The present technology relates to semiconductor processes and equipment. More specifically, the present technology relates to processing system plasma components that are at least partially insulated.
Integrated circuits are made possible by processes which produce intricately patterned material layers on substrate surfaces. Producing patterned material on a substrate requires controlled methods for removal of exposed material. Chemical etching is used for a variety of purposes including transferring a pattern in photoresist into underlying layers, thinning layers, or thinning lateral dimensions of features already present on the surface. Often it is sought to have an etch process that etches one material faster than another facilitating, for example, a pattern transfer process. Such an etch process is said to be selective to the first material. As a result of the diversity of materials, circuits, and processes, etch processes have been developed with a selectivity towards a variety of materials.
Dry etches produced in local plasmas formed within the substrate processing region can penetrate more constrained trenches and exhibit less deformation of delicate remaining structures. However, local plasmas can damage the substrate through the production of electric arcs as they discharge. Plasmas additionally may sputter or otherwise degrade chamber components often requiring replacement of internal parts. Protecting chamber components can be performed by seasoning the chamber, which may increase process queue times and may be a disadvantage to adequate throughput.
Thus, there is a need for improved system components that can be used in plasma environments effectively while providing suitable degradation profiles. These and other needs are addressed by the present technology.
Exemplary faceplates may include a conductive plate defining a plurality of apertures. The faceplates may additionally include a plurality of inserts, and each one of the plurality of inserts may be disposed within one of the plurality of apertures. Each insert may define at least one channel through the insert to provide a flow path through the faceplate. Each insert may also define more than one channel, and may for example define six channels through the insert arranged in a hexagonal pattern.
The faceplates may further include a plurality of o-rings positioned within annular channels, and each annular channel may be defined at least partially by each of the plurality of inserts. A portion of each o-ring of the plurality of o-rings may be seated within an annular groove defined along a region of a corresponding insert between a top and bottom of the insert. A second o-ring may also be seated within a second annular groove defined along a region of a corresponding insert between the top and bottom of the insert and vertically disposed from the first o-ring. The o-rings may be disposed within the inserts and the inserts may be housed within the respectively defined apertures of the conductive plate and may extend radially within each aperture to within at least 50 mils of the radius of each aperture. A portion of each aperture may be defined with a decreasing diameter from an upper region to a lower region to define a tapered region of the aperture. In exemplary faceplates the conductive plate may include a layer of material, such as dielectric material, on all surfaces of the conductive plate that may be exposed to plasma. Also, the layer of material may be located on all surfaces of the conductive plate including on all surfaces defining the plurality of apertures. The layer of material may be formed from a dielectric material, and may further be a ceramic material.
Exemplary faceplates of the technology may include a conductive plate defining a plurality of apertures. The faceplates may additionally include a plurality of inserts, and each one of the plurality of inserts may be disposed within one of the plurality of apertures. Each aperture may be defined with an upper portion and a lower portion of the aperture. The upper portion may be characterized by a cylindrical shape having a first diameter, and the lower portion may be characterized by a cylindrical shape having a second diameter less than the first diameter. A ledge may be defined by the conductive plate at the boundary between the upper portion and lower portion. The upper portion may be less than 10% of the length of the aperture in exemplary apertures. Each insert may be seated on the defined ledge of each corresponding aperture, and each insert may occupy at least a portion of both the upper portion and lower portion of each aperture. Each insert may also occupy only the upper portion or only the lower portion of each corresponding aperture in embodiments. Additionally, a plurality of o-rings may be positioned to form a seal between the inserts and the upper and/or lower portion of the apertures.
The inserts may also be formed from a dielectric material, and may further be a ceramic material. The ceramic may include one or more of aluminum oxide, zirconium oxide, and yttrium oxide. The plurality of inserts may be fixedly coupled to an insert plate in exemplary faceplates, and the insert may extend unidirectionally from a surface of the insert plate. The insert plate may be configured to be thermally fit to the conductive plate such that a surface of the insert plate covers a surface of the conductive plate, and the inserts may at least partially extend through the corresponding apertures.
Methods are also described forming exemplary faceplates. The methods may include forming a plurality of apertures through a conductive plate. The methods may include coating at least a portion of the conductive plate with a dielectric material, and the coating additionally may cover at least a portion of surfaces of the plate defining the plurality of apertures. The methods may further include disposing a plurality of inserts within the apertures such that each aperture includes at least one insert, and the inserts may each define at least one channel through the insert.
Such technology may provide numerous benefits over conventional systems and techniques. For example, degradation of the faceplate may be prevented or limited. An additional advantage is that improved uniformity of distribution may be provided from the channels of the inserts. These and other embodiments, along with many of their advantages and features, are described in more detail in conjunction with the below description and attached figures.
A further understanding of the nature and advantages of the disclosed technology may be realized by reference to the remaining portions of the specification and the drawings.
Several of the Figures are included as schematics. It is to be understood that the Figures are for illustrative purposes, and are not to be considered of scale unless specifically stated to be as such.
In the appended figures, similar components and/or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a letter that distinguishes among the similar components. If only the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the letter.
The present technology includes systems and components for semiconductor processing. When plasmas are formed in situ in processing chambers, such as with a capacitively coupled plasma (“CCP”) for example, exposed surfaces may be sputtered or degraded by the plasma or the species produced by the plasma. When dry etchant formulas that may include several radical species produced by the plasma are formed, the radical species produced may interact and affect the remote plasma chamber.
Conventional technologies have dealt with these unwanted side effects through regular maintenance and replacement of components, however, the present systems may at least partially overcome this need by providing components that may be less likely to degrade as well as components that may be easier to protect. By utilizing dielectric inserts within larger bore apertures, multiple benefits or advantages may be provided. The apertures of the plate may be of sufficient diameter to allow protective coatings to be applied to the plate, and the inserts may have channels specifically configured to produce more uniform flow patterns for precursors being delivered. Accordingly, the systems described herein provide improved performance and cost benefits over many conventional designs. These and other benefits will be described in detail below.
