This application claims priority from and the benefit of United Kingdom patent application No. 1520134.6 filed on 16 Nov. 2016. The entire contents of this application are incorporated herein by reference.
This invention relates to the field of mass-spectrometry, and in particular to a multi-reflecting time-of-flight mass spectrometer with a folded ion path.
It is known to surface image or analyze multiple sample spots by scanning a laser beam over a sample plate such that ions are introduced at the optical axis of a mass spectrometer. For example, MALDI or DE-MALDI analysis has been conducted using a multi-spot sample plate.
It is also known to image a sample with a Time of Flight (TOF) mass spectrometer comprising electric sectors, such as in U.S. Pat. No. 5,128,543. Such analyzers typically image a small sample area by illuminating the sample with a homogeneous ion beam or laser, and then using toroidal or spherical electric sectors to transfer the resulting sample ions to a position sensitive detector in a manner that provides point to point imaging. These analyzers provide first order time-per-energy focusing and possess imaging properties, i.e. provide point to point transfer with first order tolerance to angular and energy spreads. Thus, two dimensional imaging and mass measurement may be performed simultaneously. Such analyzers may have a spatial resolution of approximately 1 micron for a 1 mm field of view, while providing a mass resolution of approximately 1000.
However, such electric sector based TOF instruments have low order time of flight and spatial focusing aberrations, and have multiple second order aberrations that are not compensated for. For example, due to third-order spatial and second-order TOF chromatic aberrations, sector-based imaging TOF mass spectrometers can only be applied to microscopy analysis of surfaces in case analyzed ions have a small energy spread, otherwise mass resolution is destroyed by large chromatic TOF aberrations. Also, multi-sector TOF mass spectrometers are not suitable for the analysis of a large field of view due to their large spatial third-order aberrations, mainly induced by fringing-field effects in the electrostatic sector fields. As such, these systems do not provide high mass resolution and are poorly suited to imaging relatively large fields of view, e.g. above 1 mm.
It is therefore desired to provide an improved time of flight mass spectrometer and an improved method of time of flight mass spectrometry.
From a first aspect the present invention provides a time-of-flight mass spectrometer comprising:
an ion deflector configured to deflect ions to different positions in a first array of positions at different times;
a position sensitive ion detector; and
ion optics arranged and configured to guide ions from the first array of positions to the position sensitive detector so as to map ions from the first array of positions to a second array of positions on the position sensitive detector;
wherein the ion optics includes at least one ion mirror for reflecting the ions.
The ion optics may map ions from the first array of positions to a respective, corresponding second array of positions on the position sensitive detector.
The inventors have recognized that scanning or stepping an ion beam over the entrance to ion mapping optics that comprises an ion mirror (e.g. reflectron) provides a time of flight instrument with relatively high duty cycle, mass resolution and spatial resolution.
An ion mirror is a device that is well-known in the art and that receives ions (at a front of the device) with a primary component of velocity along a first direction, decelerates those ions until they have no velocity in the first direction (at the back of the device), and then reflects the ions back such that they are accelerated in a second direction that is opposite to the first direction and back out of the ion mirror. Ion mirrors therefore focus ions according to their time of flight along the first and second directions. The ions may therefore exit the ion mirror with a velocity in the second direction that is of substantially equal magnitude and opposite direction to that with which the enter the ion mirror in the first direction. The ions may have velocity components in dimensions orthogonal to the first direction, although these components are significantly smaller than the primary velocity component in the first direction. It will be appreciated by the skilled person that the arrangement of one or more electric sectors that guide ions along a non-linear path does not constitute an ion mirror.
Ions at any given position in the first array of positions may be mapped to the same relative position in the second array of positions on the detector.
The ion deflector may comprise at least one electrode and at least one voltage supply for applying voltages to said at least one electrode, and the voltage supply may be configured to vary the voltage applied to the at least one electrode with time so as to deflect the ions to different positions in said first array of positions at different times such that the ions are mapped to corresponding different positions in the second array of positions on the detector at different times.
The voltage supply may be configured to step the voltage between different, discrete values with time so that the ions are deflected to different, discrete positions in said first array of positions with time and are mapped to corresponding different, discrete positions on said detector. Alternatively, the voltage supply may be configured to continuously vary the voltage with time so that the ions are continuously swept across the first array of different positions with time and are mapped to different positions on said detector at different times.
The ion deflector may be configured to receive ions and to deflect the ions so that the ions exit the ion deflector along different axes in an array of parallel axes at different times. Alternatively, or additionally, the ion deflector may be configured to receive ions along a first axis, and to deflect ions with a velocity component orthogonal to the first axis so that the ions exit the ion deflector along a second axis that is substantially parallel to the first axis, wherein the second axis is displaced from the first axis by a distance that varies with time.
The ion deflector may comprise at least one entrance electrode and at least one voltage source for deflecting the ions in a first direction, at any given time, and at least one downstream exit electrode and at least one voltage source for deflecting the same ions in a second, opposite direction at said given time.
Said at least one entrance electrode may comprise a pair of entrance electrodes between which the ions pass. Voltages may be applied to both of the electrodes in the pair so as to deflect the ions in the first direction, e.g. voltages of different magnitude or polarity may be applied to the different electrodes in the pair so as to deflect the ions. Additionally, or alternatively, said at least one exit electrode may comprise a pair of exit electrodes between which the ions pass. Voltages may be applied to both of the electrodes in the pair so as to deflect the ions in the second direction, e.g. voltages of different magnitude or polarity may be applied to the different electrodes in the pair so as to deflect the ions.
The spectrometer may comprise one or more ion focusing member arranged between the at least one entrance electrode and the at least one exit electrode. Optionally, the ion deflector is configured to deflect ions in a first dimension and the one or more ion focusing member may be configured to focus ions in a second dimension orthogonal to the first dimension.
The one or more ion focusing member may comprise opposing planar electrodes between which the ions pass.
The spectrometer may comprise an ion accelerator for pulsing the ions from said first array of positions into the ion optics and towards the detector. The spectrometer may further comprise an ion guide or ion trap upstream of the ion accelerator, and optionally upstream of the ion deflector, and configured to release packets of ions to the ion accelerator, wherein the ion guide or ion trap and the ion accelerator are configured such that the releasing of packets of ions from the ion guide or ion trap is synchronized with the pulsing of ions from the ion accelerator towards the detector.
The spectrometer may comprise configured to provide a delay time between the release of each packet of ions from the ion guide or ion trap and the time at which these ions are pulsed from the ion accelerator towards the detector, and wherein the delay time is varied as a function of the mass to charge ratio or ion mobility of the ions released from the ion guide or ion trap.
The ion guide or ion trap may be configured to release the packets of ions in a mass selective or ion mobility selective manner, such that different packets of ions that are released at different times have different mass to charge ratios (or different mass to charge ratio ranges) or different ion mobilities (or different ion mobility ranges).
An ion separation device, a source of ions or an ion filter may be arranged upstream of said ion guide or ion trap for supplying ions of different mass to charge ratio or ion mobility to said ion guide or ion trap at different times. Alternatively, or additionally, the ion guide or ion Trap may comprise an ion filter and may be configured such that the mass to charge ratio or range of mass to charge ratios stored by the ion guide or ion trap, or the ion mobility or range of ion mobilities stored by the ion guide or ion trap, vary with time.
The mass filter may, for example, comprise a multipole rod set such as a quadrupole rod set. RF and DC voltages may be applied to the electrodes of the mass filter and these voltages varied with time so as to filter out ions of different mass to charge ratios or ion mobilities at different times.
The spectrometer may comprise an ion separator arranged upstream of the ion deflector and configured to separate ions according to a physicochemical property, such as mass to charge ratio or ion mobility. The spectrometer may be configured to control the ion deflector so as to deflect ions having different values of said physicochemical property to different positions in said first array of positions such that ions having said different values of said physicochemical property are guided to different positions in second array of positions at different times.
The spectrometer may comprise a fragmentation or reaction device arranged upstream of the ion deflector and configured to fragment or react ions under fragmentation or reaction conditions that vary with time so as to produce fragment or product ions. The spectrometer may be configured to control the ion deflector so as to deflect fragment or product ions generated at different times to different positions in said first array of positions such that these fragment or product ions are guided to different positions in second array of positions at different times. For example, the fragmentation or reaction device may be a collision cell and the step of varying the fragmentation or reaction conditions may comprise varying the fragmentation energy in the collision cell with time.
The spectrometer may comprise a controller configured to control the separator device to perform a plurality of ion separation cycles, during each of which ions are separated according to said physicochemical property, and to control the ion deflector to perform a corresponding plurality of ion deflection cycles, during each of which ions are deflected to said different positions within said first array of positions at different times; and wherein the ion deflection cycles are synchronized with the ion separation cycles. Alternatively, or additionally, The spectrometer may comprise a controller configured to control the fragmentation or reaction device to perform a plurality of fragmentation or reaction cycles, during each of which the fragmentation or reaction conditions are varied with time, and to control the ion deflector to perform a corresponding plurality of ion deflection cycles, during each of which ions are deflected to said different positions within said first array of positions at different times; and wherein the ion deflection cycles are synchronized with the fragmentation or reaction cycles.
The spectrometer may comprise a controller and memory configured to store data relating to ions detected at different positions on said detector separately, wherein the data relating to ions detected at any given position on the detector during the plurality of cycles are summed and stored.
The spectrometer may comprise an ion source for supplying and/or generating said ions.
The ions received at the ion deflector may be in the form or a continuous ion beam, or a discontinuous ion beam or ion packets.
The spectrometer may comprise a plurality of different sources of ions, wherein the ion deflector is configured to deflect ions from said different sources of ions to different positions in said first array of positions.
The spectrometer may comprise an ion source having a sample plate or target plate, and wherein the ion deflector is configured to deflect ions from different regions of the sample plate or target plate to different positions in said first array of positions.
The spectrometer may be used to map ions from multiple different samples to separate spots at the detector, or may be used to map multiple spots from different areas of a single sample to different areas on the detector. Conventional spectrometers, such as sector based TOF mass spectrometers, are poorly suited to both of these modes due to large spatial geometric and chromatic aberrations when a large field of view is used as well as large chromatic TOF aberrations created by energy spreads in most of the ionization methods.
The spectrometer may comprise an ion accelerator for pulsing the ions from said first array of positions into the ion optics and towards the detector, and wherein the spectrometer is configured to determine the flight times of the ions from the ion accelerator to the detector. The spectrometer may therefore be configured to determine the mass to charge ratios of the ions from the flight times.
The ion accelerator may be an orthogonal accelerator for accelerating the ions orthogonally. However, it is also contemplated that the ion accelerator could be a linear accelerator that does not change the direction of the ions.
The ion accelerator may be a gridless ion accelerator. For the avoidance of doubt, a gridless ion accelerator is an ion accelerator having an ion acceleration or flight region that is free from grids or meshes, such as electrode grids or meshes used to maintain electric fields.
The first array of positions may be an array of positions at the ion accelerator.
If the spectrometer comprises the telescopic converter or lens, as detailed further below, the ion accelerator may be downstream of the telescopic converter or lens such that relatively narrow ion beams are provided to the ion accelerator, thus preserving the separation of the ion beams from each other.
The ion accelerator may be configured to pulse ions towards the detector in a series of ion accelerator pulses, wherein the timings of the pulses are determined by an encoding sequence that varies the duration of the time interval between adjacent pulses as the series of pulses progresses; and wherein the spectrometer comprises a processor configured to use the timings of the pulses in the encoding sequence to determine which ion data detected at the detector relate to which ion accelerator pulse so as to resolve spectral data obtained from the different ion accelerator pulses. The ion accelerator may be configured to pulse ions towards the detector at a rate such that some of the ions pulsed towards the detector in any given pulse arrive at the detector after some of the ions that are pulsed towards the detector in a subsequent pulse.
