issued in Korean Patent Application No. 10-2007-7005320. |
Jun. 11, 2012 Office Action issued in Korean Patent Application No. 10-2012-7003793. |
Jun. 28, 2012 Office Action issued in Korean Patent Application No. 2012-7008342. |
Jul. 17, 2012 Office Action issued in U.S. Appl. No. 11/902,277. |
Jul. 19, 2012 Office Action issued in U.S. Patent Application No. 111902.282. |
Jun. 27, 2012 Office Action issued in Korean Patent Application No. 2009-7010158. |
Sep. 11, 2012 Office Action issued in Taiwanese Patent Application No. 097117896. |
Sep. 18, 2012 Office Action issued in Chinese Patent Application No. 200910173718.X. |
Sep. 4, 2012 Notice of Reasons for Rejection issued in Japanese Patent Application No. 2010-087010. |
Sep. 20, 2012 Office Action issued in European Patent Application No. 04817303.3. |
Aug. 20, 2012 Notice of Allowance issued in Taiwanese Patent Application No. 097117881. |
Aug. 20, 2012 Written Opinion submitted in Korean Patent Application No. 1 0-0869390. |
Aug. 20, 2012 Written Opinion submitted in Korean Patent Application No. 10-0839686. |
Aug. 20, 2012 Written Opinion submitted in Korean Patent Application No. 10-1020455. |
Aug. 20, 2012 Written Opinion submitted in Korean Patent Application No. 10-1020378. |
Oct. 12, 2012 Office Action issued in U.S. Appl. No. 12/458,635. |
Nov. 25, 2011 Office Action in European Application No. 06711853.9. |
Nov. 30, 2011 Office Action in related U.S. Appl. No. 11/1902,282. |
Nov. 6, 2012 Written Opinion issued in Korean Application No. 10-2006-7008368. |
Nov. 9, 2012 Written Opinion issued in Korean Application No. 10-2007-7022489. |
Nov. 26, 2012 Written Opinion issued in Korean Application No. 10-2008-7019081. |
Nov. 26, 2012 Written Opinion issued in Korean Application No. 10-2008-7019082. |
Feb. 27, 2013 Office Action issued in Korean Patent Application No. 10-2012-7034128. |
Mar. 19, 2013 Office Action issued in Japanese Patent Application No. P2010-145155. |
Feb. 28, 2013 Reference Document submitted in Korean Patent Application No. 10-2006-7008368, Appeal No. 2011 Dang302. |
Feb. 28, 2013 Reference Document submitted in Korean Patent Application No. 10-2007-7022489, Appeal No. 201 1 Dang301. |
Feb. 28, 2013 Reference Document submitted in Korean Patent Application No. 10-2008-7019081, Appeal No. 2011Dang510. |
Feb. 28, 2013 Reference Document submitted in Korean Patent Application No. 10-2008-7019082, Appeal No. 2011 Dang511. |
Mar. 5, 2013 Office Action issued in Chinese Patent Application No. 2007101109497. |
Mar. 5, 2013 Office Action issued in Chinese Patent Application No. 200710 11 0951.4. |
Mar. 20, 2013 Office Action issued in U.S. Appl. No. 11/902,282. |
Mar. 6, 2012 Notice of Allowance issued in U.S. Appl. No. 12/289,515. |
Feb. 22, 2012 Office Action issued in Chinese Patent Application No. 200910173715.6. |
Mar. 30, 2012 Office Action issued in U.S. Appl. No. 12/318,216. |
Mar. 8, 2012 Office Action issued in Taiwanese Patent Application No. 093131767. |
Jan. 25, 2012 Office Action issued in U.S. Appl. No. 12/801,043. |
Apr. 9, 2013 Office Action issued in Korean Patent Application No. 2012-7008342. |
Dec. 18, 2012 Office Action issued in Japanese Patent Application No. 2009-149426. |
Feb. 22, 2013 Reference Document submitted in Korean Patent Application No. 10-2006-7008368. |
Feb. 22, 2013 Reference Document submitted in Korean Patent Application No. 10-2007-7022489. |
Feb. 22, 2013 Reference Document submitted in Korean Patent Application No. 10-2008-7019081. |