Although the remaining disclosure will routinely identify specific etching processes utilizing the disclosed technology, it will be readily understood that the systems and methods are equally applicable to deposition and cleaning processes as may occur in the described chambers. Accordingly, the technology should not be considered to be so limited as for use with etching processes alone.
The substrate processing chambers 108a-f may include one or more system components for depositing, annealing, curing and/or etching a dielectric film on the substrate wafer. In one configuration, two pairs of the processing chamber, e.g., 108c-d and 108e-f, may be used to deposit dielectric material on the substrate, and the third pair of processing chambers, e.g., 108a-b, may be used to etch the deposited dielectric. In another configuration, all three pairs of chambers, e.g., 108a-f, may be configured to etch a dielectric film on the substrate. Any one or more of the processes described may be carried out in chamber(s) separated from the fabrication system shown in different embodiments. It will be appreciated that additional configurations of deposition, etching, annealing, and curing chambers for dielectric films are contemplated by system 100.
A cooling plate 203, faceplate 217, ion suppressor 223, showerhead 225, and a substrate support 265, having a substrate 255 disposed thereon, are shown and may each be included according to embodiments. The pedestal 265 may have a heat exchange channel through which a heat exchange fluid flows to control the temperature of the substrate. The wafer support platter of the pedestal 265, which may comprise aluminum, ceramic, or a combination thereof, may also be resistively heated in order to achieve relatively high temperatures, such as from up to or about 100° C. to above or about 1100° C., using an embedded resistive heater element.
The faceplate 217 may be pyramidal, conical, or of another similar structure with a narrow top portion expanding to a wide bottom portion. The faceplate 217 may additionally be flat as shown and include a plurality of through-channels used to distribute process gases. Plasma generating gases and/or plasma excited species, depending on use of the RPS 201, may pass through a plurality of holes, shown in
Exemplary configurations may include having the gas inlet assembly 205 open into a gas supply region 258 partitioned from the first plasma region 215 by faceplate 217 so that the gases/species flow through the holes in the faceplate 217 into the first plasma region 215. Structural and operational features may be selected to prevent significant backflow of plasma from the first plasma region 215 back into the supply region 258, gas inlet assembly 205, and fluid supply system 210. The faceplate 217, or a conductive top portion of the chamber, and showerhead 225 are shown with an insulating ring 220 located between the features, which allows an AC potential to be applied to the faceplate 217 relative to showerhead 225 and/or ion suppressor 223. The insulating ring 220 may be positioned between the faceplate 217 and the showerhead 225 and/or ion suppressor 223 enabling a capacitively coupled plasma (CCP) to be formed in the first plasma region. A baffle (not shown) may additionally be located in the first plasma region 215, or otherwise coupled with gas inlet assembly 205, to affect the flow of fluid into the region through gas inlet assembly 205.
The ion suppressor 223 may comprise a plate or other geometry that defines a plurality of apertures throughout the structure that are configured to suppress the migration of ionically-charged species out of the plasma excitation region 215 while allowing uncharged neutral or radical species to pass through the ion suppressor 223 into an activated gas delivery region between the suppressor and the showerhead. In embodiments, the ion suppressor 223 may comprise a perforated plate with a variety of aperture configurations. These uncharged species may include highly reactive species that are transported with less reactive carrier gas through the apertures. As noted above, the migration of ionic species through the holes may be reduced, and in some instances completely suppressed. Controlling the amount of ionic species passing through the ion suppressor 223 may advantageously provide increased control over the gas mixture brought into contact with the underlying wafer substrate, which in turn may increase control of the deposition and/or etch characteristics of the gas mixture. For example, adjustments in the ion concentration of the gas mixture can significantly alter its etch selectivity, e.g., TiNx:SiOx etch ratios, TiN:W etch ratios, etc. In alternative embodiments in which deposition is performed, it can also shift the balance of conformal-to-flowable style depositions for dielectric materials.
The plurality of apertures in the ion suppressor 223 may be configured to control the passage of the activated gas, i.e., the ionic, radical, and/or neutral species, through the ion suppressor 223. For example, the aspect ratio of the holes, or the hole diameter to length, and/or the geometry of the holes may be controlled so that the flow of ionically-charged species in the activated gas passing through the ion suppressor 223 is reduced. The holes in the ion suppressor 223 may include a tapered portion that faces the plasma excitation region 215, and a cylindrical portion that faces the showerhead 225. The cylindrical portion may be shaped and dimensioned to control the flow of ionic species passing to the showerhead 225. An adjustable electrical bias may also be applied to the ion suppressor 223 as an additional means to control the flow of ionic species through the suppressor.
The ion suppressor 223 may function to reduce or eliminate the amount of ionically charged species traveling from the plasma generation region to the substrate. Uncharged neutral and radical species may still pass through the openings in the ion suppressor to react with the substrate. It should be noted that the complete elimination of ionically charged species in the reaction region surrounding the substrate may not be performed in embodiments. In certain instances, ionic species are required to reach the substrate in order to perform the etch and/or deposition process. In these instances, the ion suppressor may help to control the concentration of ionic species in the reaction region at a level that assists the process.
Showerhead 225 in combination with ion suppressor 223 may allow a plasma present in chamber plasma region 215 to avoid directly exciting gases in substrate processing region 233, while still allowing excited species to travel from chamber plasma region 215 into substrate processing region 233. In this way, the chamber may be configured to prevent the plasma from contacting a substrate 255 being etched. This may advantageously protect a variety of intricate structures and films patterned on the substrate, which may be damaged, dislocated, or otherwise warped if directly contacted by a generated plasma. Additionally, when plasma is allowed to contact the substrate or approach the substrate level, the rate at which oxide species etch may increase. Accordingly, if an exposed region of material is oxide, this material may be further protected by maintaining the plasma remotely from the substrate.