The ion accelerator may be configured to pulse ions to any given one of said positions in said second array of positions at the detector in a series of ion accelerator pulses such that ions arrive at said given position from each of the ion accelerator pulses, wherein the timings of the pulses are determined by an encoding sequence that varies the duration of the time interval between adjacent pulses as the series of pulses progresses; and wherein the spectrometer comprises a processor configured to use the timings of the pulses in the encoding sequence to determine which ion data detected at said given position relate to which ion accelerator pulse so as to resolve spectral data obtained from the different ion accelerator pulses at said given position. The ion accelerator may be configured to pulse ions towards said given position at a rate such that some of the ions pulsed towards said given position in any given pulse arrive at said given position after some of the ions that are pulsed towards said given position in a subsequent pulse.
The use of the encoding sequence (i.e. an encoded frequency pulsing method) enables ions to be injected into the time of flight region of the spectrometer at time intervals that are shorter than the ion separation time in the time of flight region and so enables the duty cycle of the spectrometer to be increased. The method of deflecting the ions onto different regions of the detector with the ion deflector helps bypass dynamic range limits of encoded frequency pulsing methods, e.g. posed by signal overlaps with peaks of chemical noise. For example, deflecting the ions over different parts of the detector may reduce interference between high and low mass to charge ratio ions that would otherwise be detected at the same detector region.
Said position sensitive detector may comprise an array of separate detection regions, and ions received at different detection regions may be determined or assigned as having originated from different positions in the first array of positions. Alternatively, or additionally, ions received at any given position in the second array of positions at the detector may be determined or assigned as having originated from the corresponding first position in the array of positions at the ion source array.
Ions detected at different locations of said second array of locations at the detector may be recorded or summed separately.
The ion optics may include at least two ion mirrors for reflecting ions.
Said ion optics, including the at least two ion mirrors, may be arranged and configured such that the ions are reflected by each of the mirrors and between the mirrors a plurality of times before reaching the detector.
Said two ion mirrors may be spaced apart from each other in a first dimension (X-dimension) and may be each elongated in a second dimension (Z-dimension) or along a longitudinal axis that is orthogonal to the first dimension; wherein the spectrometer is configured such that the ions drift in the second dimension (Z-dimension) or along the longitudinal axis towards the detector as they are reflected between the mirrors.
The ion mirrors may be planar ion mirrors and/or the longitudinal axis may be straight.
Alternatively, the longitudinal axis may be curved.
The spectrometer may comprise an ion introduction mechanism or ion accelerator for introducing packets of ions into the space between the mirrors such that they travel along a trajectory that is arranged at an angle to the first and second dimensions such that the ions repeatedly oscillate in the first dimension (X-dimension) between the mirrors as they drift through said space in the second dimension (Z-dimension).
The ion introduction mechanism may be arranged and configured to introduce one or more first packets of ions into the space between the ion mirrors so as to have a component of velocity in a first direction in the first dimension (X-dimension), and to introduce one or more second packets of ions into the space between the ion mirrors so as to have a component of velocity in a second, opposite direction in the first dimension (X-dimension). This allows ion packets to be introduced into the analyser at a faster rate without spectral overlap. In this arrangement, the ion introduction means may be a pulsed converter that emits or ejects ions from different sides (as determined in the first dimension). For example, ion packets may be ejected or emitted from alternate sides. The one or more first packets of ions may be received on a first side of a detector, and the one or more second packets of ions may be received on a second side of the detector. Alternatively, the ion packets may be received on the same side of the detector, but at different locations in the second dimension (Z-dimension).
Said at least one ion mirror or at least two ion mirrors are gridless ion mirrors.
The use of ion mirrors in such instruments has not been contemplated for multiple practical reasons. For example, ion scattering caused by the electrode meshes in the ion mirrors and their ion accelerators would be thought to prevent a useful spatial resolution at the detector from being attained.
For the avoidance of doubt, a gridless ion mirror is an ion mirror having an ion flight region that is free from grids or meshes, such as electrode grids or meshes used to maintain electric fields.
The ion optics may include at least one ion mirror for reflecting ions and at least one electrostatic or magnetic sector for receiving ions and guiding the ions into the at least one ion mirror; wherein the at least one ion mirror and at least one sector are configured such that the ions are transmitted from the at least one sector into each mirror a plurality of times such that the ions are reflected by said each ion mirror a plurality of times.
At least two ion mirrors and at least one sector may be provided, which are configured such that the at least one sector repeatedly guides ions between the ion mirrors such that the ions are reflected by each ion mirror a plurality of times.
A plurality of electrostatic or magnetic sectors may be provided for repeatedly receiving the ions from an ion mirror and repeatedly guiding ions back into the ion mirror such that the ions are reflected by the ion mirror a plurality of times.
Each ion mirror may be spaced apart from each sector in a first dimension (X-dimension) such that the ions travel in the first dimension between the mirror(s) and sector(s), and each ion mirror or sector may be configured to guide or allow ions to drift towards the detector along an axis that is orthogonal to the first dimension.
The axis may be linear or may be curved.
The ion guiding region of the at least one sector may be substantially hemispherical or a portion of a hemisphere; or the ion guiding region of said at least one sector may be substantially a half-cylinder.
Such sectors are useful for preserving the 1D or 2D ion mapping. For example, the half-cylindrical sectors may be used for 1D mapping, or the hemispherical sectors may be used for 2D mapping.
Said at least one ion mirror, or one or more of said at least two ion mirrors, may be planar ion mirrors.
The spectrometer may be configured such that ions are reflected in each ion mirror, or in all of the ion mirrors in the spectrometer, for a number of ion reflections selected from the group consisting of: ≥2; ≥4; ≥6; ≥8; ≥10; ≥12; ≥14; ≥16; ≥18; ≥20; ≥22; ≥24; ≥26; ≥28; ≥30; ≥32; ≥34; ≥36; ≥38; and ≥40.
The spectrometer may be configured such that ions travel a distance of ≥d cm in at least one of the ion mirrors, between two of the ion mirrors, or between an ion mirror and a sector; wherein d is selected from the group consisting of: 20; 25; 30; 35; 40; 45; 50; 55; 60; 65; 70; 75; 80; 85; 90; 95; 100; 110; 120; and 140.
It has been discovered that the use of relatively large distances d reduces high order time-of-flight and spatial aberrations.
All of the ion mirrors in the spectrometer may be gridless ion mirrors.
The ion optics may be configured to reflect ions multiple times in a first dimension (X-dimension) as the ions drift in a second, orthogonal dimension (Z-dimension); and the ion optics may comprise one or more ion optical lens through which the ions pass, in use, for focusing ions in a plane defined by the first and second dimensions (X-Z plane).
Whilst the ions are reflected multiple times in the first dimension (X-dimension) they may only pass through gridless ion optics.
The first and second arrays of positions may be one-dimensional arrays, or two-dimensional arrays.
Each position in the first array of positions may be spatially separated from all of the other positions in the first array of positions, and/or each position in the second array of positions may be spatially separated from all of the other positions in the second array of positions.
The spectrometer may comprise an ion source configured to supply or generate ions at an array of spatially separated positions.
Alternatively, each position in the first array of positions may not be spatially separated from adjacent positions in the first array of positions, and/or each position in the second array of positions may not be spatially separated from adjacent positions in the second array of positions.
The spectrometer may comprise an ion source array configured to supply or generate multiple ion beams or packets of ions from different portions of the same analytical sample source, or from different analytical sample sources.
The ion source may comprise a target plate and an ionizing device for generating at least one primary ion beam, at least one laser beam, or at least one electron beam for ionizing one or more analytical samples located on the target plate at said array of positions.
The ionizing device may be configured to direct one of the primary ion beams, laser beams or electron beams at each position in an array of positions at the ion source.
Said at least one primary ion beam, at least one laser beam or at least one electron beam may be continuously scanned or stepped between different positions on the target plate.
Each position of the different positions on the target plate may comprise an area, and said at least one primary ion beam, at least one laser beam or at least one electron beam may be continuously scanned or stepped across different portions of said area. This is useful when ionizing unstable samples, since it enables the ionizing beam intensity at any given portion at any given time to be kept relatively low whilst continuing to ionize the sample at each position.
The target plate may comprise a plurality of sample wells.
Alternatively, the ion source may comprise a single ion source for generating ions and an ion divider for dividing or guiding the ions generated by the ion source to an array of positions.
The ions may be generated or supplied at said ion source in a pulsed manner or in a continuous manner.
The ion source may comprise atmospheric pressure or ambient pressure ion source(s). Additionally, or alternatively, the ion source array may comprise sub-atmospheric pressure or sub-ambient pressure ion source(s).
The ion source may comprise at least one type of ion source selected from the list of: ESI, APCI, APPI, CGD, DESI, DART, MALDI, electron impact, chemical ionization, and glow discharge ion sources.
The spectrometer is configured to map ions from the first array of different positions to the second array of different positions on the position sensitive detector.
The at least one ion mirror may be configured to receive an array of ion packets (over multiple ion accelerator pulses of ions into the mirror) from the first array of different positions. The at least one ion mirror reflects the ions in a first dimension (X-dimension), wherein the array of ion packets may be distributed in a plane substantially perpendicular to the first dimension.
The spectrometer may be configured to map ions to the detector from the first array of positions, wherein the first array of positions may extend ≥x mm in a first direction, wherein x is selected from the group consisting of: 1; 2; 3; 4; 5; 6; 7; 8; 9; and 10. Optionally, the spectrometer may be configured to map ions to the detector from the first array of positions wherein the first array of positions may extend ≥y mm in a second direction orthogonal to the first direction, wherein y may be selected from the group consisting of: 1; 2; 3; 4; 5; 6; 7; 8; 9; and 10.
The first array of positions may be in the form of a matrix having ≥n elements or positions in a first direction and optionally ≥m elements or positions in a second orthogonal direction, wherein n may be selected from the group consisting of: 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 15; 20; 25; 30; 35; 40; 45; 50; 55; 60; 65; 70; 75; 80; 85; 90; 95; 100; 120; 140; 160; 180; and 200, and/or wherein m may be selected from the group consisting of: 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 15; 20; 25; 30; 35; 40; 45; 50; 55; 60; 65; 70; 75; 80; 85; 90; 95; 100; 120; 140; 160; 180; and 200.
The matrix may have a size in a first dimension selected from the group consisting of: ≥0.1 mm; ≥0.2 mm; ≥0.3 mm; ≥0.4 mm; ≥0.5 mm; ≥0.6 mm; ≥0.7 mm; ≥0.8 mm; ≥0.9 mm; ≥1 mm; ≥2.5 mm; ≥5 mm; ≥10 mm; ≥15 mm; ≥20 mm; ≥25 mm; ≥30 mm; ≥35 mm; ≥40 mm; and ≥50 mm; and optionally the matrix may have a size in a second dimension orthogonal to the first dimension that is selected from the group consisting of: ≥0.1 mm; ≥0.2 mm; ≥0.3 mm; ≥0.4 mm; ≥0.5 mm; ≥0.6 mm; ≥0.7 mm; ≥0.8 mm; ≥0.9 mm; ≥1 mm; ≥2.5 mm; ≥5 mm; ≥10 mm; ≥15 mm; ≥20 mm; ≥25 mm; ≥30 mm; ≥35 mm; ≥40 mm; and ≥50 mm.