Feb. 22, 2013 Reference Document submitted in Korean Patent Application No. 10-2008-7019082. |
Feb. 4, 2013 Written Opinion submitted in Korean Patent Application No. 10-0869390, Appeal No. 2011Dang302. |
Feb. 4, 2013 Written Opinion submitted in Korean Patent Application No. 10-0869390, Appeal No. 2011Dang301. |
Hecht, Optics Fourth Edition, Addison Wesley, 2002, Preface, “Polarization,” pp. 325-358, and “Diffraction,” pp. 443-485. |
Heung, Optics Second Edition, Hecht, Daewoong, 1998 “Polarizers,” pp. 395-630. |
Bass, Handbook of Optics, McGraw-Hill, 1995, pp. 5.22-5.25. |
Herzig, Micro-Optics, Taylor & Francis, 1997, pp. vii-29. |
Oct. 22, 2015 Office Action issued in U.S. Appl. No. 14/048,563. |
Oct. 22, 2015 Office Action issued in U.S. Appl. No. 14/713,428. |
Oct. 6, 2015 Office Action issued in Japanese Application No. 2014-256977. |
Oct. 8, 2015 Office Action issued in Korean Application No. 10-2010-7008441. |
Aug. 4, 2015 Office Action issued in Japanese Application No. 2014-197119. |
Aug. 4, 2015 Office Action issued in Japanese Application No. 2014-216961. |
Aug. 4, 2015 Office Action issued in Japanese Application No. 2014-216964. |
Jul. 8, 2011 Office Action issued in U.S. Appl. No. 12/318,216. |
Jul. 20, 2011 Office Action issued in Taiwanese Patent Application No. 094100817. |
Jul. 26, 2011 Office Action issued in Korean Patent Application No. 10-2006-7018069. |
Aug. 4, 2011 Office Action issued in Taiwariese Patent Application No. 093131767. |
Aug. 11, 2011 Office Action issued in Korean Patent Application No. 10-2010-7000893. |
Aug. 11, 2011 Office Action issued in Korean Patent Application No. 10-2010-7000897. |
Sep. 1, 2011 Office Action issued in U.S. Appl. No. 11/902,277. |
Sep. 13, 2011 Office Action issued in European Patent Application No. 04 799 453.8. |
Sep. 6, 2011 Notice of Allowance issued in U.S. Appl. No. 11/644,966. |
Sep. 30, 2011 Office Action issued in Korean Patent Application No. 10-2005-7018973. |
Oct. 18, 2011 Office Action issued in Japanese Patent Application No. 2005-515570. |
Oct. 18, 2011 Office Action issued in Japanese Patent Application No. 2006-262589. |
Nov. 15, 2011 Office Action issued in European Patent Application No. 09 167 707.0. |
Nov. 10, 2011 Office Action issued in European Patent Application No. 07 017 146.7. |
Nov. 15, 2011 Office Action issued in Korean Patent Application No. 2009-7010159. |
Nov. 15, 2011 Office Action issued in Korean Patent Application No. 2009-7010158. |
Dec. 5, 2012 Office Action issued in Taiwanese Application No. 096138500. |
Dec. 12, 2011 Office Action in European Application No. 10174843.2. |
Dec. 14, 2011 Office Action in related U.S. Appl. No. 11/902,277. |
Dec. 15, 2011 Office Action in related U.S. Appl. No. 12/382,277. |
Dec. 16, 2011 Office Action in related U.S. Appl. No. 13/067,958. |
Nov. 17, 2011 Office Action issued in Taiwanese Patent Application No. 096119463. |
Nov. 22, 2011 Office Action issued in Chinese Patent Application No. 200910173718.X. |
Dec. 12, 2012 Notice of Allowance issued in U.S. Appl. No. 12/289,515. |
Dec. 27, 2012 Office Action issued in Taiwanese Application No. 095100035. |
Dec. 26, 2012 Office Action issued in Taiwanese Application No. 097151814. |
Dec. 26, 2012 Office Action issued in Taiwanese Application No. 097151805. |
Dec. 27, 2012 Office Action issued in Taiwanese Application No. 097151801. |
Jan. 2, 2013 Office Action issued in Korean Application No. 10-2007-7005320. |