The processing system may further include a power supply 240 electrically coupled with the processing chamber to provide electric power to the faceplate 217, ion suppressor 223, showerhead 225, and/or pedestal 265 to generate a plasma in the first plasma region 215 or processing region 233. The power supply may be configured to deliver an adjustable amount of power to the chamber depending on the process performed. Such a configuration may allow for a tunable plasma to be used in the processes being performed. Unlike a remote plasma unit, which is often presented with on or off functionality, a tunable plasma may be configured to deliver a specific amount of power to the plasma region 215. This in turn may allow development of particular plasma characteristics such that precursors may be dissociated in specific ways to enhance the etching profiles produced by these precursors.
A plasma may be ignited either in chamber plasma region 215 above showerhead 225 or substrate processing region 233 below showerhead 225. Plasma may be present in chamber plasma region 215 to produce the radical precursors from an inflow of, for example, a fluorine-containing precursor or other precursor. An AC voltage typically in the radio frequency (RF) range may be applied between the conductive top portion of the processing chamber, such as faceplate 217, and showerhead 225 and/or ion suppressor 223 to ignite a plasma in chamber plasma region 215 during deposition. An RF power supply may generate a high RF frequency of 13.56 MHz but may also generate other frequencies alone or in combination with the 13.56 MHz frequency.
The gas distribution assemblies such as showerhead 225 for use in the processing chamber section 200 may be referred to as dual channel showerheads (DCSH) and are additionally detailed in the embodiments described in
The showerhead 225 may comprise an upper plate 214 and a lower plate 216. The plates may be coupled with one another to define a volume 218 between the plates. The coupling of the plates may be so as to provide first fluid channels 219 through the upper and lower plates, and second fluid channels 221 through the lower plate 216. The formed channels may be configured to provide fluid access from the volume 218 through the lower plate 216 via second fluid channels 221 alone, and the first fluid channels 219 may be fluidly isolated from the volume 218 between the plates and the second fluid channels 221. The volume 218 may be fluidly accessible through a side of the gas distribution assembly 225.
An arrangement for a faceplate according to embodiments is shown in
The plate may have a disc shape and be seated on or within the frame 410. The plate may be a conductive material such as a metal including aluminum, as well as other conductive materials that allow the plate to serve as an electrode for use in a plasma arrangement as previously described. The plate may be of a variety of thicknesses, and may include a plurality of apertures 465 defined within the plate. An exemplary arrangement as shown in
The apertures 465 may be sized or otherwise configured to allow inserts to be positioned or disposed within each one of the apertures such that each aperture includes a corresponding insert. An exemplary insert is illustrated in aperture 465n, and described further below in conjunction with
Turning to
Each insert 515 may further define at least one channel 517 through the insert, and in embodiments may define a plurality of channels 517 within each insert 515, that may include at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, etc. or more channels defined by the insert. The channels may be a variety of sizes based on the number of channels, desired flow characteristics, etc., and in embodiments may be less than or about 1 inch. The channels may also be less than or about 0.8, about 0.75 inches, about 0.6 inches, about 0.5 inches, about 0.4 inches, about 0.3 inches, about 0.2 inches, about 0.1 inches, about 0.09 inches, about 0.08 inches, about 0.07 inches, about 0.06 inches, about 0.05 inches, about 0.04 inches, about 0.03 inches, about 0.02 inches, about 0.01 inches, about 0.005 inches, etc. or less. The channels may be defined along a parallel axis as the apertures, or may be angled towards or away from a central axis of the aperture in embodiments.
The inserts may be made of a variety of materials that include dielectrics, insulative materials, oxides, and ceramics or other inorganic or organic nonmetallic solids. The inserts may be made of material providing a resistance to physical bombardment as well as chemical inertness, among other properties. The ceramics may be whiteware or technical ceramics and may include one or more oxides including aluminum oxide, beryllium oxide, cerium oxide, zirconium oxide, yttrium oxide, etc. The ceramics may include nonoxides including carbide, boride, nitride, silicide, etc., as well as composite materials such as particulates or fibers to reinforce the material. The ceramics may also include one or more combinations of oxides and nonoxides, and in embodiments may include a combination of aluminum oxide and yttrium oxide. The ceramic may also include a combination of aluminum oxide, yttrium oxide, and zirconium oxide in a variety of proportions to provide specific properties. Each or any of the oxides may be at least about 0.1% of the composite, and may also be at least about 3%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, etc. or more of the total amount of material in the composite up to 100% in which case the ceramic is essentially that material. The amount of each material may also be considered within a range of any of the disclosed percentages or numbers enclosed by any of the percentages listed.
The inserts may be disposed in the apertures in a variety of ways including press fitting, thermal shrinking, or with other clamping and fitting mechanisms as would be understood. For example, one or more devices 523 such as o-rings may be positioned along the inserts to provide a sealing between the plate 520 and the inserts 515. The o-rings 523 or other devices may be positioned within annular channels 524 defined at least partially by the plurality of inserts 515, and a portion of each o-ring 523 may be seated within an annular groove 525 defined along a region of a corresponding insert between the top and bottom of the insert. The annular channels may also be at least partially defined by the plate 520 as illustrated by the annular grooves 526. In embodiments more than one device such as multiple o-rings may be used in conjunction to provide stability and sealing of the insert. For example, a second o-ring may be seated within a second annular groove defined along a region of a corresponding insert between the top and bottom of the insert and vertically spaced from the first o-ring. The o-rings 523 may be disposed within the inserts such that the inserts are housed within the respectively defined apertures of the conductive plate and extend radially within each aperture to within at least about 0.5 inches of the radius of each aperture. In embodiments the inserts may extend radially within each aperture to within at least about 0.25 inches, about 0.1 inches, about 0.075 inches, about 0.05 inches, about 0.025 inches, about 0.015 inches, about 0.01 inches, about 0.005 inches, about 0.001 inches, etc. or less.