Each ion beam or ion packet at the first array of different positions may have a diameter of at least 0.25 mm, at least 0.5 mm, at least 0.75 mm, at least 1 mm, at least 1.25 mm, or at least 1.5 mm.
Each ion beam or ion packet received at the detector may have a diameter of at least 0.25 mm, at least 0.5 mm, at least 0.75 mm, at least 1 mm, at least 1.25 mm, or at least 1.5 mm.
The diameter of each ion beam or ion packet may be larger at the detector than at the first array of positions.
The spatial pitch between the ion beams or ion packets in the first array of positions may be selected from the list comprising: ≥0.1 mm; ≥0.2 mm; ≥0.3 mm; ≥0.4 mm; ≥0.5 mm; ≥0.6 mm; ≥0.7 mm; ≥0.8 mm; ≥0.9 mm; ≥1 mm; ≥2.5 mm; ≥5 mm; and ≥10 mm.
The spectrometer may comprise an electrostatic or magnetic sector for guiding ions from the ion deflector downstream towards the at least one ion mirror and/or further comprising an electrostatic or magnetic sector for guiding ions from the at least one ion mirror downstream towards the detector.
Using sector interfaces allows a relatively ion deflector (and ion source) and detector to be arranged outside of the TOF region, whilst introducing ions into and extracting ions from the TOF region. Also, sectors are capable of removing excessive energy spread of the ions so as to optimize spatial and mass resolution with only moderate ion losses. Sectors may also be used as part of telescopic arrangements for optimal adoption of spatial scales between the ion source, the TOF analyzer and the detector. The relatively low ion optical quality of sectors is not problematic, since ions spend only a relatively small portion of flight time in these sectors.
The sector for guiding ions from the ion deflector towards the ion mirror and/or the electrostatic or magnetic sector for guiding ions from the ion mirror towards the detector may be substantially hemispherical or a portion of a hemisphere; or may have an ion guiding region that is substantially a half-cylinder. Such sectors are useful for 1D or 2D ion mapping. For example, the half-cylindrical sectors may be used for 1D mapping, or the hemispherical sectors may be used for 2D mapping.
The spectrometer may comprise an array of quadrupoles, ion guides or ion traps configured so that ions generated or supplied at different positions, in said first array of positions, are transmitted into different quadrupoles, ion guides or ion traps in said array of quadrupoles, ion guides or ion traps.
The spectrometer may be configured to apply electrical potentials at the exits of the quadrupoles, ion guides or ion traps so as to trap and release ions from the quadrupoles, ion guides or ion traps in a pulsed manner downstream towards the detector.
The spectrometer may comprise a telescopic converter or lens arranged downstream of the ion deflector, wherein the telescopic converter or lens increases or decreases the width in a first dimension of the ion beams or ion packets; and/or wherein the telescopic converter or lens increases or decreases the width in a second, different dimension of the ion beams or ion packets.
The telescopic converter or lens may be used to reduce the angular spread of the ion beams or ion packets. Alternatively, or additionally, the telescopic converter or lens may be used to interface the spatial scales of the ion deflector, analyzer and detector.
The ion optics may comprise an array of micro-lenses arranged and configured for focusing ions from the first array of positions, optionally wherein different lenses of the micro-lens array focus ions from different positions of the first array of positions.
The spectrometer may comprise a fragmentation or reaction device downstream of the ion source for fragmenting the ions to produce fragment ions or for reacting the ions with reagent ions or molecules so as to form product ions; and wherein said detector or another detector is provided to detect the fragment or product ions.
The spectrometer may be configured to repeatedly switch the fragmentation or reaction device between a first fragmentation or reaction mode that provides a high level of fragmentation or reaction and a second fragmentation or reaction mode that provides a lower level or no fragmentation or reaction, during a single experimental run; and/or the spectrometer may be configured to repeatedly switch between a first mode in which ions are fragmented or reacted in the fragmentation or reaction device and a second mode in which ions bypass the fragmentation or reaction device, during a single experimental run.
The spectrometer may be configured to correlate precursor ion data detected in the second mode with fragment or product ion data that is detected in the first mode.
Although the spectrometer has been described as a time of flight mass spectrometer, it is contemplated that, less desirably, the spectrometer may be another type of spectrometer. For example, the spectrometer may be an ion mobility spectrometer or another type of mass spectrometer.
The present invention also provides a method of time of flight mass spectrometry comprising operating the spectrometer as described herein.
Accordingly, the first aspect of the present invention also provides a method of time-of-flight mass spectrometry comprising:
deflecting ions to different positions in a first array of positions at different times; and
using ion optics to guide ions from the first array of positions to a position sensitive detector so as to map ions from the first array of positions to a second array of positions on the position sensitive detector;
wherein the ion optics includes at least one ion mirror that reflects the ions.
The method may comprise using the ion optics to map ions from the first array of positions to a respective, corresponding second array of positions on the position sensitive detector.
The spectrometer, or components thereof, have been described as being configured to perform various optional method steps. The method of the present invention may optionally perform those method steps.
According to a second aspect the present invention provides a method of time-of-flight mass spectrometry comprising:
pulsing a first pulse of ions into an ion mirror such that the ions of the first pulse arrive at a first position on a position sensitive detector system; and
pulsing a second pulse of ions into an ion mirror such that the ions of the second pulse arrive at a second, different position on the position sensitive detector system.
This allows ion packets to be introduced into the analyzer at a faster rate, for example, without spectral overlap.
A pulsed ion accelerator or ion source may pulse the first pulse of ions into a first ion mirror along a first trajectory and may pulse the second pulse of ions into the same ion mirror along a second, different ion trajectory.
Said first pulse of ions may be pulsed into a first ion mirror and the second pulse of ions may be pulsed into a second, different ion mirror.
The first pulse of ions may be pulsed out of a first side of an ion accelerator or ion source, and the second pulse of ions may be pulsed out of a second, optionally opposite, side of the ion accelerator or ion source.
Ion pulses may be alternately pulsed out of the different sides of the ion accelerator or ion source, or may be simultaneously pulsed out of the different sides of the ion accelerator or ion source.
The first and/or the second pulse of ions may oscillate between first and second ion mirrors one or more times before the ions in the first and/or second pulse of ions arrive at the detector system.
The first and/or the second pulse of ions may be reflected by both first and second ion mirrors one or more times before ions in the first and/or second pulse of ions arrive at the detector system.
The first and second ion mirrors may be spaced apart from each other in a first dimension (X-dimension) and are each elongated in a second dimension (Z-dimension) that is orthogonal to the first dimension.
Ions may be introduced into the space between the mirrors such that they travel along a trajectory that is arranged at an angle to the first and second dimensions such that the ions are reflected or oscillate in the first dimension (X-dimension) between the mirrors as they drift through said space in the second dimension (Z-dimension).
The first pulse of ions may be pulsed into the space between the ion mirrors so as to have a component of velocity in a first direction in the first dimension (X-dimension), and the second pulse of ions may be pulsed into the space between the ion mirrors so as to have a component of velocity in a second, opposite direction in the first dimension (X-dimension)
The detector system may comprise a first detecting side and a second, optionally opposite, detecting side; wherein ions in the first pulse may be detected on the first detecting side and ions in the second pulse may be detected on the second detecting side.
Ions in the first pulse may be detected on the same detecting side of the detector system as ions in the second pulse, but at different positions on the detecting side.
The times of flight of ions detected at said first position may be recorded separately to the times of flight of ions detected at said second position.
(Each of the ion mirrors of the second aspect of the present invention may have any one of the ion mirror features, or combinations of features, described above in relation to the first aspect of the invention.
The second aspect of the invention also provides a time-of-flight mass spectrometer comprising:
at least one ion mirror;
a position sensitive ion detector system; and
a controller configured to control the spectrometer to:
pulse a first pulse of ions into the at least one ion mirror such that the ions in the first pulse arrive at a first position on the position sensitive detector system; and
pulse a second pulse of ions into the at least one ion mirror such that the ions in the second pulse arrive at a second, different position on the position sensitive detector system.
The spectrometer may be configured to perform any of the method described herein.
Although the spectrometers and methods described herein have been described in relation to a time of flight mass spectrometer and time of flight mass spectrometry, it is contemplated that, less desirably, the spectrometers and methods may relate to another type of spectrometer. For example, the spectrometer may be an ion mobility spectrometer or another type of mass spectrometer.
The spectrometer may comprise an ion source selected from the group consisting of: (i) an Electrospray ionisation (“ESI”) ion source; (ii) an Atmospheric Pressure Photo Ionisation (“APPI”) ion source; (iii) an Atmospheric Pressure Chemical Ionisation (“APCI”) ion source; (iv) a Matrix Assisted Laser Desorption Ionisation (“MALDI”) ion source; (v) a Laser Desorption Ionisation (“LDI”) ion source; (vi) an Atmospheric Pressure Ionisation (“API”) ion source; (vii) a Desorption Ionisation on Silicon (“DIOS”) ion source; (viii) an Electron Impact (“EI”) ion source; (ix) a Chemical Ionisation (“CI”) ion source; (x) a Field Ionisation (“FI”) ion source; (xi) a Field Desorption (“FD”) ion source; (xii) an Inductively Coupled Plasma (“ICP”) ion source; (xiii) a Fast Atom Bombardment (“FAB”) ion source; (xiv) a Liquid Secondary Ion Mass Spectrometry (“LSIMS”) ion source; (xv) a Desorption Electrospray Ionisation (“DESI”) ion source; (xvi) a Nickel-63 radioactive ion source; (xvii) an Atmospheric Pressure Matrix Assisted Laser Desorption Ionisation ion source; (xviii) a Thermospray ion source; (xix) an Atmospheric Sampling Glow Discharge Ionisation (“ASGDI”) ion source; (xx) a Glow Discharge (“GD”) ion source; (xxi) an Impactor ion source; (xxii) a Direct Analysis in Real Time (“DART”) ion source; (xxiii) a Laserspray Ionisation (“LSI”) ion source; (xxiv) a Sonicspray Ionisation (“SSI”) ion source; (xxv) a Matrix Assisted Inlet Ionisation (“MAII”) ion source; (xxvi) a Solvent Assisted Inlet Ionisation (“SAII”) ion source; (xxvii) a Desorption Electrospray Ionisation (“DESI”) ion source; and (xxviii) a Laser Ablation Electrospray Ionisation (“LAESI”) ion source.
The spectrometer may comprise one or more continuous or pulsed ion sources.
The spectrometer may comprise one or more ion guides.
The spectrometer may comprise one or more ion mobility separation devices and/or one or more Field Asymmetric Ion Mobility Spectrometer devices.
The spectrometer may comprise one or more ion traps or one or more ion trapping regions.
The spectrometer may comprise one or more collision, fragmentation or reaction cells selected from the group consisting of: (i) a Collisional Induced Dissociation (“CID”) fragmentation device; (ii) a Surface Induced Dissociation (“SID”) fragmentation device; (iii) an Electron Transfer Dissociation (“ETD”) fragmentation device; (iv) an Electron Capture Dissociation (“ECD”) fragmentation device; (v) an Electron Collision or Impact Dissociation fragmentation device; (vi) a Photo Induced Dissociation (“PID”) fragmentation device; (vii) a Laser Induced Dissociation fragmentation device; (viii) an infrared radiation induced dissociation device; (ix) an ultraviolet radiation induced dissociation device; (x) a nozzle-skimmer interface fragmentation device; (xi) an in-source fragmentation device; (xii) an in-source Collision Induced Dissociation fragmentation device; (xiii) a thermal or temperature source fragmentation device; (xiv) an electric field induced fragmentation device; (xv) a magnetic field induced fragmentation device; (xvi) an enzyme digestion or enzyme degradation fragmentation device; (xvii) an ion-ion reaction fragmentation device; (xviii) an ion-molecule reaction fragmentation device; (xix) an ion-atom reaction fragmentation device; (xx) an ion-metastable ion reaction fragmentation device; (xxi) an ion-metastable molecule reaction fragmentation device; (xxii) an ion-metastable atom reaction fragmentation device; (xxiii) an ion-ion reaction device for reacting ions to form adduct or product ions; (xxiv) an ion-molecule reaction device for reacting ions to form adduct or product ions; (xxv) an ion-atom reaction device for reacting ions to form adduct or product ions; (xxvi) an ion-metastable ion reaction device for reacting ions to form adduct or product ions; (xxvii) an ion-metastable molecule reaction device for reacting ions to form adduct or product ions; (xxviii) an ion-metastable atom reaction device for reacting ions to form adduct or product ions; and (xxix) an Electron Ionisation Dissociation (“EID”) fragmentation device.
