An imaging optics for lithographic projection exposure is known from US 2009/0073392 A1, from US 2008/0170310 A1, and from U.S. Pat. No. 6,894,834 B2.
The disclosure seeks to develop an imaging optics for lithographic projection exposure which allows a reflective object to be imaged at high image quality.
It has been found according to the disclosure that a chief ray angle of an object field point smaller than 3° causes shading effects on the reflective object to be reduced or avoided completely. The chief ray of an object field point is defined as the connection line between the respective object field point and a center of a pupil of the imaging optics even if, for instance as a result of a pupil obscuration, no actual imaging ray is able to pass through the imaging optics along the chief ray. The chief ray angle of the object field points disposed at least among half the extension of the entire object field may be smaller than 3°. The chief ray angle of all object field points may be smaller than 3° as well. The inventive chief ray angle may be smaller than 2°, may be smaller than 1°, and may in particular amount to 0°. Undesirable shading problems, which may occur in conventional systems with chief ray angles of 6° or 8°, are thus avoided. The result is an imaging optics which allows the reflective object to be imaged at an advantageously low CD (critical dimension) variation. The maximum angles of reflection of the imaging rays on the object side in high-aperture imaging optical systems with the inventive chief ray angle are as small as possible, with the result that shading problems are minimized. The inventive imaging optics is designed for beam-splitter-free imaging. In the imaging beam path, there is thus no beam splitter as used in particular prior art illumination systems, for instance in an illumination according to FIG. 6 of U.S. Pat. No. 6,894,834 B2, for coupling in illumination light and for imaging light to pass through. An inventive near-field mirror M is provided if the following condition is fulfilled:
P(M)=D(SA)/(D(SA)+D(CR))≦0.9.
In this equation, D(SA) is the sub-aperture diameter of a ray bundle emitted by an object field point at the site of the mirror M while D(CR) is the maximum distance of chief rays of an effective object field imaged by the imaging optics, measured in a reference plane of the optical system, on the surface of the mirror M. The reference plane may be a symmetry plane or a meridional plane of the imaging optics. The definition of the parameter P(M) corresponds to the one stated in WO 2009/024 164 A1.
In a field plane, P(M) amounts to 0. In a pupil plane, P(M) amounts to 1.
In the embodiments of U.S. Pat. No. 6,894,834 B2, P(M) is greater than 0.9 for all mirrors.
At least one of the mirrors of the imaging optics may have a value of P(M) amounting to no more than 0.8, to no more than 0.7, to no more than 0.65, or even to no more than 0.61. Several of the mirrors may also have values of P(M) which are smaller than 0.9, which are smaller than 0.8, or which are even smaller than 0.7.
A near-field mirror of this type may be used for correcting an imaging error. In particular in extended fields, a near-field mirror allows imaging errors to be corrected across the entire extended field. In particular a telecentricity correction may be performed via the near-field mirror. An imaging scale of the imaging optics, in particular a reduction scale of an imaging from the object field to the image field may be 2×, 3× or even 4×. The imaging scale may be absolutely smaller than 8×. At a defined numerical aperture near the image field, a sufficiently small imaging scale results in a correspondingly large numerical aperture near the object field and in a correspondingly smaller object field at a defined image field size. This may be used for reducing an obscuration, and in particular for reducing the width of through-openings in mirrors of the imaging optics.
The imaging optics may have a reduction which is absolutely smaller than 8×, which is smaller than 6×, which is smaller than 5×, which is smaller than 4×, which is smaller than 3×, and which may amount to 2×. An absolutely small imaging scale facilitates the guidance of bundles in the imaging optics. The size of the image field of the imaging optics may be greater than 1 mm2, and may in particular be greater than 1 mm×5 mm, may be greater than 5 mm×5 mm, and may in particular amount to 10 mm×10 mm or 20 mm×20 mm. This ensures a high throughput if the imaging optics is used for lithographic purposes. If the imaging optics is used for inspection of a lithographic mask or an exposed wafer, the above discussed “image field” is used as a field to be inspected on the mask or on the wafer, respectively. In this additional field of application, where the imaging optics is used for inspection purposes, the above discussed image field is therefore rather an inspection object field.