The flow capacity of each channel may also determine the number of apertures used. For example, if larger diameter channels are used, or a greater number of channels, less apertures with inserts may be required to deliver a certain flow of precursors or plasma effluents. Additionally, the number of channels and size of the channels will similarly affect the diameter of the inserts used. This may affect cost and manufacturing time associated with the faceplates and inserts. For example, larger inserts and/or larger channels may be less expensive to manufacture than smaller inserts or features. Certain inserts defining no channels may be used in select locations to further modify the flow patterns through the plate. For example, one of the rings of apertures as previously described may have each aperture or any number of apertures of the ring house or hold an insert having no channels defined therein in order to direct flow away from the particular apertures.
The apertures and inserts may also take on a variety of profiles that include cylindrical bodies as shown in
In embodiments the upper portion may have a depth that is greater than or about 90% of the overall depth of the aperture, less than about 90%, less than or about 85%, 80%, 75%, 70%, 65%, 60%, 55% 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, 2%, or less and may have a profile similar to a spotface in which the upper portion accounts for only a small fraction of the overall length of the aperture. The aperture shape may provide additional support for the insert disposed therein, which may be seated on the defined ledge of the corresponding aperture, and occupy at least a portion of both the upper portion and lower portion of each aperture, such as shown in
When using the plate as an electrode, such as with plasma operations as described previously in which the plate may comprise a lower electrode or ground electrode, areas having dielectric inserts, or gaps in the conductive material, may allow plasma leakage to occur in the processing region below the faceplate, as these regions may be relatively transparent to the RF. Although this may be desirable for certain operations, in embodiments, the operations may seek to minimize plasma in the processing region and thus large bore holes may provide access by which plasma ignition may occur below the faceplate. However, manufacturing costs may dictate that larger inserts are more economical under certain conditions. Accordingly, by forming apertures having an upper portion and a smaller lower portion, a larger and potentially more cost effective insert may be utilized, while plasma leakage through the plate may be minimized by having smaller gaps that actually penetrate the conductive plate, which may advantageously contain the plasma partially, substantially, or essentially above the faceplate. In embodiments the apertures may be configured to reduce or limit the leakage through the faceplate. As discussed previously, the faceplate may be coupled with a showerhead to form a single electrode, for example. In embodiments, the arrangement of holes in the showerhead and faceplate may be configured to limit direct through-paths for ignition in the processing region. For example, the first channels of the showerhead may be offset from the apertures of the faceplate in order to provide a consistent electrode region across the combined surfaces.
The inserts may be made of a dielectric material as previously described, and in embodiments an additional material such as a layer of material may coat or cover all surfaces of the conductive plate that are exposed or facing plasma. For example, if only one side of the plate is plasma-facing, then in embodiments only that face of the plate may be coated with the layer of material. The coating may also cover the walls of the plate defining the apertures. Additionally, the layer of material may be located on all surfaces of the conductive plate including on all surfaces defining the plurality of apertures. In this way, the plate may be protected from radical species, such as fluorine species, that may interact with the plate. In such embodiments, o-rings or other devices may be used to ease the inserts into the material, although press fitting or thermal fitting may similarly be employed. If a ceramic material is utilized as the coating, the coating may be temperature limited for subsequent operations or else the material might crack or otherwise produce defects. Accordingly, if thermal operations are subsequently performed, such as to fit the inserts into the conductive plate, the operations may be required to occur at temperatures below a threshold temperature affecting the coating. This temperature may be less than or about 500° C. in embodiments, and may also be less than or about 450° C., about 400° C., about 350° C., about 300° C., about 250° C., about 200° C., about 150° C., about 100° C., about 50° C., etc. or less. The material may be a dielectric or insulative material, and may be similar to or different from the material used for the inserts. For example, the material may include one or more of aluminum oxide, yttrium oxide, or zirconium oxide as previously discussed. For example, the material may be a ceramic coating that is plasma sprayed or otherwise applied to the surfaces of the plate. Such processes may be limited for certain aperture diameters, and as such, the apertures may be sized to accommodate and ensure complete coating of the surfaces with the dielectric material.
Turning to
In the preceding description, for the purposes of explanation, numerous details have been set forth in order to provide an understanding of various embodiments of the present technology. It will be apparent to one skilled in the art, however, that certain embodiments may be practiced without some of these details, or with additional details.
Having disclosed several embodiments, it will be recognized by those of skill in the art that various modifications, alternative constructions, and equivalents may be used without departing from the spirit of the embodiments. Additionally, a number of well-known processes and elements have not been described in order to avoid unnecessarily obscuring the present technology. Accordingly, the above description should not be taken as limiting the scope of the technology.
Where a range of values is provided, it is understood that each intervening value, to the smallest fraction of the unit of the lower limit, unless the context clearly dictates otherwise, between the upper and lower limits of that range is also specifically disclosed. Any narrower range between any stated values or unstated intervening values in a stated range and any other stated or intervening value in that stated range is encompassed. The upper and lower limits of those smaller ranges may independently be included or excluded in the range, and each range where either, neither, or both limits are included in the smaller ranges is also encompassed within the technology, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included.
As used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise. Thus, for example, reference to “an aperture” includes a plurality of such apertures, and reference to “the plate” includes reference to one or more plates and equivalents thereof known to those skilled in the art, and so forth.
Also, the words “comprise(s)”, “comprising”, “contain(s)”, “containing”, “include(s)”, and “including”, when used in this specification and in the following claims, are intended to specify the presence of stated features, integers, components, or operations, but they do not preclude the presence or addition of one or more other features, integers, components, operations, acts, or groups.