Jan. 15, 2013 Notice of Allowance issued in U.S. Appl. No. 13/067,958. |
Jan. 19, 2012 Office Action issued in U.S. Appl. No. 12/458,635. |
Apr. 30, 2012 Office Action issued in Korean Application No. 10-2006-7012265. |
Feb. 10, 2012 Office Action issued in European Patent Application No. 10 012 876.8. |
Jan. 18, 2012 Office Action issued in European Patent Application No. 10 174 843.2. |
Jan. 14, 2013 Office Action issued in Chinese Patent Application No. 200910126047.1. |
Jan. 18, 2013 Office Action issued in Chinese Patent Application No. 200810211496.1. |
Feb. 25, 2013 Office Action issued in U.S. Appl. No. 12/382,277. |
Feb. 13, 2012 Office Action issued in Taiwanese Patent Application No. 094100817. |
Apr. 2, 2013 Office Action issued in Japanese Patent Application No. P2010-290979. |
Mar. 26, 2013 Office Action issued in U.S. Appl. No. 11/902,277. |
Apr. 2, 2013 Translation of Office Action issued in Japanese Patent Application No. P2010-286303. |
Jun. 1, 2012 Office Action issued in European Patent Application No. 09 015 058.2-1234. |
Apr. 5, 2012 Notice of Allowance issued in U.S. Appl. No. 111644,966. |
May 4, 2012 Preliminary Notice of the First Office Action issued in Taiwanese Application No. 096138500. |
Apr. 26, 2012 Office Action issued in Chinese Application No. 200910126047.1. |
May 9, 2012 Office Action issued in Chinese Application No. 200810211496.1. |
Jul. 20, 2015 Notice of Allowance issued in U.S. Appl. No. 13/067,958. |
Jul. 15, 2015 Office Action issued in U.S. Appl. No. 12/289,515. |
Jul. 16, 2015 Office Action issued in U.S. Appl. No. 13/912,832. |
Jul. 16, 2015 Office Action issued in U.S. Appl. No. 13/889,860. |
Jun. 6, 2014 Office Action issued in Taiwanese Patent Application No. 101103772. |
Jun. 13, 2014 Office Action issued in Taiwanese Patent Application No. 101133189. |
Jun. 13, 2014 Office Action issued in Taiwanese Patent Application No. 101141665. |
Aug. 11, 2014 Office Action issued in Taiwanese Patent Application No. 101102214. |
Aug. 6, 2014 Office Action issued in U.S. Appl. No. 13/889,965. |
Jun. 24, 2014 Office Action issued in European Patent Application No. 04 817 303.3. |
Jun. 26, 2014 Search Report issued in European Patent Application No. 13 165 334.7. |
Jun. 26, 2014 Search Report issued in European Patent Application No. 13 165 335.4. |
Jun. 26, 2014 Search Report issued in European Patent Application No. 13 165 338.8. |
Jun. 26, 2014 Search Report issued in European Patent Application No. 13 165 340.4. |
Jun. 5, 2014 Office Action issued in U.S. Appl. No. 13/890,603. |
Jun. 25, 2014 Office Action issued in U.S. Appl. No. 13/889,860. |
Jun. 27, 2014 Office Action issued in U.S. Appl. No. 13/912,832. |
Jul. 16, 2014 Office Action issued in U.S. Appl. No. 12/289,515. |
Aug. 28, 2014 Office Action issued in Korean Patent Application No. 2012-7034128. |
Aug. 6, 2014 Office Action issued in U.S. Appl. No. 13/137,342. |
Aug. 6, 2014 Office Action issued in U.S. Appl. No. 13/137,003. |
Aug. 6, 2014 Office Action issued in U.S. Appl. No. 13/137,002. |
Sep. 10, 2014 Office Action issued in U.S. Appl. No. 13/890,547. |
Sep. 11, 2014 Office Action issued in U.S. Appl. No. 12/382,277. |
Sep. 12, 2014 Office Action issued in U.S. Appl. No. 13/890,142. |
Jun. 18, 2013 Search Report issued in European Patent Applicaion No. 13156322.3. |
Jun. 21, 2013 Search Report issued in European patent Application No. 13156324.9. |