The first mirror of an imaging optics may be part of a first obscured mirror group; the through-opening of the first mirror may be used for coupling in illumination light. Likewise, a last mirror in the imaging beam path between the object field and the image field may have a through-opening for imaging light to pass through. The last mirror in the imaging beam path may then be part of another obscured mirror group, which may result in a large numerical aperture on the image side of the imaging optics. The mirror of the imaging optics having a continuous or closed reflection surface, in other words where no through-opening is provided, allows telecentricity errors of the imaging optics to be corrected. At least one mirror of this type being provided with a continuous reflection surface may be arranged near-field and in particular in the region of an intermediate image plane of the imaging optics. The imaging optics may be provided with a first obscured mirror group and with a second non-obscured mirror group which images the imaging light into the image field without any other obscured mirror groups disposed in-between. The at least one mirror which is provided with a closed reflection surface for reflection of the imaging light may have a parameter P(M) as defined above which may amount to no more than 0.9, to no more than 0.8, to no more than 0.7, to no more than 0.65, and which may even amount to only 0.61. The advantages of a near-field mirror of this type correspond to those explained above.
Using only imaging light of the +/− first order of diffraction and/or a higher order of diffraction allows the area where the zero order of diffraction is generated to be used for coupling in illumination light. Using the at least +/− first order of diffraction and, if desired, even higher orders of diffraction results in an image with a good contrast ratio as the zero order of diffraction is not used. This applies in particular if only the +/− first order of diffraction is used for imaging.
In particular when installed in a pupil-obscured optical system, the inventive imaging optical systems may in particular have a through-opening or a through-bore. In the pupil plane of an imaging optics including mirrors of this type, there is an inner area of a bundle of imaging light which is not used for imaging. In this area, there may be arranged a coupling mirror of the illumination optics.
The inventive imaging optics may include combinations of features of the imaging optical systems discussed above. In an imaging optics of this type, which cooperates with an illumination optics where the illumination light is guided to the reflective object via a small illumination numerical aperture at small angles of incidence, the resolution limit is reached without requiring a multipole arranged and/or an illumination using angles of incidence which are inclined to the greatest possible extent, in particular without requiring a dipole or quadrupole illumination. Furthermore, it is not required to switch between different multipole illumination arrangements for different arrangements of structures on the reflective object to be imaged. The reflective object may be exposed to static illumination and may be illuminated using at least one stop and/or may be illuminated using a zoom objective. The illumination optics may be designed without particular pupil forming components. The illumination optics may in particular be designed without faceted mirrors.
A mirror design can facilitate coupling-in of illumination light which impinges upon the reflective object energy weighted at very low angles of incidence.
The disclosure also provides an illumination optics for lithographic projection exposure which ensures an illumination of a reflective object in order to obtain high-quality images.
An inventive energy weighted or central ray direction of incidence may be centered around an angle of incidence of 0° for at least one point of the object field. At this point, the illumination light impinges upon the reflective object at low angles of incidence so that shading problems occurring during imaging are avoided. The advantages obtained correspond to those explained above with reference to the inventive imaging optical systems. The angle between the energy weighted ray direction of incidence and the normal to the object plane may be smaller than 2°, smaller than 1°, and may amount to exactly 0°. Other energy weighted rays of the illumination light bundle may have larger angles of incidence. A guidance of bundles of the illumination light may start from a direction which is at first approximately parallel to the guidance of imaging light downstream of the object field or which is approximately perpendicular to the guidance of imaging light downstream of the object field, which is referred to as “vertical entrance” and “horizontal entrance” of the illumination light if the imaging light is guided vertically. Instead of using the illumination optics for lithographic projection exposure, the inventive illumination optics may also be employed in an inspection system for examining an object for defects. Inspection systems of this type are in particular used for reticle and/or wafer inspection.
A maximum angle of incidence smaller than 10° can significantly reduce shadings of structures on the reflective object. Moreover, if a reflective coating is provided on the reflective object, this ensures an advantageously high reflectivity of the reflective object, and therefore a high throughput of illumination light or imaging light. The maximum angle of incidence may be smaller than 8°, may be smaller than 6°, and may also be smaller than 5°.
A design of an illumination optics mirror can allow the imaging light emitted by the object field and reflected by the object to be guided through the through-opening of the last mirror of the illumination light, in other words the coupling mirror. An illumination of this type is also referred to as dark field illumination. In this case, the object may only be exposed to light outside an imaging aperture. In particular when imaging object edges, a dark field illumination has advantages over another, conventional illumination. Moreover, the above described advantages of a small angle between the central ray of incidence of the illumination light and the normal to the object field can be combined with those of a conventional and non-obscured imaging optics. A dark field illumination may offer advantages in particular when the illumination optics is employed in an inspection system as this type of illumination allows impurities, scratches or dust in the object field to be imaged at very high contrast.
The advantages of an illumination system can correspond to those explained above with reference to the inventive imaging optics and with reference to the inventive illumination optics.