This Application claims the benefit of U.S. Provisional Application No. 61/774,963, filed Mar. 8, 2013, entitled “Insulated Semiconductor Faceplate Designs,” the entire disclosure of which is hereby incorporated by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2369620 | Sullivan et al. | Feb 1945 | A |
3451840 | Hough | Jun 1969 | A |
3937857 | Brummett et al. | Feb 1976 | A |
4006047 | Brummett et al. | Feb 1977 | A |
4209357 | Gorin et al. | Jun 1980 | A |
4214946 | Forget et al. | Jul 1980 | A |
4232060 | Mallory, Jr. | Nov 1980 | A |
4234628 | DuRose | Nov 1980 | A |
4265943 | Goldstein et al. | May 1981 | A |
4364803 | Nidola et al. | Dec 1982 | A |
4368223 | Kobayashi et al. | Jan 1983 | A |
4397812 | Mallory, Jr. | Aug 1983 | A |
4468413 | Bachmann | Aug 1984 | A |
4512283 | Bonifield | Apr 1985 | A |
4565601 | Kakehi et al. | Jan 1986 | A |
4571819 | Rogers et al. | Feb 1986 | A |
4579618 | Celestino et al. | Apr 1986 | A |
4585920 | Hoog et al. | Apr 1986 | A |
4625678 | Shloya et al. | Dec 1986 | A |
4632857 | Mallory, Jr. | Dec 1986 | A |
4656052 | Satou et al. | Apr 1987 | A |
4690746 | McInerney et al. | Sep 1987 | A |
4714520 | Gwozdz | Dec 1987 | A |
4715937 | Moslehi et al. | Dec 1987 | A |
4749440 | Blackwood et al. | Jun 1988 | A |
4753898 | Parrillo et al. | Jun 1988 | A |
4786360 | Cote et al. | Nov 1988 | A |
4793897 | Dunfield et al. | Dec 1988 | A |
4807016 | Douglas | Feb 1989 | A |
4810520 | Wu | Mar 1989 | A |
4816638 | Ukai et al. | Mar 1989 | A |
4820377 | Davis et al. | Apr 1989 | A |
4851370 | Doklan et al. | Jul 1989 | A |
4865685 | Palmour | Sep 1989 | A |
4872947 | Wang et al. | Oct 1989 | A |
4878994 | Jucha et al. | Nov 1989 | A |
4886570 | Davis et al. | Dec 1989 | A |
4892753 | Wang et al. | Jan 1990 | A |
4894352 | Lane et al. | Jan 1990 | A |
4904341 | Blaugher et al. | Feb 1990 | A |
4904621 | Lowenstein et al. | Feb 1990 | A |
4913929 | Moslehi et al. | Apr 1990 | A |
4951601 | Maydan et al. | Aug 1990 | A |
4960488 | Law et al. | Oct 1990 | A |
4980018 | Mu et al. | Dec 1990 | A |
4981551 | Palmour | Jan 1991 | A |
4985372 | Narita et al. | Jan 1991 | A |
4992136 | Tachi et al. | Feb 1991 | A |
4994404 | Sheng et al. | Feb 1991 | A |
5000113 | Wang et al. | Mar 1991 | A |
5013691 | Lory et al. | May 1991 | A |
5030319 | Nishino et al. | Jul 1991 | A |
5061838 | Lane et al. | Oct 1991 | A |
5089441 | Moslehi | Feb 1992 | A |
5089442 | Olmer | Feb 1992 | A |
5147692 | Bengston | Sep 1992 | A |
5156881 | Okano et al. | Oct 1992 | A |
5186718 | Tepman et al. | Feb 1993 | A |
5198034 | deBoer et al. | Mar 1993 | A |
5203911 | Sricharoenchalkit et al. | Apr 1993 | A |
5215787 | Homma | Jun 1993 | A |
5228501 | Tepman et al. | Jul 1993 | A |
5231690 | Soma et al. | Jul 1993 | A |
5235139 | Bengston et al. | Aug 1993 | A |
5238499 | van de Ven et al. | Aug 1993 | A |
5240497 | Shacham et al. | Aug 1993 | A |
5248527 | Uchida et al. | Sep 1993 | A |
5252178 | Moslehi | Oct 1993 | A |
5266157 | Kadomura | Nov 1993 | A |
5270125 | America et al. | Dec 1993 | A |
5271972 | Kwok et al. | Dec 1993 | A |
5275977 | Otsubo et al. | Jan 1994 | A |
5279865 | Chebi et al. | Jan 1994 | A |
5288518 | Homma | Feb 1994 | A |
5290382 | Zarowin et al. | Mar 1994 | A |
5300463 | Cathey et al. | Apr 1994 | A |
5302233 | Kim et al. | Apr 1994 | A |
5306530 | Strongin et al. | Apr 1994 | A |
5314724 | Tsukune et al. | May 1994 | A |
5316804 | Tomikawa et al. | May 1994 | A |
5319247 | Matsuura | Jun 1994 | A |
5326427 | Jerbic | Jul 1994 | A |
5328218 | Lowrey et al. | Jul 1994 | A |
5328558 | Kawamura et al. | Jul 1994 | A |
5334552 | Homma | Aug 1994 | A |
5345999 | Hosokawa | Sep 1994 | A |
5352636 | Beinglass | Oct 1994 | A |
5356478 | Chen et al. | Oct 1994 | A |
5362526 | Wang et al. | Nov 1994 | A |
5368897 | Kurihara et al. | Nov 1994 | A |
5380560 | Kaja et al. | Jan 1995 | A |
5382311 | Ishikawa et al. | Jan 1995 | A |
5384284 | Doan et al. | Jan 1995 | A |
5385763 | Okano et al. | Jan 1995 | A |
5399237 | Keswick et al. | Mar 1995 | A |
5399529 | Homma | Mar 1995 | A |