The spectrometer may comprise a mass analyser selected from the group consisting of: (i) a quadrupole mass analyser; (ii) a 2D or linear quadrupole mass analyser; (iii) a Paul or 3D quadrupole mass analyser; (iv) a Penning trap mass analyser; (v) an ion trap mass analyser; (vi) a magnetic sector mass analyser; (vii) Ion Cyclotron Resonance (“ICR”) mass analyser; (viii) a Fourier Transform Ion Cyclotron Resonance (“FTICR”) mass analyser; (ix) an electrostatic mass analyser arranged to generate an electrostatic field having a quadro-logarithmic potential distribution; (x) a Fourier Transform electrostatic mass analyser; (xi) a Fourier Transform mass analyser; (xii) a Time of Flight mass analyser; (xiii) an orthogonal acceleration Time of Flight mass analyser; and (xiv) a linear acceleration Time of Flight mass analyser.
The spectrometer may comprise one or more energy analysers or electrostatic energy analysers.
The spectrometer may comprise one or more ion detectors.
The spectrometer may comprise one or more mass filters selected from the group consisting of: (i) a quadrupole mass filter; (ii) a 2D or linear quadrupole ion trap; (iii) a Paul or 3D quadrupole ion trap; (iv) a Penning ion trap; (v) an ion trap; (vi) a magnetic sector mass filter; (vii) a Time of Flight mass filter; and (viii) a Wien filter.
The spectrometer may comprise a device or ion gate for pulsing ions; and/or a device for converting a substantially continuous ion beam into a pulsed ion beam.
The spectrometer may comprise a C-trap and a mass analyser comprising an outer barrel-like electrode and a coaxial inner spindle-like electrode that form an electrostatic field with a quadro-logarithmic potential distribution, wherein in a first mode of operation ions are transmitted to the C-trap and are then injected into the mass analyser and wherein in a second mode of operation ions are transmitted to the C-trap and then to a collision cell or Electron Transfer Dissociation device wherein at least some ions are fragmented into fragment ions, and wherein the fragment ions are then transmitted to the C-trap before being injected into the mass analyser.
The spectrometer may comprise a stacked ring ion guide comprising a plurality of electrodes each having an aperture through which ions are transmitted in use and wherein the spacing of the electrodes increases along the length of the ion path, and wherein the apertures in the electrodes in an upstream section of the ion guide have a first diameter and wherein the apertures in the electrodes in a downstream section of the ion guide have a second diameter which is smaller than the first diameter, and wherein opposite phases of an AC or RF voltage are applied, in use, to successive electrodes.
The spectrometer may comprise a device arranged and adapted to supply an AC or RF voltage to the electrodes. The AC or RF voltage optionally has an amplitude selected from the group consisting of: (i) about <50 V peak to peak; (ii) about 50-100 V peak to peak; (iii) about 100-150 V peak to peak; (iv) about 150-200 V peak to peak; (v) about 200-250 V peak to peak; (vi) about 250-300 V peak to peak; (vii) about 300-350 V peak to peak; (viii) about 350-400 V peak to peak; (ix) about 400-450 V peak to peak; (x) about 450-500 V peak to peak; and (xi) >about 500 V peak to peak.
The AC or RF voltage may have a frequency selected from the group consisting of: (i) <about 100 kHz; (ii) about 100-200 kHz; (iii) about 200-300 kHz; (iv) about 300-400 kHz; (v) about 400-500 kHz; (vi) about 0.5-1.0 MHz; (vii) about 1.0-1.5 MHz; (viii) about 1.5-2.0 MHz; (ix) about 2.0-2.5 MHz; (x) about 2.5-3.0 MHz; (xi) about 3.0-3.5 MHz; (xii) about 3.5-4.0 MHz; (xiii) about 4.0-4.5 MHz; (xiv) about 4.5-5.0 MHz; (xv) about 5.0-5.5 MHz; (xvi) about 5.5-6.0 MHz; (xvii) about 6.0-6.5 MHz; (xviii) about 6.5-7.0 MHz; (xix) about 7.0-7.5 MHz; (xx) about 7.5-8.0 MHz; (xxi) about 8.0-8.5 MHz; (xxii) about 8.5-9.0 MHz; (xxiii) about 9.0-9.5 MHz; (xxiv) about 9.5-10.0 MHz; and (xxv) >about 10.0 MHz.
The spectrometer may comprise a chromatography or other separation device upstream of an ion source. The chromatography separation device may comprise a liquid chromatography or gas chromatography device. Alternatively, the separation device may comprise: (i) a Capillary Electrophoresis (“CE”) separation device; (ii) a Capillary Electrochromatography (“CEC”) separation device; (iii) a substantially rigid ceramic-based multilayer microfluidic substrate (“ceramic tile”) separation device; or (iv) a supercritical fluid chromatography separation device.
The ion guide may be maintained at a pressure selected from the group consisting of: (i) <about 0.0001 mbar; (ii) about 0.0001-0.001 mbar; (iii) about 0.001-0.01 mbar; (iv) about 0.01-0.1 mbar; (v) about 0.1-1 mbar; (vi) about 1-10 mbar; (vii) about 10-100 mbar; (viii) about 100-1000 mbar; and (ix) >about 1000 mbar.
Analyte ions may be subjected to Electron Transfer Dissociation (“ETD”) fragmentation in an Electron Transfer Dissociation fragmentation device. Analyte ions may be caused to interact with ETD reagent ions within an ion guide or fragmentation device.
Optionally, in order to effect Electron Transfer Dissociation either: (a) analyte ions are fragmented or are induced to dissociate and form product or fragment ions upon interacting with reagent ions; and/or (b) electrons are transferred from one or more reagent anions or negatively charged ions to one or more multiply charged analyte cations or positively charged ions whereupon at least some of the multiply charged analyte cations or positively charged ions are induced to dissociate and form product or fragment ions; and/or (c) analyte ions are fragmented or are induced to dissociate and form product or fragment ions upon interacting with neutral reagent gas molecules or atoms or a non-ionic reagent gas; and/or (d) electrons are transferred from one or more neutral, non-ionic or uncharged basic gases or vapours to one or more multiply charged analyte cations or positively charged ions whereupon at least some of the multiply charged analyte cations or positively charged ions are induced to dissociate and form product or fragment ions; and/or (e) electrons are transferred from one or more neutral, non-ionic or uncharged superbase reagent gases or vapours to one or more multiply charged analyte cations or positively charged ions whereupon at least some of the multiply charge analyte cations or positively charged ions are induced to dissociate and form product or fragment ions; and/or (f) electrons are transferred from one or more neutral, non-ionic or uncharged alkali metal gases or vapours to one or more multiply charged analyte cations or positively charged ions whereupon at least some of the multiply charged analyte cations or positively charged ions are induced to dissociate and form product or fragment ions; and/or (g) electrons are transferred from one or more neutral, non-ionic or uncharged gases, vapours or atoms to one or more multiply charged analyte cations or positively charged ions whereupon at least some of the multiply charged analyte cations or positively charged ions are induced to dissociate and form product or fragment ions, wherein the one or more neutral, non-ionic or uncharged gases, vapours or atoms are selected from the group consisting of: (i) sodium vapour or atoms; (ii) lithium vapour or atoms; (iii) potassium vapour or atoms; (iv) rubidium vapour or atoms; (v) caesium vapour or atoms; (vi) francium vapour or atoms; (vii) C60 vapour or atoms; and (viii) magnesium vapour or atoms.
The multiply charged analyte cations or positively charged ions may comprise peptides, polypeptides, proteins or biomolecules.
Optionally, in order to effect Electron Transfer Dissociation: (a) the reagent anions or negatively charged ions are derived from a polyaromatic hydrocarbon or a substituted polyaromatic hydrocarbon; and/or (b) the reagent anions or negatively charged ions are derived from the group consisting of: (i) anthracene; (ii) 9,10 diphenyl-anthracene; (iii) naphthalene; (iv) fluorine; (v) phenanthrene; (vi) pyrene; (vii) fluoranthene; (viii) chrysene; (ix) triphenylene; (x) perylene; (xi) acridine; (xii) 2,2′ dipyridyl; (xiii) 2,2′ biquinoline; (xiv) 9-anthracenecarbonitrile; (xv) dibenzothiophene; (xvi) 1,10′-phenanthroline; (xvii) 9′ anthracenecarbonitrile; and (xviii) anthraquinone; and/or (c) the reagent ions or negatively charged ions comprise azobenzene anions or azobenzene radical anions.
The process of Electron Transfer Dissociation fragmentation may comprise interacting analyte ions with reagent ions, wherein the reagent ions comprise dicyanobenzene, 4-nitrotoluene or azulene.
A chromatography detector may be provided, wherein the chromatography detector comprises either:
a destructive chromatography detector optionally selected from the group consisting of (i) a Flame Ionization Detector (FID); (ii) an aerosol-based detector or Nano Quantity Analyte Detector (NQAD); (iii) a Flame Photometric Detector (FPD); (iv) an Atomic-Emission Detector (AED); (v) a Nitrogen Phosphorus Detector (NPD); and (vi) an Evaporative Light Scattering Detector (ELSD); or
a non-destructive chromatography detector optionally selected from the group consisting of: (i) a fixed or variable wavelength UV detector; (ii) a Thermal Conductivity Detector (TCD); (iii) a fluorescence detector; (iv) an Electron Capture Detector (ECD); (v) a conductivity monitor; (vi) a Photoionization Detector (PID); (vii) a Refractive Index Detector (RID); (viii) a radio flow detector; and (ix) a chiral detector.
The spectrometer may be operated in various modes of operation including a mass spectrometry (“MS”) mode of operation; a tandem mass spectrometry (“MS/MS”) mode of operation; a mode of operation in which parent or precursor ions are alternatively fragmented or reacted so as to produce fragment or product ions, and not fragmented or reacted or fragmented or reacted to a lesser degree; a Multiple Reaction Monitoring (“MRM”) mode of operation; a Data Dependent Analysis (“DDA”) mode of operation; a Data Independent Analysis (“DIA”) mode of operation a Quantification mode of operation or an Ion Mobility Spectrometry (“IMS”) mode of operation.
Various embodiments will now be described, by way of example only, and with reference to the accompanying drawings in which:
In order to assist the understanding of the present invention, a prior art instrument will now be described with reference to
More recent multi-sector systems provide higher mass resolutions, although at a compromised spatial resolution of 100 μm for DE-MALDI sources. A small viewing field, and moderate spatial and mass resolutions are characteristic for electric sector TOF instruments since they have a limited flight path length and compensate only for first order spatial and time-of-flight aberrations.