Apr. 23, 2013 Office Action issued in Chinese Paent Application No. 20101028876.6. |
May 16, 2013 Office Action issued in Taiwanese patent Application No. 098115513. |
Jun. 13, 2013 Search Report issued in European Patent Application No. 13156325.6. |
May 29, 2013 Office Action issued in European Patent Application No. 04799453.8. |
Jun. 16, 2010 Office Action issued in U.S. Appl. No. 11/410,952. |
Nov. 25, 2009 Office Action issued in U.S. Appl. No. 11/410,952. |
Jan. 8, 2009 Office Action issued in U.S. Appl. No. 11/410,952. |
Jul. 23, 2013 Office Action issued in U.S. Appl. No. 11/410,952. |
Mar. 31, 2015 Notice of Allowance issued in U.S. Appl. No. 11/410,952. |
Dec. 5, 2014 Notice of Allowance issued in U.S. Appl. No. 11/410,952. |
May 9, 2014 Notice of Allowance issued in U.S. Appl. No. 11/410,952. |
Sep. 20, 2010 Notice of Allowance issued in U.S. Appl. No. 11/410,952. |
Mar. 31, 2011 Notice of Allowance issued in U.S. Appl. No. 11/410,952. |
Jul. 13, 2011 Notice of Allowance issued in U.S. Appl. No. 11/410,952. |
Feb. 1, 2011 Office Action issued in Japanese Patent Application No. P2006-262590. |
Feb. 23, 2009 Office Action issued in European Patent Application No. 08002882.2. |
Mar. 31, 2009 Office Action issued in European Patent Application No. 04 799453.8. |
May 26, 2010 Office Action issued in European Patent Application No. 07 017 146.7. |
Oct. 18, 2007 European Search Report issued in European Patent Application No. 07017146.7. |
Apr. 2, 2007 European Search Report issued in European Patent Application No. 04724369.6. |
Oct. 1, 2008 Supplemental European Search Report issued in European Patent Application No. 04817303.3. |
Apr. 24, 2008 Supplemental European Search Report issued in European Patent Application No. 08002882.2. |
Jun. 25, 2010 European Search Report issued in European Patent Application No. 09167707.0. |
Oct. 13, 2009 European Search Report issued in European Patent Application No. 09167707.0. |
Feb. 8, 2011 Trial for Invalidation Requested by a Third Party to Korean Patent Application No. 10-839686. |
Feb. 7, 2011 Exhibit No. I: Patent Register of Korean Patent Application No. 10-0839686. |
Jun. 19, 2008 Exhibit No. 2: Published specification of Korean Patent Application No. 10-839686. |
Oct. 10, 2011 Office Action issued in Chinese Patent Application No. 200710110952.9. |
Mar. 9, 2011 Trial for Invalidation Requested by a Third Party to Korean Patent Application No. 10-1020455. |
Mar. 4, 2011 Exhibit No. 1: Patent Register of Korean Patent Application No. 10-1020455. |
Mar. 9, 2011 Trial for Invalidation Requested by a Third Party to Korean Patent Application No. 10-1020378. |
Mar. 4, 2011 Exhibit No. 1: Patent Register of Korean Patent Application No. 10-1020378. |
Feb. 8, 2011 Trial for Invalidation Requested by a Third Party to Korean Patent Application No. 10-869390. |
Nov. 2008 Exhibit No. 1: Patent Register of Korean Patent Application No. 10-869390. |
Nov. 2008 Exhibit No. 2: Published specification of Korean Patent Application No. 10-869390. |
Feb. 25, 1995 Exhibit No. 4: Japanese Patent Publication No. 6-053120. |
Jul. 21, 1995 Exhibit No. 5: Japanese Patent Publication No. 7-183201. |
Exhibit No. 6: Wave Plate, Wikipedia, The Free Encyclopedia, http://en.wikipedia.orglwikilWave—plate, Polarization Waves, Wikipedia, The Free Encyclopedia, http://en.wikipedia.o;glwikilPolarization—(waves), Feb. 7, 2011. |
Jun. 25, 2001 Exhibit No. 7: Korean Patent Publication No. 2001-51438. |