5403434 | Moslehi | Apr 1995 | A |
5413967 | Matsuda et al. | May 1995 | A |
5415890 | Kloiber et al. | May 1995 | A |
5416048 | Blalock et al. | May 1995 | A |
5420075 | Homma et al. | May 1995 | A |
5429995 | Nishiyama et al. | Jul 1995 | A |
5439553 | Grant et al. | Aug 1995 | A |
5451259 | Krogh | Sep 1995 | A |
5468342 | Nulty et al. | Nov 1995 | A |
5474589 | Ohga et al. | Dec 1995 | A |
5478403 | Shinigawa et al. | Dec 1995 | A |
5478462 | Walsh | Dec 1995 | A |
5483920 | Pryor | Jan 1996 | A |
5500249 | Telford et al. | Mar 1996 | A |
5505816 | Barnes et al. | Apr 1996 | A |
5510216 | Calabrese et al. | Apr 1996 | A |
5516367 | Lei et al. | May 1996 | A |
5534070 | Okamura et al. | Jun 1996 | A |
5536360 | Nguyen et al. | Jun 1996 | A |
5531835 | Fodor et al. | Jul 1996 | A |
5549780 | Koinuma et al. | Aug 1996 | A |
5558717 | Zhao et al. | Sep 1996 | A |
5560779 | Knowles et al. | Oct 1996 | A |
5563105 | Dobuzinsky et al. | Oct 1996 | A |
5571576 | Qian et al. | Nov 1996 | A |
5578130 | Hayashi et al. | Nov 1996 | A |
5578161 | Auda | Nov 1996 | A |
5580421 | Hiatt et al. | Dec 1996 | A |
5591269 | Arami et al. | Jan 1997 | A |
5599740 | Jang et al. | Feb 1997 | A |
5624582 | Cain | Apr 1997 | A |
5626922 | Miyanaga et al. | May 1997 | A |
5635086 | Warren, Jr. | Jun 1997 | A |
5645645 | Zhang et al. | Jul 1997 | A |
5648125 | Cane | Jul 1997 | A |
5648175 | Russell et al. | Jul 1997 | A |
5656093 | Burkhart et al. | Aug 1997 | A |
5661093 | Ravi et al. | Aug 1997 | A |
5674787 | Zhao et al. | Oct 1997 | A |
5679606 | Wang et al. | Oct 1997 | A |
5688331 | Aruga et al. | Nov 1997 | A |
5695810 | Dubin et al. | Dec 1997 | A |
5712185 | Tsai et al. | Jan 1998 | A |
5716500 | Bardos et al. | Feb 1998 | A |
5716506 | Maclay et al. | Feb 1998 | A |
5719085 | Moon et al. | Feb 1998 | A |
5733816 | Iyer et al. | Mar 1998 | A |
5746875 | Maydan | May 1998 | A |
5747373 | Yu | May 1998 | A |
5755859 | Brusic et al. | May 1998 | A |
5756400 | Ye et al. | May 1998 | A |
5756402 | Jimbo et al. | May 1998 | A |
5772770 | Suda et al. | Jun 1998 | A |
5781693 | Ballance et al. | Jul 1998 | A |
5786276 | Brooks et al. | Jul 1998 | A |
5789300 | Fulford | Aug 1998 | A |
5800686 | Littau et al. | Sep 1998 | A |
5804259 | Robles | Sep 1998 | A |
5812403 | Fong et al. | Sep 1998 | A |
5820723 | Benjamin et al. | Oct 1998 | A |
5824599 | Schacham-Diamand et al. | Oct 1998 | A |
5830805 | Schacham-Diamand et al. | Nov 1998 | A |
5838055 | Kleinhenz et al. | Nov 1998 | A |
5843538 | Ehrsam et al. | Dec 1998 | A |
5844195 | Fairbairn et al. | Dec 1998 | A |
5846332 | Zhao et al. | Dec 1998 | A |
5846375 | Gilchrist et al. | Dec 1998 | A |
5846598 | Semkow et al. | Dec 1998 | A |
5849639 | Molloy et al. | Dec 1998 | A |
5850105 | Dawson et al. | Dec 1998 | A |
5855681 | Maydan et al. | Jan 1999 | A |
5856240 | Sinha et al. | Jan 1999 | A |
5858876 | Chew | Jan 1999 | A |
5872052 | Iyer | Feb 1999 | A |
5872058 | Van Cleemput et al. | Feb 1999 | A |
5882424 | Taylor et al. | Mar 1999 | A |
5882786 | Nassau et al. | Mar 1999 | A |
5885404 | Kim et al. | Mar 1999 | A |
5885749 | Huggins et al. | Mar 1999 | A |
5888906 | Sandhu et al. | Mar 1999 | A |
5891349 | Tobe et al. | Apr 1999 | A |
5891513 | Dubin et al. | Apr 1999 | A |
5897751 | Makowiecki | Apr 1999 | A |
5899752 | Hey et al. | May 1999 | A |
5904827 | Reynolds | May 1999 | A |
5907790 | Kellam | May 1999 | A |
5910340 | Uchida et al. | Jun 1999 | A |
5913140 | Roche et al. | Jun 1999 | A |
5913147 | Dubin et al. | Jun 1999 | A |
5915190 | Pirkle | Jun 1999 | A |
5918116 | Chittipeddi | Jun 1999 | A |
5920792 | Lin | Jul 1999 | A |
5932077 | Reynolds | Aug 1999 | A |
5933757 | Yoshikawa et al. | Aug 1999 | A |
5935334 | Fong et al. | Aug 1999 | A |
5937323 | Orczyk et al. | Aug 1999 | A |
5939831 | Fong et al. | Aug 1999 | A |
5942075 | Nagahata et al. | Aug 1999 | A |
5944902 | Redeker et al. | Aug 1999 | A |
5951601 | Lesinski et al. | Sep 1999 | A |
5951776 | Selyutin et al. | Sep 1999 | A |
5953591 | Ishihara et al. | Sep 1999 | A |
5953635 | Andideh | Sep 1999 | A |