The ion mirrors employed in WO 2005/001878 are known to simultaneously provide second order time-of-flight focusing:
T|BB=T|BK=T|KK=T|YY=T|YK=T|YB=0 (1)
with spatial confinement in the vertical Y-direction and with compensation of second order spatial aberrations after an even number of reflections:
Y|B=Y|K=0; Y|BB=Y|BK=Y|KK=0 (2a)
B|Y=B|K=0; B|YY=B|YK=B|KK=0 (2b)
combined with a third order time per energy focusing
T|K=T|KK=T|KKK=0 (3)
where the aberrations are expressed with the Taylor expansion coefficients, Y is vertical coordinate, B is the angle to axis, K is ion energy and T is the flight time.
In WO 2013/063587, the focusing properties of planar MRTOFs were improved by achieving third order full time-of-flight focusing, including cross terms:
T|BBK=T|YBK=T|YYK=0 (4)
and by reaching up to fifth order time-per-energy focusing:
T|K=T|KK=T|KKK=T|KKKK=T|KKKKK=0 (5)
Both spatial and time-of-flight aberrations of mirrors appear far superior compared to sector based TOF mass spectrometers, since sectors compensate for only first order aberrations, i.e. satisfy only equation 1 above.
Although ion mirrors provide advanced ion optical properties compared to sectors, the spatial focusing and image mapping properties of gridless planar ion mirrors were not appreciated and were not used for multiple practical reasons. The present invention employs a time of flight region comprising at least one ion mirror for mapping ions onto a position sensitive detector.
The deflected ions are then transmitted into the orthogonal accelerator 185, wherein they are accelerated into the MRTOF 180 for time of flight mass analysis. As described in more detail below, the MRTOF 180 maps the positions of the ions entering the MRTOF to corresponding positions on the position sensitive detector 187. Accordingly, the ions deflected to position 306 by the ion deflector system 305 are received at a corresponding position on the position sensitive detector 187 that is displaced from the central axis of the detector 187.
The voltages applied to the ion deflector system 305 are varied with time such that the displacement of the ions in the Y-direction at the exit of the ion deflector system 305 varies with time. Accordingly, the displacement of the ions received at the position sensitive detector 187 also varies in a corresponding manner.
The ions have a relatively long time of flight in the MRTOF 180 due to the multiple reflections between the ion mirrors. This enables the ions in each pulse become temporally well separated in the time of flight region, thus providing the instrument with a high resolution. However, due to this high temporal separation of the ions, pulsing the ions into the MRTOF 180 at too high a rate would lead to spectral overlap in which slow ions from a first ion injection pulse are detected after fast ions from a second, later ion injection pulse. This limits the rate at which ions can be pulsed into the MRTOF 180 before spectral overlap occurs, thus limiting the duty cycle of the instrument.
In order to overcome this problem, the instrument may be operated in an encoded frequency pulsing (EFP) mode. In this mode, the orthogonal accelerator 185 pulses ions into the Time of Flight region in a series of pulses, wherein the time delay between pairs of adjacent ion injection pulses is varied in a predetermined manner, as opposed to the conventional method of employing a uniform time delay between all of the pairs of adjacent pulses. The ions may then be pulsed into the MRTOF 180 at a relatively high rate, in which the ions in a first pulse temporally overlap with the ions in a subsequent pulse. The detector 187 then detects the arrival times of the ions and obtains a signal corresponding to the overlapping spectra. As the variable time delays between ion injection pulses are known in the EFP method, this can be used to unpick overlapping peaks in the TOF spectra so as to obtain non-overlapping spectra. This may be performed by correlating the overlapping spectra with the encoded sequence for injecting ions into the MRTOF 180. The EFP mode enables ions to be injected into the TOF device at time intervals that are shorter than the TOF separation time and so enables the duty cycle of the spectrometer to be increased. For example, the orthogonal accelerator may be operated with an average pulse period of 5 to 10 μs.
The method of deflecting the ions onto different regions of the detector 187 with the ion deflection system 305 may bypass dynamic range limits in the EFP method, e.g. posed by signal overlaps with peaks of chemical noise such as in LC-MS analysis and parent ion detection in data dependent LC-MS-MS analysis (DDA). For example, in an LC-MS analysis the ion flow may be considered to be constant relative to the time scale of spectral acquisition. During the EFP mode of operation, the spectral dynamic range may be limited by chemical background noise. The number of spectral overlaps may be reduced by deflecting the ions using the ion deflector system 305 such that the same ion beam is deflected onto different strips of the detector 187 at different times. This improves the dynamic range of the instrument during EFP spectral acquisition. Splitting the ion signal between different detector data channels in this manner retains the useful ion signal, whilst reducing the number of overlaps with chemical background peaks in a manner that is proportional to the number of data acquisition channels that the ion beam is split between.
Alternatively, a device upstream of the ion deflecting system 305 may transmit different ions at different times to the ion deflecting system 305. The ions may be released from the upstream device in a cyclical manner. For example, the upstream device may be a mass or ion mobility separator that cyclically separates ions according to mass or ion mobility. Alternatively, the upstream device may be fragmentation cell that cyclically varies the fragmentation energy. The ion deflecting system 305 may deflect ions across the detector 187 in a cyclical manner, and may be synchronized with the cycle time of the upstream device. Accordingly, different ions from the upstream device are able to be mapped onto different regions of the detector 187. This method enables mapping of ions that are separated over relatively fast time-scales, while using longer accumulation times of the data acquisition system 188, and enables data for multiple cycles to be summed. For example, the signal detected at each detector position in multiple cycles may be summed. If an EFP mode is use the method also provides an improved dynamic range.
The exit aperture 303 may be operated as an ion gate by selectively applying a voltage to it that blocks the path of ions through the exit aperture 303. The voltage may be operated so as allow ions to pass through the exit aperture in pulses. The pulses may be synchronized with the pulsed orthogonal extraction of the orthogonal accelerator 185 so as to optimize the duty cycle of the instrument.
Voltages may be applied to the quadrupole 302 such that it operates as a mass filter, in which only ions of selected mass to charge ratio(s) are stable and are transmitted by the quadrupole 302. The quadrupole may be operated with a low mass cut-off, a high-mass cut off, or as a band pass filter. When the exit aperture 303 is operated as an ion gate, the delay time between a pulse of ions being released through the ion gate and that same pulse of ions being orthogonally accelerated in the orthogonal accelerator 185, may be selected based on the value(s) of the mass to charge ratio(s) transmitted by the quadrupole 302.
The ion deflecting system 305 may receive a beam of ions that varies in intensity as a function of time. Alternatively, or additionally, the ion deflecting system 305 may receive a beam of ions having a physicochemical property value that changes with time. For example, the mass to charge ratios or ion mobilities of the ions received at the ion deflecting system 305 may vary with time.
The ion deflecting system 305 may deflect different portions of the time varying ion beam to different positions on the detector 187, thereby providing a set of independent spectra. For example, different mass to charge ratios or mass to charge ratio ranges may be directed to different parts of the detector by the ion deflecting system 305. Alternatively, different ion mobilities or ion mobility ranges may be directed to different parts of the detector by the ion deflecting system 305. Alternatively, or additionally, ions from different ion sources may be directed to different parts of the detector by the ion deflecting system 305. For example, ions derived from different channels in a multi-channel LC device, or from different sprays in a multiple sprays device, may be directed to different parts of the detector by the ion deflecting system 305. Alternatively, ions generated from different regions of an analytical sample, from different samples, or from different regions on a sample plate may be directed to different parts of the detector by the ion deflecting system 305. For example, ions from different spots on a MALDI sample plate may be directed to different parts of the detector by the ion deflecting system 305. Alternatively, ions fragmented with different fragmentation energies in a collisionally induced fragmentation cell or generated by time-variable in-source fragmentation may be directed to different parts of the detector by the ion deflecting system 305.
The spatial dimensions of the ion source array (i.e. view field) may be, for example, up to 7-10 mm and that the number of spots may form a 6×6 matrix, whilst retaining a mass resolution of approximately 100,000-200,000 for each individual pixel. The combination of a large field of view, and the spatial and mass resolutions provided is unprecedented and provides opportunities for high throughput mass spectrometric analysis. The analyzers may have a larger field of view and/or a larger source matrix density, such as a field of view up to 15-20 mm and/or a source matrix density of at least 10×10.
The mapping MRTOF described herein may be used for a number of applications. For example, the instrument may be used for crude surface imaging at a high throughput rate. Alternatively, or additionally, the instrument may be used for analyzing multiple samples deposited onto a surface as a macroscopic sample array. Such an analysis may be enhanced by sample micro-scanning within a pixel, i.e. within a sample well. The instrument may be used to analyze ions from multiple independent ionization sources, such as atmospheric or ambient sources, for high throughput analysis. For example, the instrument may analyze multiple sample spots ionized by ambient sources. A sample may be spatially separated by mass or mobility, and the instrument may be used for simultaneous parallel mass analysis of different separation fractions.
The ion mapping from the ion source to the detector may be performed in one dimension or in two dimensions. For example, in one dimensional ion mapping ions may be generated from multiple sample regions that are distributed along the Y-dimension (or Z-dimension) of the ion source, and these ions may be mapped onto the detector at respective multiple regions that are distributed along the Y-dimension (or Z-dimension) of the detector. In two dimensional ion mapping ions may be generated from multiple sample regions that are distributed in the Y-Z plane of the ion source, and these ions may be mapped onto the detector at respective multiple regions that are distributed in the Y-Z plane of the detector.
The field of view of an analyzer may be limited in both the Y- and Z-dimensions, before high order spatial aberrations degrade spatial resolution and cross-term aberrations degrade mass resolution. For example, the field of view may be 1 mm or less in any dimension. However, the position sensitive detector and/or the source array may occupy a relatively large area (e.g. larger than 1 mm in any dimension), or may have a relatively large (or small) pixel size. Also, the ion source and detector may be different sizes. The imaging and mapping system therefore may be subjected to a mismatch in spatial scales and/or a lack of space within the MRTOF analyzer to accommodate the source or detector. This may be accommodated for, as discussed further below.
Although the spatial resolution of the described embodiment is moderate in terms of number of resolved pixels, it is very unusual for TOF analyzers to sustain imaging properties at large fields of view in comparison to prior art TOF mass microscopes, in which the imaging field is well under 1 mm.
Due to the spatial resolution of the MRTOF, it can be seen that the ion packets in land on separated spots of the ion detector. As a result, the analyzer transfers ions from a matrix of ion source spots to a corresponding matrix of spots on the detector. This system may allow independent acquisition of a matrix of ion beams or ion packets, with minimal ion losses and without any signal interference between individual pixels at the detector. This leads to an improvement in the analysis throughput. Although a 6×6 matrix of ion sources has been described, denser matrices and larger fields of view may be provided using the analyzer.
Telescopic (e.g. microscopic) ion optical sets, including lenses, mirrors or sectors may be used to map the ions from the source to the detector.
Both sectors 75 and 77 may be either cylindrical, torroidal or spherical, depending on whether 1D or 2D ion mapping is desired. A cylindrical sector may be used for 1D mapping, or torroidal or spherical sectors may be used for 2D mapping. The sectors may be combined with electrostatic lenses. Both sectors may be composed of several sector sections for optimal spatial resolution and isochronicity. The sector steering angles may be optimized depending on the overall arrangement, for example, as described in WO 2006/102430.
Electrostatic sectors serve multiple functions. They allow a relatively large ion source array and detector to be arranged outside of the MRTOF, whilst introducing ions into and extracting ions from the TOF region. Also, sectors are capable of removing excessive energy spread of the ions so as to optimize spatial and mass resolution with only moderate ion losses. Sectors may also be used as part of telescopic arrangements for optimal adoption of spatial scales between the ion source, the TOF analyzer and the detector.