Jan. 7, 2013 Office Action issued in Chinese Patent Application No. 200910173715.6. |
Jan. 14, 2013 Office Action issued in Chinese Patent Application No. 201010128876.6. |
Jan. 9, Technical Presentation Document in Invalidation Trial against Korean Patent Application No. 869390, Appeal No. 2011 Dang302. |
Jan. 16, 2013 Office Action issued in Chinese Patent Application No. 200910173714.1. |
Apr. 17, 2013 Office Action issued in Korean Patent Application No. 10-2013-7002721. |
Apr. 3, 2013 Office Action issued in Chinese Patent Application No. 200910173717.5. |
May 7, 2013 Office Action issued in European Patent Application No. 04817303.3. |
Apr. 3, 2013 Office Action issued in Chinese Patent Application No. 200910173716.0. |
Apr. 18, 2013 Office Action issued in Korean Patent Application No. 10-2012-7003793. |
May 2, 2013 Office Action issued in Taiwanese Patent Application No. 101102214. |
May 14, 2013 Office Action issued in Japanese Patent Application No. P2011-130545. |
Jun. 4, 2012 Office Action issued in Chinese Patent Application No. 200710110950.X. |
Jun. 29, 2012 Office Action issued in Chinese Patent Application No. 200910173714.1. |
Jul. 17, 2012 Office Action issued in U.S. Appl. No. 12/382,277. |
Jul. 30, 2012 Office Action issued Korean Patent Application No. 10-2006-7018069. |
Aug. 3, 2012 Office Action issued in U.S. Appl. No. 13/137,342. |
Aug. 6, 2012 Office Action issued in U.S. Appl. No. 13/137,004. |
Aug. 7, 2012 Office Action issued in U.S. Appl. No. 13/137,003. |
Aug. 10, 2012 Office Action issued in U.S. Appl. No. 13/137,002. |
Oct. 8, 2012 Office Action issued in Chinese Application No. 200910173716.0. |
Oct. 10, 2012 Office Action issued in Chinese Application No. 200910173717.5. |
Oct. 17, 2012 Office Action issued in Korean Application No. 10-2010-7001907. |
Oct. 26, 2012 Office Action issued in Taiwanese Application No. 097117893. |
Nov. 9, 2012 Office Action issued in U.S. Appl. No. 11/644,966. |
Jul. 30, 2012 Office Action issued in Korean Application No. 10-2006-7018069. |
Jun. 29, 2012 Office Action issued in Chinese Application No. 200910173714.1. |
Jun. 4, 2012 Office Action issued in Chinese Application No. 200710110950.X. |
Oct. 30, 2012 Office Action issued in Korean Application No. 10-2012-7023534. |
Nov. 21, 2012 Office Action issued in European Application No. 05 703 646.9. |
Jun. 23, 2011 Office Action issued in Chinese Patent Application No. 200910173714.1. |
Jul. 5, 2011 Office Action issued in Chinese Patent Application No. 20 1010128136.2. |
Feb. 9, 2009 Office Action issued in U.S. Appl. No. 11/902,282. |
Halliday et al., Fundamentals of Physics: Extended, with Modern Physics, Fourth Edition, John Wiley & Sons, Inc., Jul. 25, 1995. |
Feb. 6, 2013 Written Opinion submitted in Korean Patent Application No. 10-2006-7008368. |
Feb. 6, 2013 Written Opinion submitted in Korean Patent Application No. 10-2007-7022489. |
Feb. 6, 2013 Written Opinion submitted in Korean Patent Application No. 10-2008-7019081. |
Feb. 6, 2013 Written Opinion submitted in Korean Patent Application No. 10-2008-7019082. |
Jan. 17, 2012 Office Action issued in Japanese Patent Application No. 2006-262589. |
Jan. 17, 2012 Office Action issued in Japanese Patent Application No. 2005-515570. |
Feb. 4, 2013 Technical Presentation Document in Invalidation Trial against Korean Patent Application No. 10-1020455, Appeal No. 2011Dang510. |