In an illumination optics, the through-opening through which the illumination light is coupled in may at the same time define a pupil obscuration of the imaging optics.
The advantages of a projection exposure apparatus, of a fabrication method, and of a structured component can correspond to those explained above with reference to the inventive illumination system. The light source may be an EUV (extreme ultraviolet) light source such as an LPP (laser produced plasma) light source or a GDP (gas discharge produced plasma) light source. The inventive imaging optics may not only be employed in a projection exposure apparatus but also in an inspection device in particular for inspection of reflective lithographic masks or for inspection of exposed wafer substrates. The above-discussed image field of the imaging optics is then an inspection object field of the inspection device.
Embodiments of the disclosure will hereinafter be explained in more detail in conjunction with the drawing, in which:
A projection exposure apparatus 1 for lithographic projection exposure for the fabrication of a microstructured or nanostructured component has a light source 2 for illumination light or imaging light 3. The light source 2 is an EUV light source which generates light in a wavelength range of for example between 5 nm and 30 nm, in particular between 5 nm and 10 nm. The light source 2 may in particular be a light source with a wavelength of 6.9 nm or 13.5 nm. Other EUV wavelengths are conceivable as well. Other wavelengths which are used in lithography and for which the suitable light sources are available are conceivable for the illumination light or imaging light 3 guided in the projection exposure apparatus 1. A beam path of the illumination light 3 is shown in an extremely schematic view in
An illumination optics 7 is used for guiding the illumination light 3 from the light source 2 to an object field 4 in an object plane 5. The illumination light 3 emitted by the light source or radiation source 2 is at first collected by a collector 6. An intermediate focus 8 is typically arranged in the illumination beam path downstream of the collector 6. The illumination beam path may also be designed without the intermediate focus 8 in such a way that the illumination light 3 leaves the collector in a collimated form. A spectral filtering of the illumination light 3 may occur in the region of the collector 6 or the intermediate focus 8. A first mirror 9 of the illumination optics 7 is arranged in the illumination beam path downstream of the intermediate focus 8. The first illumination optics mirror 9 may be a field facet mirror. A second mirror 10 of the illumination optics 7 is arranged in the illumination beam path downstream of the first illumination optics mirror 9. The second illumination optics mirror may be a pupil facet mirror.
Alternatively, it is conceivable to use an illumination optics without faceted mirror. An illumination optics of this type may have an illumination beam path which corresponds to that of the illumination optics 7 according to
A coupling mirror 11 of the illumination optics 7 is arranged in the illumination beam path downstream of the second illumination optics mirror 10. The coupling mirror 11 may be supported by a support which corresponds to a support known from FIGS. 1k, 1l and 1m of WO 2006/069725 A.
The coupling mirror 11 guides the illumination light 3 to the object field 4 where a reflective object 12 in the form of a reticle or a lithographic mask is arranged.
The partial illumination beam path between the collector 6 and the first illumination optics mirror 9 intersects with the partial illumination beam path between the second illumination optics mirror 10 and the coupling mirror 11.
An energy weighted or central ray direction of incidence 13 of a bundle of illumination light 3 impinging upon the reticle 12 coincides exactly with a normal 14 to the object plane 5. The energy weighted ray direction of incidence 13 thus makes an angle with the normal 14 which is smaller than 3° and amounts to exactly 0° in the embodiment according to
An imaging optics 16 in the form of a projection optics for guiding the imaging light 3 and for imaging the reticle 12 into an image field 17 in an image plane 18 is arranged in the beam path of the projection exposure apparatus 1 downstream of the object field 4. In the imaging optics 16, the image plane 18 makes an angle with the object plane 5 of approximately 15°. This angle facilitates a design of the imaging optics 16 in terms of a correction of imaging errors, in particular in terms of a correction of telecentricity and aberration across the entire image field 17.
Imaging via the imaging optics 16 occurs on the surface of a substrate in the form of a wafer 19. The reticle 12 and the wafer 19 are supported by supports (not shown). The projection exposure apparatus 1 is a scanner. Both the reticle 12 and the wafer 19 are scanned in the object plane 5 on the one hand and in the image plane 18 on the other when the projection exposure apparatus 1 is in use. Using a projection exposure apparatus 1 in the form of a stepper where the reticle 12 on the one hand and the wafer 19 on the other hand are displaced in steps between individual illuminations of the wafer 19 is conceivable as well.
The imaging optics 16 according to
The mirror M1 is concave. The mirror M2 is convex. The mirror M3 is concave. The mirror M4 is convex. The mirror M5 is convex. The mirror M6 is concave.