In the analyzers of the embodiments described herein, spatial resolution may be primarily limited by high order spatial aberrations, such as spherical aberration Y|YYY or view-field curvature Y|BBY, or by other high order cross-aberrations including energy terms. Thus, spatial resolution is expected to improve at smaller ion trajectory offset and smaller view field. The smaller view field may be magnified with telescopic lenses or sectors, also may incorporate diverging trajectories of the MRTOF analyzer, as has been described in relation to
Although only the use of planar ion mirrors for the TOF region have been described above, it is contemplated that other geometries may be employed.
The topology labeled 101 schematically illustrates the electrode arrangement for the planar MRTOF that has already been described above, having two parallel, straight ion mirrors. The topology labeled 102 schematically illustrates the electrode arrangement for a hybrid folded analyzer having a sector that guides ions between two ion mirrors. The topology labeled 103 schematically illustrates the electrode arrangement for another hybrid system built using multiple sectors and an ion mirror. The topology labeled 104 schematically illustrates the electrode arrangement for another analyzer that may be used for multiplexing, e.g. as described in WO 2011/086430. The topology labeled 105 schematically illustrates the electrode arrangement for an analyzer that is similar to topology 101, except that the mirrors are cylindrically wrapped. The topology labeled 106 schematically illustrates the electrode arrangement for an analyzer that is similar to topology 102, except that the mirrors and sector are cylindrically wrapped. The topology labeled 107 schematically illustrates the electrode arrangement for an analyzer that is similar to topology 105, except that the upper mirror is replaced by a spherical sector. The illustrated instruments having mixed symmetry and employing curved ion trajectory axes provide compact analyzers and allow geometrical up-scaling at a given instrument size. Ion mapping and imaging properties, as with TOF resolution, are rapidly improved with the analyzer up-scaling due to the fast reduction of high order aberrations.
As described above, the pixelated detector may provide independent mass spectral analysis for each individual pixel, or groups of pixels in the ion source. Prior art ion mapping instruments typically have a field of view with each dimension under 1 mm. In contrast, the embodiments described herein may provide instruments having lower resolution ion mapping but with a much larger field of view, such as up to 10×10 mm in combination with parallel (simultaneous) acquisition of high resolution mass spectra for all mapped pixels. The mass spectral mapping of macroscopic size spots (e.g. spots having a dimension in each direction of 1-2 mm) allows the opportunity of parallel and independent analysis for multiple ion sources, either from 1D or 2D arrays.
Various methods and apparatus are contemplated herein for miniaturizing ion source arrays, ion transfer arrays, ion optics arrays, and forming appropriate pulsed converters for such arrays, enabling multi-channel MRTOF with high throughput analysis.
The mapping MRTOF described herein allows parallel analysis of multiple ion flows. Various arrays of ambient ion sources are known, although they are conventionally multiplexed in an atmospheric or vacuum interface for analysis in a single channel mass spectrometer. In contrast, the ion source arrays may be used in the present invention for parallel analysis and hence the instrument provides a much higher throughput than prior art instruments.
Different types of ion sources may be used in any given array of ion sources. The ion sources may be used for the simultaneous analysis of the same sample, for example, for obtaining additional information due to variations in softness, charge states, selectivity, fragmentation patterns, variations in discrimination effects, or for calibrations in mass, intensity or at quantitative concentration measurements.
In one example of practical importance, the instrument may be used for proteomic analyses. State of the art proteomic analyses with single channel LC-MS-MS may last for several hours, as several thousand runs may be required for each study. For higher throughput the multi-channel MRTOF described herein may be used. The proteomic samples may be pre-separated, e.g. by affinity separation or salt exchange chromatography and prior to the step of enzymatic digestion. Then separated fractions may be analyzed in parallel using multiple independent LC-MS channels or LC-MSE channels (more preferable), whilst using a single mapping MRTOF mass spectrometer as described herein. Compared to the conventional single channel LC-MS-MS experiment, the MRTOF is expected to obtain more information per sample (e.g. in research programs) or obtain the same information at much faster LC gradients (e.g. for high throughput clinical analysis). Alternatively, multiple proteomic samples may be analyzed in parallel for higher throughput with a LC-MSE method. Higher throughput may also be highly desirable for other LC-MS and GC-MS analyses in clinical, environmental, and metabolomic studies.
A capillary diameter of about 0.5 mm nay be used for higher sensitivity, leading to approximately 1 L/s gas flux through the 36 channels. A mechanical pump (e.g. a scroll pump) may be used to evacuate a large gas flux past the capillaries, for example with a pumping speed above 30 L/s, as shown by white arrows. This brings the gas pressure down to under 30 Torr, i.e. into the range for effective RF confining within RF channels 142.
The nozzle spacing may be spread spatially for efficient sampling from an array of multiple macroscopic ion sources, while channels 146 may converge towards the exit. Since ion collection diameter may be desired to be at least three times the nozzle aperture diameter, for imaging applications, the nozzle diameter could be reduced, for example, to 0.3 mm so as to reduce the gas load through the nozzle array, which may be about 0.4 L/s for 36 channels. A single mechanical pump pumping at 10 L/s may be provided to drop the gas pressure to under 30 Torr. Even lower gas loads may be provided by using finer nozzles for surface imaging at higher spatial resolutions.
It is desired to form ion beams and ion packets, e.g. for small size arrays.
The array of ion beams then enters the telescopic lens 173. The telescopic lens is used for delivering narrow ion beams into the orthogonal accelerator 175, thus preserving ion beam separation. The telescopic lens also interfaces the spatial scale of the ion source to MRTOF field of view. For example, a 20 mm wide beam array may be compressed into a beam array within the accelerator 175 that is 7-10 mm wide. The icon 173 illustrates a particular example of the telescopic lens with unit magnification. The view is compressed about twice in the Z scale. The lens is 120 mm long and with a 30 mm inner diameter. The beam array is refocused by two lenses without any additional spreading of beam width, despite an initial divergence angle of 2 degrees. The telescopic lens may be tuned to provide spatial ion beam refocusing in the middle of the accelerator 175. Without the telescopic lens, the ion beams would spread for 1 mm while passing into the accelerator, which must be spaced from the quadrupole array, at least for reasons of differential pumping.
The orthogonal accelerator 175 shown in
The ion beams at the entrance of the orthogonal accelerator 175 may have a diameter under 1 mm, a mean ion energy of 50 eV, and an angular divergence of about 0.5 degrees. In order to provide a short sub-nanosecond turn-around time, the accelerator may be arranged with a large extraction field, e.g. 300-500 V/mm, thus creating an energy spread of about 300-500 eV.
In order to handle ion packets having a large energy spread, the MRTOF may be operated at the highest practical acceleration voltage applied to drift region, e.g. −8 to −10 kV. The natural inclination angle of ion trajectories is δ=70 mrad (square root of energies 50 eV and 10 keV). In case of orienting ion beams along the Z-direction, and if no measures are taken, the ion packet advance would appear too high, i.e. 70 mm per mirror reflection, which would require an MRTOF having a large width in the Z-direction. To drop the inclination angle β, the orthogonal accelerator 175 is tilted at the angle β, and the packets are then steered by a deflector for the same angle β. The deflector 178 may be composed of several sections for a more uniform deflection field. The ion beam energy at the accelerator entrance may be adjusted so that both the tilt and steering provide mutual compensation of the first order time aberration, as described in WO 2007/044696. In the chosen example of δ=70 mrad, β=20 mrad, a resultant inclination angle of α=30 mrad, at 5% relative energy spread, and if using ion packets under 25 mm length, the amplitude of residual second order aberration T|ZK stays under 1 ns with the peak FWHM being under 0.25 ns. With the chosen Z-pitch per ion reflection of 30 mm, the practical ion packet length is expected about 15 mm. At 50 eV ion energy, ions of 1000 amu travel with speed of 3 mm/μs and traverse the useful extracted 15 mm portion of continuous packet within 5 μs time.
The array interfaces 183 or 184 may comprise a nozzle array 140 of type described above, an array of RF ion guide channels 163, an array of RF quadrupoles 165 having exit skimmers (optionally connected to pulse generator 185), an array of micro-lens 171, a telescopic lens 173, and an orthogonal accelerator 175.
In one, continuous mode of operation, ion flows 181 may be separately transferred from individual ion sources, through individual channels of interface 183, into the orthogonal accelerator 175 as spatially separated ion beams. Each of the ions beams is then converted into spatially distinguished ion packets, elongated in the Z-direction and narrow in the Y-direction. The mapping MRTOF 186 transfers ion packets to the pixelated detector 187 without mixing the packets. The pixels of data system may be combined into strips along the Z-direction, and data system 188 may acquire multiple mass spectra in parallel, for each channel. The MRTOF 180 effectively forms an array of parallel operating mass spectrometers, while sharing a common vacuum chamber, differential pumping system, electronics and unifying analytical components, e.g. including making multiple apertures in one block rather than making multiple blocks for the nozzles, RF ion guide channels, RF quadrupoles, and ion optics.
In another operational mode, extraction pulses are applied (from block 185) to the exit skimmers of the RF quadrupoles 165 in a manner that traps and releases ions in the RF quadrupoles. The pulses of the orthogonal accelerator 175 are synchronized in time with the pulses of the ions from the quadrupoles. A single pulse may be applied to the quadrupoles and the orthogonal accelerator in order to analyze ions from all channels simultaneously. This method enables an improvement in the duty cycle of the accelerator, though at the expense of a narrower mass range being admitted in each pulse. It is also contemplated that the timing of the extraction pulses 185 may vary between channels or between accelerator shots. This may be used to admit a wider overall mass range, or optimize the delay for the expected mass range of a particular quadrupole channel. The pulsed ion release may also be used to form a crude mass separation in the second direction, along the ion beams. The two dimensional pixelated detector may thus detect a narrow mass range per pixel, which reduces spectral population per pixel.
The 2D array of ambient sources 191 may be of the type described herein above, e.g. in the form of a 2D array of spray tips 130. The 2D nozzle array 192 may be of the type described herein above, e.g. in the form of capillary array 141 and heated block 143 with machined channels (optionally a split heated block 148 of plates with channels). The curved interface 194 may be a 2D array of RF ion guide channels (194 RF), e.g. composed of mutually tilted perforated plates or PCB boards. Alternatively, the curved interface 194 may be a 2D array of electrostatic sectors (194 ES) for bypassing fringing fields of the ion mirrors, e.g. as described in U.S. Pat. No. 7,326,925 (X-inlet). The curved interface 194 allows the ion source array to be located externally to the MRTOF analyzer such that it does not interfere with the MRTOF analyzer.
Compared to ambient sources, arranging an array of vacuum ion sources is the task of relatively lower complexity, since vacuum ion sources do not require multi-channel ion transfer interfaces and a powerful pumping system. The task is even simpler if using naturally pulsed ion sources, like pulsed SIMS, MALDI or DE-MALDI.
As described above, a variety of vacuum ion sources may be used. For example, when a plurality of laser beams are used to ionize the sample, an array 212 of fine-focused primary laser beams may be provided from a single, wide laser beam with the aid of multiple UV lenses or by an array of concave reflectors. When a single laser beam 213 is scanned across the target plate to ionize the sample, this may be performed with galvanic fast-moved mirrors. The laser beam(s) may be pulsed for MALDI, LD or DE MALDI ionization. When ion beams are directed at the target plate to ionize the sample, an array 212 of primary ion beams (e.g. for SIMS ionization) may be formed by an array of electrostatic micro-lenses. The primary ion beams 213 may be scanned across the target plate in a stepped or continuous and smooth manner. The ion beams may be scanned in at least one direction by electrostatic deflectors.