Feb. 4, 2013 Technical Presentation Document in Invalidation Trial against Korean Patent Application No. 10-1020378, Appeal No. 2011Dang511. |
Feb. 24, 2013 Office Action issued in Korean Patent Application No. 2012-7034127. |
Feb. 19, 2013 Office Action issued in Japanese Patent Application No. P2010-087010. |
Feb. 19, 2013 Office Action issued in Japanese Patent Application No. P2011-138703. |
May 12, 2009 Office Action issued in European Patent Application No. 04 724 369.6. |
Jan. 9, Technical Presentation Document in Invalidation Trial against Korean Patent Application No. 839686, Appeal No. 2011 Dang301. |
Sep. 18, 2012 Office Action issued in Japanese Application No. 2010-094216. |
Sep. 18, 2012 Office Action issued in Japanese Application No. 2011-144669. |
Apr. 21, 2015 Office Action issued in U.S. Appl. No. 13/890,547. |
Apr. 24, 2015 Office Action issued in U.S. Appl. No. 13/890,142. |
Apr. 27, 2015 Office Action issued in Korean Application No. 10-2014-7009172. |
Oct. 4, 2010 International Search Report issued in International Application No. PCT/JP2010/061300. |
Dec. 30, 2015 Office Action issued in Taiwanese Patent Application No. 102142028. |
Jan. 21, 2016 Advisory Action issued in U.S. Appl. No. 13/889,860. |
Jan. 21, 2016 Advisory Action issued in U.S. Appl. No. 12/289,515. |
Jan. 29, 2016 Advisory Action issued in U.S. Appl. No. 13/912,832. |
Feb. 1, 2011 Office Action in Japanese Patent Application No. 2005-517637. |
Jan. 24, 2011 Office Action in Korean Patent Application No. 2005-7018973. |
Jan. 24, 2011 Office Action in Korean Patent Application No. 2009-7010158. |
Jan. 25, 2011 Office Action in Korean Patent Application No. 2009-7010159. |
Feb. 1, 2011 Office Action in Chinese Patent Application No. 200810126659.6. |
Feb. 26, 2009 Office Action in U.S. Appl. No. 11/347,421. |
Jan. 7, 2010 Office Action in U.S. Appl. No. 12/289,518. |
Oct. 29, 2009 Office Action in U.S. Appl. No. 12/289,515. |
Dec. 1, 2009 Office Action issued in U.S. Appl. No. 11/902,277. |
Jun. 25, 2008 Office Action issued in U.S. Appl. No. 11/902,277. |
Apr. 15, 2009 Office Action issued in U.S. Appl. No. 11/902,277. |
Jun. 25, 2008 Office Action issued in U.S. Appl. No. 11/902,282. |
Dec. 14, 2009 Office Action issued in U.S. Appl. No. 11/902,282. |
Jan. 25, 2010 Search Report issued in European Patent Application No. 09015058.2. |
Nov. 6, 2009 Office Action issued in Chinese Patent Application No. 2008102114957. |
Sep. 11, 2009 Office Action issued in Chinese Application No. 2008102114976. |
Mar. 21, 2008 Office Action issued in Chinese Application No. 2004800341246. |
Apr. 21, 2010 Office Action issued in U.S. Appl. No. 12/289,518. |
Apr. 24, 2009 Office Action issued in Chinese Application No. 2006800006868. |
Jan. 28, 2010 Search Report issued in European Application No. 06711853.9. |
Apr. 22, 2010 Office Action issued in Japanese Application No. 2006-553907. |
Mar. 26, 2010 Office Action issued in U.S. Appl. No. 11/902,277. |
Mar. 26, 2010 Office Action issued in U.S. Appl. No. 11/902,282. |
Jan. 6, 2011 Office Action issued in U.S. Appl. No. 11/902,282. |
Aug. 3, 2010 Office Action issued in Japanese Application No. 2005-515570. |
Feb. 15, 2011 Office Action issued in U.S. Appl. No. 11/902,277. |
Jul. 3, 2008 Office Action issued in U.S. Appl. No. 11/319,057. |
Feb. 26, 2009 Office Action issued in U.S. Appl. No. 11/319,057. |
Jan. 14, 2011 Office Action issued in U.S. Appl. No. 12/461,852. |
Oct. 4, 2010 Written Opinion of the International Searching Authority issued in International Application No. PCT/JP2010/061300. |