5968610 | Liu et al. | Oct 1999 | A |
5969422 | Ting et al. | Oct 1999 | A |
5976327 | Tanaka | Nov 1999 | A |
5990000 | Hong et al. | Nov 1999 | A |
5990013 | Berenguer et al. | Nov 1999 | A |
5993916 | Zhao et al. | Nov 1999 | A |
6004884 | Abraham | Dec 1999 | A |
6010962 | Liu et al. | Jan 2000 | A |
6013191 | Nasser-Faili et al. | Jan 2000 | A |
6013584 | M'Saad | Jan 2000 | A |
6015724 | Yamazaki et al. | Jan 2000 | A |
6015747 | Lopatin et al. | Jan 2000 | A |
6020271 | Yanagida | Feb 2000 | A |
6030666 | Lam et al. | Feb 2000 | A |
6030881 | Papasouliotis et al. | Feb 2000 | A |
6035101 | Sajoto et al. | Mar 2000 | A |
6037018 | Jang et al. | Mar 2000 | A |
6037266 | Tao et al. | Mar 2000 | A |
6039851 | Iyer | Mar 2000 | A |
6053982 | Halpin et al. | Apr 2000 | A |
6059643 | Hu et al. | May 2000 | A |
6063683 | Wu et al. | May 2000 | A |
6063712 | Gilton et al. | May 2000 | A |
6065424 | Shacham-Diamand et al. | May 2000 | A |
6072227 | Yau et al. | Jun 2000 | A |
6077780 | Dubin | Jun 2000 | A |
6080529 | Ye et al. | Jun 2000 | A |
6083344 | Hanawa et al. | Jul 2000 | A |
6083844 | Bui-Le et al. | Jul 2000 | A |
6086677 | Umotoy et al. | Jul 2000 | A |
6087278 | Kim et al. | Jul 2000 | A |
6093594 | Yeap et al. | Jul 2000 | A |
6099697 | Hausmann | Aug 2000 | A |
6107199 | Allen et al. | Aug 2000 | A |
6110530 | Chen et al. | Aug 2000 | A |
6110836 | Cohen et al. | Aug 2000 | A |
6110838 | Loewenstein | Aug 2000 | A |
6113771 | Landau et al. | Sep 2000 | A |
6117245 | Mandrekar et al. | Sep 2000 | A |
6136163 | Cheung et al. | Oct 2000 | A |
6136685 | Narwankar et al. | Oct 2000 | A |
6136693 | Chan et al. | Oct 2000 | A |
6140234 | Uzoh et al. | Oct 2000 | A |
6144099 | Lopatin et al. | Nov 2000 | A |
6147009 | Grill et al. | Nov 2000 | A |
6149828 | Vaartstra | Nov 2000 | A |
6150628 | Smith et al. | Nov 2000 | A |
6153935 | Edelstein et al. | Nov 2000 | A |
6165912 | McConnell et al. | Dec 2000 | A |
6167834 | Wang et al. | Jan 2001 | B1 |
6169021 | Akram et al. | Jan 2001 | B1 |
6170428 | Redeker et al. | Jan 2001 | B1 |
6171661 | Zheng et al. | Jan 2001 | B1 |
6174812 | Hsuing et al. | Jan 2001 | B1 |
6176198 | Kao et al. | Jan 2001 | B1 |
6177245 | Ward et al. | Jan 2001 | B1 |
6179924 | Zhao et al. | Jan 2001 | B1 |
6180523 | Lee et al. | Jan 2001 | B1 |
6182602 | Redeker et al. | Feb 2001 | B1 |
6189483 | Ishikawa et al. | Feb 2001 | B1 |
6190233 | Hong et al. | Feb 2001 | B1 |
6191026 | Rana et al. | Feb 2001 | B1 |
6194038 | Rossman | Feb 2001 | B1 |
6197181 | Chen | Mar 2001 | B1 |
6197364 | Paunovic et al. | Mar 2001 | B1 |
6197680 | Lin et al. | Mar 2001 | B1 |
6197688 | Simpson | Mar 2001 | B1 |
6197705 | Vassiliev | Mar 2001 | B1 |
6203863 | Liu et al. | Mar 2001 | B1 |
6204200 | Shieh et al. | Mar 2001 | B1 |
6217658 | Orczyk et al. | Apr 2001 | B1 |
6228233 | Lakshmikanthan et al. | May 2001 | B1 |
6228751 | Yamazaki et al. | May 2001 | B1 |
6228758 | Pellerin et al. | May 2001 | B1 |
6235643 | Mui et al. | May 2001 | B1 |
6238513 | Arnold et al. | May 2001 | B1 |
6238582 | Williams et al. | May 2001 | B1 |
6241845 | Gadgil et al. | Jun 2001 | B1 |
6242349 | Nogami et al. | Jun 2001 | B1 |
6245396 | Nogami | Jun 2001 | B1 |
6245670 | Cheung et al. | Jun 2001 | B1 |
6251236 | Stevens | Jun 2001 | B1 |
6251802 | Moore et al. | Jun 2001 | B1 |
6258220 | Dordi et al. | Jul 2001 | B1 |
6258223 | Cheung et al. | Jul 2001 | B1 |
6258270 | Hilgendorff et al. | Jul 2001 | B1 |
6261637 | Oberle | Jul 2001 | B1 |
6277733 | Smith | Aug 2001 | B1 |
6277752 | Chen | Aug 2001 | B1 |
6277763 | Kugimiya et al. | Aug 2001 | B1 |
6281135 | Han et al. | Aug 2001 | B1 |
6291282 | Wilk et al. | Sep 2001 | B1 |
6291348 | Lopatin et al. | Sep 2001 | B1 |
6303418 | Cha et al. | Oct 2001 | B1 |
6312995 | Yu | Nov 2001 | B1 |
6313035 | Sandhu et al. | Nov 2001 | B1 |
6319387 | Krishnamoorthy et al. | Nov 2001 | B1 |
6323128 | Sambucetti et al. | Nov 2001 | B1 |
6335261 | Natzle et al. | Jan 2002 | B1 |
6335288 | Kwan et al. | Jan 2002 | B1 |
6340435 | Bjorkman et al. | Jan 2002 | B1 |
6342733 | Hu et al. | Jan 2002 | B1 |