Each of the mirrors M1 and M2 has a through-opening 21, 22 for imaging light 3 to pass through. The mirrors M1 and M2 are therefore obscured mirrors. Due to this obscuration, the bundle of imaging light 3 has an inner area in near-pupil regions of the imaging optics 16 where there are no individual rays 20. A free inner area 23 of this type, through which the normal 14 and the central ray of incidence 13 pass, is disposed between the mirrors M1 and M2. In this free area 23 is arranged the coupling mirror 11. The coupling mirror 11 couples the illumination light 3 into the system via the through-opening 23 in the mirror M2 of the imaging optics 16.
A chief ray of a central object field point, which is not part of the beam path because of the obscuration, has a chief ray angle α of 0° in the imaging optics 16. This means that this chief ray of the central object field point coincides with the normal 14 to the object plane 5. The definition of the chief ray angle α is made clear by an insert in
The two mirrors M3 and M4 arranged in the imaging beam path downstream of the mirror M2 have continuous or closed reflection surfaces for the reflection of the imaging light 3, in other words they have no through-opening. In the region of the imaging beam path near the mirrors M3 and M4 is disposed an intermediate image 24 of the imaging optics 16. The mirrors M3 and M4 are therefore near-field mirrors which are suitable for telecentricity correction of the imaging optics 16.
The mirrors M5 and M6 arranged in the imaging beam path of the imaging optics 16 downstream of the mirror M4 are again provided with through-openings 25, 26.
The mirrors M5 and M6 are therefore obscured mirrors again. Between the mirrors M5 and M6, there is again a free region 27 in the bundle of illumination light 3, the free region 27 being an image of the free region 23.
The mirrors M1 and M2 form a first obscured mirror group of the imaging optics 16. The mirrors M3 and M4 form a non-obscured mirror group of the imaging optics 16. The mirrors M5 and M6 form a second obscured mirror group of the imaging optics 16.
In the embodiment according to
In relation to the bundle of illumination light 3, a second mirror 30 of the illumination optics 28 is arranged on the same side as the intermediate focus. A partial illumination beam between the first illumination optics mirror 29 and the second illumination optics mirror 30 therefore crosses the bundle of imaging light 3 again between the mirrors M1 and M2. The coupling mirror 11 is again arranged in the beam path downstream of the second illumination optics mirror 30.
Arranging the illumination optics mirrors 29, 30 according to
The following is a description, via
In the imaging beam path of the imaging optics 31, a first pupil plane 32 of the imaging optics 31 is arranged next to the object field 4. The mirror M2 is arranged between the object field 4 and the object plane 32. A first intermediate image plane 33 is disposed on a level with the through-opening 21 in the mirror M1. In the beam path between the mirrors M2 and M3, another pupil plane 34 is arranged downstream of the intermediate image plane 33. Another intermediate image plane 35 is disposed in the illumination beam path between the mirrors M4 and M5. The intermediate image plane 35 is disposed between the mirror M4 and the mirror M6.
Another pupil plane 36 is disposed in the illumination beam path of the imaging optics 31 and is approximately on a level with the mirror M6.
The mirrors M1 and M4 are arranged back-to-back. The mirrors M3 and M6 are also arranged back-to-back.
The imaging optics 31 also has a first obscured mirror group including the mirrors M1 and M2, a subsequent non-obscured mirror group including the mirrors M3 and M4, and a subsequent obscured mirror group including the mirrors M5 and M6.
In the imaging optics 31, the mirrors M1, M2, M3 and M4 are near-field mirrors, in other words they have a parameter
P(M)=D(SA)/(D(SA)+D(CR)),
the parameter having a value of no more than 0.9.
D(SA) is the sub-aperture diameter of an object field point at the site of the mirror M. D(CR) is the maximum distance of chief rays 20b of an effective object field on the surface of the mirror M in a reference plane, namely in the drawing plane of
The following table contains the values for the parameter P(M) of all six mirrors M1 to M6 of the imaging optics 31:
In the imaging optics 31, the object plane 5 and the image plane 18 are parallel to each other.
The following is a table containing optical design data for the imaging optics 31 obtained via the optical design program Code V®.
The mirrors M1 to M6 of the imaging optics 31 are free-form surfaces which are not describable by a rotation-symmetric function. Other designs of the imaging optics 31, where at least one of the mirrors M1 to M6 has a free-form reflection surface of this type, are conceivable as well.