When pulsed ionization is performed (e.g. SIMS, MALDI, DE MALDI, or LD), and when mapping within a wide field of view, the secondary ions (i.e. analyte ions) may be focused by an array of micro-lenses, optionally followed by a single wide aperture telescopic lens such as the type described in relation to
The parallel analysis by mapping multiple spots in a vacuum highly accelerates the analysis throughput. Using relatively fine ionizing beams in a vacuum allows multiple strategies for high spatial resolution for large overall sample sizes.
As described above, the primary beam 213 may be rastered across the target plate. Rastering the primary beam 213 may be of assistance where the dose of the primary beam is limited by the sample stability. Rastering of the primary beam may be performed at a faster time scale than the period of the pulsed acceleration. In this manner, a single ion beam effectively acts as multiple beams. The rastering may use stepped selection of ionization spots, rather than smooth scanning. For higher throughput at high spatial resolution, the primary beam spots may be selected with a strategy of non-redundant sampling (NRS), e.g. as described in WO 2013/192161 and depicted by icon 215. The combination of spots within a pixel/area may be varied between acceleration pulses. The signal on the detector may be acquired as a data string without losing time information. The mass spectrum for a particular fine spot may then be extracted by correlation with the position of the spot. For practical convenience, the encoding pattern may be the same for all pixels and may be performed with surface 2D stepped rastering.
The resolution of MRTOF devices is limited by the initial parameters of the incoming ion beam. For pulsed acceleration of the ions, the angular divergence of a continuous ion beam introduces velocity spread ΔV in the TOF direction, which leads to so-called turn-around time ΔT. The time spread ΔT could possibly be reduced by using higher strength accelerating pulsed fields E, since ΔT=ΔV*m/qE. However, unfortunately the field strength is limited by the energy acceptance of the analyzer ΔX*E<ΔK. Thus, the ion beam emittance Em=ΔX*ΔV limits TOF MS resolution. The problem may be solved by using finer size quadrupoles, however, this requires the use of multiple quadrupoles to avoid space-charge expansion of the ion cloud at practical ion currents of several nA to tens of nA.
Ion beams may be extracted from the RFQ array 165 by a negative bias on skimmers, which form local crossovers near the skimmer plane. The planar optics 305 then provide ion beam spatial expansion while reducing angular divergence in the X-direction, say by 10-fold (e.g. in line with U.S. Pat. No. 8,895,920). Planar optics 365 allow mixing of multiple beams in the Y-direction, thus forming wide ion packets in the orthogonal accelerator 185, illustrated by the dark square.
Strong spatial compression of ion beams in the X-direction reduces the beam emittance, thus reducing the turn-around time and increasing the resolution in the MRTOF 190 or Re-TOF 220.
Number | Date | Country | Kind |
---|---|---|---|
1520134.6 | Nov 2015 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2016/062203 | 11/16/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/087470 | 5/26/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4731532 | Frey et al. | Mar 1988 | A |
5017780 | Kutscher et al. | May 1991 | A |
5128543 | Reed et al. | Jul 1992 | A |
5619034 | Reed et al. | Apr 1997 | A |
5654544 | Dresch | Aug 1997 | A |
5955730 | Kerley et al. | Sep 1999 | A |
6013913 | Hanson | Jan 2000 | A |
6020586 | Dresch et al. | Feb 2000 | A |
6107625 | Park | Aug 2000 | A |
6316768 | Rockwood et al. | Nov 2001 | B1 |
6384410 | Kawato | May 2002 | B1 |
6469295 | Park | Oct 2002 | B1 |
6489610 | Barofsky et al. | Dec 2002 | B1 |
6570152 | Hoyes | May 2003 | B1 |
6627877 | Davis et al. | Sep 2003 | B1 |
6717132 | Franzen | Apr 2004 | B2 |
6744042 | Zajfman et al. | Jun 2004 | B2 |
6888130 | Gonin | May 2005 | B1 |
6949736 | Ishihara | Sep 2005 | B2 |
7034292 | Whitehouse et al. | Apr 2006 | B1 |
7196324 | Verentchikov | Mar 2007 | B2 |
7326925 | Verentchikov et al. | Feb 2008 | B2 |
7351958 | Vestal | Apr 2008 | B2 |
7385187 | Verentchikov et al. | Jun 2008 | B2 |
7501621 | Willis et al. | Mar 2009 | B2 |
7504620 | Sato et al. | Mar 2009 | B2 |
7582864 | Verentchikov | Sep 2009 | B2 |
7663100 | Vestal | Feb 2010 | B2 |
7709789 | Vestal et al. | May 2010 | B2 |
7772547 | Verentchikov | Aug 2010 | B2 |
7825373 | Willis et al. | Nov 2010 | B2 |
7863557 | Brown | Jan 2011 | B2 |
7884319 | Willis et al. | Feb 2011 | B2 |
7932491 | Vestal | Apr 2011 | B2 |
7982184 | Sudakov | Jul 2011 | B2 |
7989759 | Holle | Aug 2011 | B2 |
8017907 | Willis et al. | Sep 2011 | B2 |
8063360 | Willis et al. | Nov 2011 | B2 |
8395115 | Makarov et al. | Mar 2013 | B2 |
8637815 | Makarov et al. | Jan 2014 | B2 |
8642951 | Li | Feb 2014 | B2 |
8658984 | Makarov et al. | Feb 2014 | B2 |
8853623 | Verenchikov | Oct 2014 | B2 |
8921772 | Verenchikov | Dec 2014 | B2 |
9082597 | Willis et al. | Jul 2015 | B2 |
9082604 | Verenchikov | Jul 2015 | B2 |
9214322 | Kholomeev et al. | Dec 2015 | B2 |
9312119 | Verenchikov | Apr 2016 | B2 |
9373490 | Nishiguchi | Jun 2016 | B1 |
9396922 | Verenchikov et al. | Jul 2016 | B2 |
9425034 | Verentchikov et al. | Aug 2016 | B2 |
9472390 | Verenchikov et al. | Oct 2016 | B2 |
9595431 | Verenchikov | Mar 2017 | B2 |
9683963 | Verenchikov | Jun 2017 | B2 |
9728384 | Verenchikov | Aug 2017 | B2 |
9779923 | Verenchikov | Oct 2017 | B2 |
9786484 | Willis et al. | Oct 2017 | B2 |
9865445 | Verenchikov et al. | Jan 2018 | B2 |
9870906 | Quarmby | Jan 2018 | B1 |
9881780 | Verenchikov et al. | Jan 2018 | B2 |
20010011703 | Franzen | Aug 2001 | A1 |
20020190199 | Li | Dec 2002 | A1 |
20030111597 | Gonin et al. | Jun 2003 | A1 |
20040084613 | Bateman et al. | May 2004 | A1 |
20040108453 | Kobayashi et al. | Jun 2004 | A1 |
20040119012 | Vestal | Jun 2004 | A1 |
20040155187 | Axelsson | Aug 2004 | A1 |
20050040326 | Enke | Feb 2005 | A1 |
20050103992 | Yamaguchi et al. | May 2005 | A1 |
20050258364 | Whitehouse et al. | Nov 2005 | A1 |
20060169882 | Pau et al. | Aug 2006 | A1 |
20060214100 | Verentchikov | Sep 2006 | A1 |
20060289746 | Raznikov et al. | Dec 2006 | A1 |
20070023645 | Chernushevich | Feb 2007 | A1 |
20070029473 | Verentchikov | Feb 2007 | A1 |
20070176090 | Verentchikov | Aug 2007 | A1 |
20070187614 | Schneider et al. | Aug 2007 | A1 |
20070194223 | Sato | Aug 2007 | A1 |
20080049402 | Han et al. | Feb 2008 | A1 |
20080197276 | Nishiguchi et al. | Aug 2008 | A1 |
20080290269 | Saito et al. | Nov 2008 | A1 |
20090272890 | Ogawa et al. | Nov 2009 | A1 |
20100072363 | Giles et al. | Mar 2010 | A1 |
20100140469 | Nishiguchi | Jun 2010 | A1 |
20100193682 | Golikov | Aug 2010 | A1 |
20100301202 | Vestal | Dec 2010 | A1 |
20110133073 | Sato et al. | Jun 2011 | A1 |
20110168880 | Ristroph et al. | Jul 2011 | A1 |
20110180705 | Yamaguchi | Jul 2011 | A1 |
20110186729 | Verentchikov et al. | Aug 2011 | A1 |
20120168618 | Vestal | Jul 2012 | A1 |
20120261570 | Shvartburg et al. | Oct 2012 | A1 |
20130048852 | Verenchikov | Feb 2013 | A1 |
20130056627 | Verenchikov | Mar 2013 | A1 |
20130068942 | Verentchikov | Mar 2013 | A1 |
20130187044 | Ding et al. | Jul 2013 | A1 |
20130240725 | Makarov | Sep 2013 | A1 |
20130248702 | Makarov | Sep 2013 | A1 |
20130313424 | Makarov | Nov 2013 | A1 |
20130327935 | Wiedenbeck | Dec 2013 | A1 |
20140054456 | Kinugawa et al. | Feb 2014 | A1 |
20140084156 | Ristroph | Mar 2014 | A1 |
20140117226 | Giannakopulos | May 2014 | A1 |
20140138538 | Hieftje | May 2014 | A1 |
20140183354 | Moon et al. | Jul 2014 | A1 |
20140239172 | Makarov | Aug 2014 | A1 |
20140291503 | Shchepunov et al. | Oct 2014 | A1 |
20140361162 | Murray et al. | Dec 2014 | A1 |
20150028197 | Grinfeld | Jan 2015 | A1 |
20150028198 | Grinfeld et al. | Jan 2015 | A1 |
20150048245 | Vestal et al. | Feb 2015 | A1 |
20150122986 | Haase | May 2015 | A1 |
20150279650 | Verenchikov | Oct 2015 | A1 |
20150294849 | Makarov et al. | Oct 2015 | A1 |
20150380233 | Verenchikov | Dec 2015 | A1 |
20160079052 | MAakarov | Mar 2016 | A1 |
20160225598 | Ristroph | Aug 2016 | A1 |
20160225602 | Ristroph et al. | Aug 2016 | A1 |
20160240363 | Verenchikov | Aug 2016 | A1 |
20170025265 | Verenchikov et al. | Jan 2017 | A1 |
20170032952 | Verenchikov | Feb 2017 | A1 |
20170098533 | Stewart et al. | Apr 2017 | A1 |
20170338094 | Verentchikov | Nov 2017 | A1 |
Number | Date | Country |
---|---|---|
101369510 | Feb 2009 | CN |
102131563 | Jul 2011 | CN |
10116536 | Oct 2002 | DE |
0237259 | Sep 1987 | EP |
1137044 | Sep 2001 | EP |
2068346 | Jun 2009 | EP |
2599104 | Jun 2013 | EP |
2080021 | Jan 1982 | GB |
2080021 | Nov 1984 | GB |
2217907 | Nov 1989 | GB |
2390935 | Jan 2004 | GB |
2403063 | Dec 2004 | GB |
2396742 | Dec 2005 | GB |
2455977 | Jul 2009 | GB |
2478300 | Sep 2011 | GB |
2489094 | Sep 2012 | GB |
2490571 | Nov 2012 | GB |
2495127 | Apr 2013 | GB |
2495221 | Apr 2013 | GB |
2496991 | May 2013 | GB |
2496994 | May 2013 | GB |
2501332 | Oct 2013 | GB |
2506362 | Apr 2014 | GB |
2528875 | Feb 2016 | GB |
2555609 | May 2018 | GB |
2556451 | May 2018 | GB |
2003031178 | Jan 2003 | JP |
3571546 | Sep 2004 | JP |
2005538346 | Dec 2005 | JP |
2006049273 | Feb 2006 | JP |
2007227042 | Sep 2007 | JP |
2010062152 | Mar 2010 | JP |
1649234 | Mar 2011 | JP |
2013539590 | Oct 2013 | JP |
2564443 | Oct 2015 | RU |
2015148627 | May 2017 | RU |
2660655 | Jul 2018 | RU |
1725289 | Apr 1992 | SU |
1998001218 | Jan 1998 | WO |
200077823 | Dec 2000 | WO |
2005001878 | Jan 2005 | WO |
2006102430 | Sep 2006 | WO |
2007044696 | Apr 2007 | WO |
2007044696 | Apr 2007 | WO |