Jan. 11, 2011 Office Action issued in U.S. Appl. No. 12/461,801. |
Aug. 3, 2010 Office Action issued in Japanese Application No. 2006-262589. |
Jul. 12, 2010 Office Action issued in U.S. Appl. No. 12/461,801. |
Sep. 15, 2008 Office Action issued in U.S. Appl. No. 11/644,966. |
Jun. 25, 2009 Office Action issued in U.S. Appl. No. 11/644,966. |
Levinson, Harry J., “Principles of Lithography,” Bellingham, WA: SPIE Press, 2001, pp. 205-206. |
Jan. 26, 2011 Office Action issued in Chinese Application No. 200910173715.6. |
Feb. 23, 2010 Office Action issued in Japanese Application No. 2006-262589. |
Feb. 23, 2010 Office Action issued in Japanese Application No. 2005-515570. |
May 14, 2008 International Preliminary Report on Patentability issued in International Application No. PCT/JP2006/321607. |
May 14, 2008 Written Opinion issued in International Application No. PCT/JP2006/321607. |
Nov. 12, 2010 Office Action issued in Chinese Application No. 200910126047.1. |
Feb. 25, 2010 Extended Search Report issued in European Application No. 06822564.8. |
Jul. 14, 2010 Office Action issued in U.S. Appl. No. 12/835,860. |
Feb. 15, 2011 Office Action issued in European Patent Application No. 05 703 646.9. |
Feb. 24, 2011 Office Action issued in Chinese Patent Application No. 200910173717.5. |
Feb. 24, 2011 Office Action issued in Chinese Patent Application No. 201010128876.6. |
Feb. 28, 2011 Office Action issued in Korean Patent Application No. 10-2010-7008441. |
Mar. 8, 2011 Office Action issued in Chinese Patent Application No. 200910173716.0. |
Mar. 23, 2011 Office Action issued in Chinese Patent Application No. 200910173718.X. |
Sep. 6, 2016 Office Action issued in Japanese Patent Application No. 2015-238871. |
Sep. 28, 2016 Office Action issued in Korean Patent Application No. 10-2015-7022796. |
Oct. 11, 2016 Office Action issued in Korean Patent Application No. 10-2015-7005285. |
Oct. 3, 2016 Office Action issued in Korean Patent Application No. 10-2014-7036570. |
Nov. 29, 2016 Office Action issued in Japanese Patent Application No. 2016-043787. |
Dec. 21, 2016 Office Action issued in U.S. Appl. No. 14/818,788. |
May 24, 2016 Office Action issued in Japanese Patent Application No. 2015-165058. |
Jun. 14, 2016 Office Action issued in Japanese Patent Application No. 2014-256977. |
Jan. 17, 2017 Search Report issued in European Patent Application No. 16167687.9. |
Feb. 7, 2017 Office Action issued in Taiwanese Application No. 104133625. |
Feb. 7, 2017 Office Action issued in Japanese Application No. 2015-198071. |
Mar. 16, 2017 Office Action issued in Taiwanese Patent Application No. 105123963. |
Apr. 25, 2017 Office Action issued in Japanese Patent Application No. 2016-145649. |
May 16, 2017 Office Action issued in Korean Patent Application No. 10-2016-7013759. |
Jun. 15, 2017 Office Action issued in U.S. Appl. No. 15/497,883. |
Jul. 10, 2017 Office Action issued in U.S. Appl. No. 12/289,515. |
Jul. 11, 2017 Office Action issued in U.S. Appl. No. 13/889,860. |
Jul. 10, 2017 Office Action issued in U.S. Appl. No. 13/912,832. |
Jul. 24, 2017 Office Action issued in Korean Application No. 10-2015-7022796. |
Number | Date | Country | |
---|---|---|---|
20150248065 A1 | Sep 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11410952 | Apr 2006 | US |
Child | 14713385 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2004/015853 | Oct 2004 | US |
Child | 11410952 | US |