A free-form surface of this type may be obtained from a rotation-symmetric reference surface. Free-form surfaces of this type for reflection surfaces of the mirrors of projection optical systems of microlithographic projection exposure apparatuses are disclosed in US 2007/0058269 A1.
The free-form surface can be described mathematically by the following equation:
Z is the sagittal height of the free-form surface at the point x, y (x2+y2=r2).
c is a constant which corresponds to the apex curvature of a corresponding asphere. k corresponds to a conical constant of a corresponding asphere. Cj are the coefficients of the monomials XmYn. The values of c, k and Cj are typically determined on the basis of the desired optical properties of the mirror in the projection optics 7. The order of the monomial m+n can be selected randomly. A higher-order monomial may result in a projection optics allowing for better image error correction, the calculation thereof is however much more complicated. m+n may take values of between 3 and more than 20.
It is conceivable as well to mathematically describe free-form surfaces by Zernike polynomials which are explained for example in the manual of the optical design program Code V®. Alternatively, free-form surfaces are describable using two-dimensional spline surfaces such as Bézier curves or non-uniform rational basis splines (NURBS). Two-dimensional spline surfaces may for instance be described by a grid of points in an xy plane and associated z-values, or by these points and associated slopes. Depending on the type of the spline surface, the entire surface is obtained by interpolation between the grid points by using for example polynomials or functions having particular properties in terms of continuity and differentiability. Examples thereof are analytic functions.
The mirrors M1 to M6 have multiple reflection layers optimizing the reflection of incident EUV illumination light 3. The closer the angle of incidence of the individual rays 20 is to vertical incidence when impinging upon the mirror surfaces, the better the reflection.
The first of the following tables contains the reciprocals of the apex curvature (radius) of each of the optical surfaces of the optical components and of the aperture stop as well as a distance value (thickness) corresponding to the z-distance of adjacent elements in the beam path starting from the object plane. The second table contains the coefficients Cj of the monomials XmYn in the above free-form surface equation for the mirrors M1 to M6, with Nradius being a normalizing factor. The third table contains the distance (in mm) along which the respective mirror has been decentered (Y-decenter) and rotated (X-rotation) from a mirror reference design. This corresponds to a parallel translation in the y-direction and a tilting about the x-axis performed when the free-form surface is being designed. The tilting angle is in degrees.
Between the object field 4 and the image field 17, the imaging optics 31 has a reduction of 2×. A numerical aperture on the object side of the imaging optics 31 amounts to 0.15. The object field 4 has a size of 20 mm×20 mm. A numerical aperture on the image side of the imaging optics 31 amounts to 0.3. The image field 17 in the imaging optics 31 has a size of 10 mm×10 mm.
The following is a description, based on
The illustration of the imaging beam path including the individual rays 20a, 20b, 20c corresponds to the illustration according to
In the imaging optics 37, the object plane 5 and the image plane 18 are parallel to each other.
In the illumination example according to
In the illumination example according to
An imaging optics not shown in
On the image side, the imaging optics according to
In the illumination example according to for example
All embodiments of the imaging optics described above have in each case at least one mirror M, with
P(M)≦0.9.
A microstructured or nanostructured component is fabricated via the projection exposure apparatus 1 as follows: In a first step, the reticle 12 and the wafer 19 are provided. Afterwards, a structure on the reticle 12 is projected onto a light-sensitive layer on the wafer 19 via the projection exposure apparatus 1. The light-sensitive layer is then developed to form a microstructure or a nanostructure on the wafer 19, with the result that a microstructured component, for instance a semiconductor component in the form of a highly integrated circuit, is obtained.
This application is a continuation of, and claims benefit under 35 USC 120 to, international application PCT/EP2010/068782, filed Aug. 31, 2010, which claims benefit under 35 USC 119(e) of U.S. Ser. No. 61/286,066, filed Dec. 14, 2009. International application PCT/EP2010/068782 is hereby incorporated by reference in its entirety. The disclosure relates to an imaging optics for lithographic projection exposure. The disclosure further relates to an illumination optics for lithographic projection exposure, an illumination system including an imaging optics of this type and an illumination optics of this type, a projection exposure apparatus including an illumination system of this type, a method for the fabrication of a microstructured or nanostructured component using such a projection exposure apparatus, and a microstructured or nanostructured component fabricated according to such a method. An imaging optics of this type may also be used for inspection of reflective lithographic masks and exposed wafers, and may, in the form of an inspection objective, in particular be part of a semiconductor inspection device.
Number | Date | Country | |
---|---|---|---|
61286066 | Dec 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2010/068782 | Dec 2010 | US |
Child | 13482794 | US |