2007104992 | Sep 2007 | WO |
2007136373 | Nov 2007 | WO |
2010008386 | Jan 2010 | WO |
2013045428 | Mar 2011 | WO |
2011086430 | Jul 2011 | WO |
2011107836 | Sep 2011 | WO |
2011135477 | Nov 2011 | WO |
2012024468 | Feb 2012 | WO |
2012116765 | Sep 2012 | WO |
2013063587 | May 2013 | WO |
2013098612 | Jul 2013 | WO |
2013110587 | Aug 2013 | WO |
2013110588 | Aug 2013 | WO |
2013124207 | Aug 2013 | WO |
2014074822 | May 2014 | WO |
2014074822 | May 2014 | WO |
2014110697 | Jul 2014 | WO |
2014142897 | Sep 2014 | WO |
2015142897 | Sep 2015 | WO |
2015153630 | Oct 2015 | WO |
2015152968 | Oct 2015 | WO |
2015153644 | Oct 2015 | WO |
2016064398 | Apr 2016 | WO |
2016174462 | Nov 2016 | WO |
2018073589 | Apr 2018 | WO |
2019030476 | Feb 2019 | WO |
Entry |
---|
International Search Report and Written Opinion for International Application No. PCT/US2016/062203 dated Mar. 6, 2017. |
International Search Report and Written Opinion for International Application No. PCT/US2016/062174 dated Mar. 6, 2017. |
Search Report for GB Application No. GB1520130.4 dated May 25, 2016. |
Sakurai et al., “A New Multi-Passage Time-of-Flight Mass Spectrometer at JAIST”, Nuclear Instruments & Methods in Physics Research, Section A, Elsevier, 427(1-2): 182-186, May 11, 1999. |
Toyoda et al., “Multi-Turn-Time-of-Flight Mass Spectometers with Electrostatic Sectors”, Journal of Mass Spectrometry, 38: 1125-1142, Jan. 1, 2003. |
Wouters et al., “Optical Design of the TOFI (Time-of-Flight Isochronous) Spectrometer for Mass Measurements of Exotic Nuclei”, Nuclear Instruments and Methods in Physics Research, Section A, 240(1): 77-90, Oct. 1, 1985. |
Stresau, D., et al.: “Ion Counting Beyond 10ghz Using a New Detector and Conventional Electronics”, European Winter Conference on Plasma Spectrochemistry, Feb. 4-8, 2001, Lillehammer, Norway, Retrieved from the Internet:URL:https://www.etp-ms.com/file-repository/21 [retrieved on Jul. 31, 2019]. |
Kaufmann, R., et. al., “Sequencing of peptides in a time-of-flight mass spectrometer: evaluation of postsource decay following matrix-assisted laser desorption ionisation (MALDI)”, International Journal of Mass Spectrometry and Ion Processes, Elsevier Scientific Publishing Co. Amsterdam, NL, 131:355-385, Feb. 24, 1994. |
Barry Shaulis et al: “Signal linearity of an extended range pulse counting detector: Applications to accurate and precise U-Pb dating of zircon by laser ablation quadrupole ICP-MS”, G3: Geochemistry, Geophysics, Geosystems, 11(11):1-12, Nov. 20, 2010. |
Search Report for United Kingdom Application No. GB1708430.2 dated Nov. 28, 2017. |
International Search Report and Written Opinion for International Application No. PCT/GB20180051320 dated Aug. 1, 2018. |
International Search Report and Written Opinion for International Application No. PCT/GB2019/051839 dated Sep. 18, 2019. |
International Search Report and Written Opinion for International Application No. PCT/GB2019/051234 dated Jul. 29, 2019. |
Combined Search and Examination Report for United Kingdom Application No. GB1901411.7 dated Jul. 31, 2019. |
Doroshenko, V.M., and Cotter, R.J., “Ideal velocity focusing in a reflectron time-of-flight mass spectrometer”, American Society for Mass Spectrometry, 10(10):992-999 (1999). |
IPRP PCT/US2016/062174 issued May 22, 2018, 6 pages. |
International Search Report and Written Opinion of the International Search Authority for Application No. PCT/GB2016/051238 dated Jul. 12, 2016, 16 pages. |
Communication Relating to the Results of the Partial International Search for International Application No. PCT/GB2019/01118, dated Jul. 19, 2019, 25 pages. |
Search Report for GB Application No. GB1520134.6 dated May 26, 2016. |
IPRP PCT/US2016/062203, issued May 22, 2018, 6 pages. |
IPRP for application PCT/GB2016/051238 dated Oct. 31, 2017, 13 pages. |
International Search Report and Written Opinion for International Application No. PCT/US2016/063076 dated Mar. 30, 2017, 9 pages. |
Search Report for GB Application No. 1520540.4 dated May 24, 2016. |
IPRP for application PCT/US2016/063076, dated May 29, 2018, 7 pages. |
Wikipedia, “Reflectron” , Oct. 9, 2015, Retrieved from the Internet: URL:https://en.wikipedia.org/w/index.php?t itle=Reflectron&oldid=684843442, [retrieved on May 29, 2019]. |
Scherer, S., et al., “A novel principle for an ion mirror design in time-of-flight mass spectrometry”, International Journal of Mass Spectrometry, Elsevier Science Publishers, Amsterdam, NL, vol. 251, No. 1, Mar. 15, 2006. |
International Search Report and Written Opinion for International Application No. PCT/EP2017/070508 dated Oct. 16, 2017, 18 pages. |
IPRP PCT/GB17/51981 dated Jan. 8, 2019, 7 pages. |
International Search Report and Written Opinion for International Application No. PCT/GB2018/051206, dated Jul. 12, 2018, 9 pages. |
N/a: “ Electrostatic lens ,” Wikipedia, Mar. 31, 2017 (Mar. 31, 2017), XP055518392, Retrieved from the Internet:URL: https://en.wikipedia.org/w/index.phptitle=Electrostatic lens oldid=773161674[retrieved on Oct. 24, 2018]. |
Hussein, O.A. et al., “Study the most favorable shapes of electrostatic quadrupole doublet lenses” , AIP Conference Proceedings, vol. 1815, Feb. 17, 2017 (Feb. 17, 2017), p. 110003. |
Supplementary Partial EP Search Report for EP Application No. 16866997.6, dated Jun. 7, 2019. |
Yavor, M.I., et al., “High performance gridless ion mirrors for multi-reflection time-of-flight and electrostatic trap mass analyzers”, International Journal of Mass Spectrometry, vol. 426, Mar. 2018, pp. 1-11. |
Guan S., et al. “Stacked-ring electrostatic ion guide”, Journal of the American Society for Mass Spectrometry, Elsevier Science Inc, 7(1)101-106 (1996). |
International Search Report and Written Opinion for application No. PCT/GB2018/052104, dated Oct. 31, 2018, 14 pages. |
International Search Report and Written Opinion for application No. PCT/GB2018/052105, dated Oct. 15, 2018, 18 pages. |
International Search Report and Written Opinion for application PCT/GB2018/052100, dated Oct. 19, 2018, 19 pages. |
International Search Report and Written Opinion for application PCT/GB2018/052102, dated Oct. 25, 2018, 14 pages. |
International Search Report and Written Opinion for application No. PCT/GB2018/052103, dated Oct. 30, 2018, 16 pages. |
International Search Report and Written Opinion for application No. PCT/GB2018/052101, dated Oct. 19, 2018, 15 pages. |
Combined Search and Examination Report under Sections 17 and 18(3) for application GB1807605.9 dated Oct. 29, 2018, 6 pages. |
Combined Search and Examination Report under Sections 17 and 18(3) for application GB1807626.5, dated Oct. 29, 2018, 8 pages. |
International Search Report and Written Opinion for application No. PCT/GB2018/052099, dated Oct. 10, 2018, 16 pages. |
Kozlov, B. et al. “Enhanced Mass Accuracy in Multi-Reflecting TOF MS” www.waters.com/posters, ASMS Conference (2017). |
Kozlov, B. et al. “Multiplexed Operation of an Orthogonal Multi-Reflecting TOF Instrument to Increase Duty Cycle by Two Orders” ASMS Conference, San Diego, CA, Jun. 6, 2018. |
Kozlov, B. et al. “High accuracy self-calibration method for high resolution mass spectra” ASMS Conference Abstract, 2019. |
Kozlov, B. et al. “Fast Ion Mobility Spectrometry and High Resolution TOF MS” ASMS Conference Poster (2014). |
Verenchicov., A. N. “Parallel MS-MS Analysis in a Time-Flight Tandem. Problem Statement, Method, and Instrucmental Schemes” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2004). |
Yavor, M. I. “Planar Multireflection Time-Of-Flight Mass Analyser with Unlimited Mass Range” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2004). |
Khasin, Y. I. et al. “Initial Experimenatl Studies of a Planar Multireflection Time-Of-Flight Mass Spectrometer” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2004). |
Verenchicov., A. N. et al. “Stability of Ion Motion in Periodic Electrostatic Fields” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2004). |
Verenchicov., A. N. “The Concept of Mutireflecting Mass Spectrometer for Continuous Ion Sources” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006). |
Verenchicov., A. N., et al. “Accurate Mass Measurements for Inerpreting Spectra of atmospheric Pressure Ionization” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006). |
Kozlov, B. N. et al., “Experimental Studies of Space Charge Effects in Multireflecting Time-Of-Flight Mass Spectrometes” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006). |
Kozlov, B. N. et al., “Multireflecting Time-Of-Flight Mass Spectrometer With an Ion Trap Source” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006). |
Hasin, Y. I., et al., “Planar Time-Of-Flight Multireflecting Mass Spectrometer with an Orthogonal Ion Injection Out of Continuous Ion Sources” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006). |
Lutvinsky Y. I. et al., “Estimation of Capacity of High Resolution Mass Spectra for Analysis of Complex Mixtures” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006). |
Verenchicov., A. N. et al. “Accurate Mass Measurements for Interpreting Spectra of Atmospheric Pressure Ionization” Institute for Analytical Instrucmentation RAS, Saint-Petersburg, (2006). |
Verenchicov., A. N. et al. “Multiplexing in Multi-Reflecting TOF MS” Journal of Applied Solution Chemistry and Modeling, 6:1-22 (2017). |
Supplementary Partial EP Search Report for EP Application No. 16869126.9, dated Jun. 13, 2019. |
Extended European Search Report for EP Patent Application No. 16866997.6, dated Oct. 16, 2019. |
Combined Search and Examination Report for GB 1906258.7, dated Oct. 25, 2019. |
Combined Search and Examination Report for GB1906253.8, dated Oct. 30, 2019. |
Number | Date | Country | |
---|---|---|---|
20180366313 A1 | Dec 2018 | US |