6344410 | Lopatin et al. | Feb 2002 | B1 |
6350320 | Sherstinsky et al. | Feb 2002 | B1 |
6351013 | Luning et al. | Feb 2002 | B1 |
6352081 | Lu et al. | Mar 2002 | B1 |
6364949 | Or et al. | Apr 2002 | B1 |
6364954 | Umotoy et al. | Apr 2002 | B2 |
6364957 | Schneider et al. | Apr 2002 | B1 |
6372657 | Hineman et al. | Apr 2002 | B1 |
6375748 | Yudovsky et al. | Apr 2002 | B1 |
6379575 | Yin et al. | Apr 2002 | B1 |
6383951 | Li | May 2002 | B1 |
6387207 | Janakiraman et al. | May 2002 | B1 |
6391753 | Yu | May 2002 | B1 |
6395150 | Van Cleemput et al. | May 2002 | B1 |
6403491 | Liu et al. | Jun 2002 | B1 |
6416647 | Dordi et al. | Jul 2002 | B1 |
6427623 | Ko | Aug 2002 | B2 |
6432819 | Pavate et al. | Aug 2002 | B1 |
6436816 | Lee et al. | Aug 2002 | B1 |
6440863 | Tsai et al. | Aug 2002 | B1 |
6441492 | Cunningham | Aug 2002 | B1 |
6446572 | Brcka | Sep 2002 | B1 |
6448537 | Nering | Sep 2002 | B1 |
6458718 | Todd | Oct 2002 | B1 |
6461974 | Ni et al. | Oct 2002 | B1 |
6462371 | Weimer et al. | Oct 2002 | B1 |
6465366 | Nemani et al. | Oct 2002 | B1 |
6477980 | White et al. | Nov 2002 | B1 |
6479373 | Dreybrodt et al. | Nov 2002 | B2 |
6488984 | Wada et al. | Dec 2002 | B1 |
6494959 | Samoilov et al. | Dec 2002 | B1 |
6499425 | Sandhu et al. | Dec 2002 | B1 |
6500728 | Wang | Dec 2002 | B1 |
6503843 | Xia et al. | Jan 2003 | B1 |
6506291 | Tsai et al. | Jan 2003 | B2 |
6516815 | Stevens et al. | Feb 2003 | B1 |
6518548 | Sugaya et al. | Feb 2003 | B2 |
6527968 | Wang et al. | Mar 2003 | B1 |
6528409 | Lopatin et al. | Mar 2003 | B1 |
6531377 | Knorr et al. | Mar 2003 | B2 |
6537733 | Campana et al. | Mar 2003 | B2 |
6541397 | Bencher | Apr 2003 | B1 |
6541671 | Martinez et al. | Apr 2003 | B1 |
6544340 | Yudovsky | Apr 2003 | B2 |
6547977 | Yan et al. | Apr 2003 | B1 |
6551924 | Dalton et al. | Apr 2003 | B1 |
6565729 | Chen et al. | May 2003 | B2 |
6569773 | Gellrich et al. | May 2003 | B1 |
6573030 | Fairbairn et al. | Jun 2003 | B1 |
6573606 | Sambucetti et al. | Jun 2003 | B2 |
6586163 | Okabe et al. | Jul 2003 | B1 |
6596602 | Iizuka et al. | Jul 2003 | B2 |
6596654 | Bayman et al. | Jul 2003 | B1 |
6602434 | Hung et al. | Aug 2003 | B1 |
6603269 | Vo et al. | Aug 2003 | B1 |
6605874 | Leu et al. | Aug 2003 | B2 |
6616967 | Test | Sep 2003 | B1 |
6627532 | Gaillard et al. | Sep 2003 | B1 |
6635578 | Xu et al. | Oct 2003 | B1 |
6638810 | Bakli et al. | Oct 2003 | B2 |
6645301 | Sainty et al. | Nov 2003 | B2 |
6645550 | Cheung et al. | Nov 2003 | B1 |
6656831 | Lee et al. | Dec 2003 | B1 |
6656837 | Xu et al. | Dec 2003 | B2 |
6663715 | Yuda et al. | Dec 2003 | B1 |
6677242 | Liu et al. | Jan 2004 | B1 |
6677247 | Yuan et al. | Jan 2004 | B2 |
6679981 | Pan et al. | Jan 2004 | B1 |
6717189 | Inoue et al. | Apr 2004 | B2 |
6720213 | Gambino et al. | Apr 2004 | B1 |
6740585 | Yoon et al. | May 2004 | B2 |
6743473 | Parkhe et al. | Jun 2004 | B1 |
6743732 | Lin et al. | Jun 2004 | B1 |
6756235 | Liu et al. | Jun 2004 | B1 |
6759261 | Shimokohbe et al. | Jul 2004 | B2 |
6762127 | Boiteux et al. | Jul 2004 | B2 |
6762435 | Towle | Jul 2004 | B2 |
6764958 | Nemani et al. | Jul 2004 | B1 |
6765273 | Chau et al. | Jul 2004 | B1 |
6772827 | Keller et al. | Aug 2004 | B2 |
6794290 | Papasouliotis et al. | Sep 2004 | B1 |
6794311 | Huang et al. | Sep 2004 | B2 |
6796314 | Graff et al. | Sep 2004 | B1 |
6797189 | Hung et al. | Sep 2004 | B2 |
6800830 | Mahawili | Oct 2004 | B2 |
6802944 | Ahmad et al. | Oct 2004 | B2 |
6808564 | Dietze | Oct 2004 | B2 |
6808748 | Kapoor et al. | Oct 2004 | B2 |
6821571 | Huang | Nov 2004 | B2 |
6823589 | White et al. | Nov 2004 | B2 |
6830624 | Janakiraman et al. | Dec 2004 | B2 |
6835995 | Li | Dec 2004 | B2 |
6846745 | Papasouliotis et al. | Jan 2005 | B1 |
6852550 | Tuttle et al. | Feb 2005 | B2 |
6858153 | Bjorkman et al. | Feb 2005 | B2 |
6867141 | Jung et al. | Mar 2005 | B2 |
6869880 | Krishnaraj et al. | Mar 2005 | B2 |
6878206 | Tzu et al. | Apr 2005 | B2 |
6879981 | Rothschild et al. | Apr 2005 | B2 |
6886491 | Kim et al. | May 2005 | B2 |
6892669 | Xu et al. | May 2005 | B2 |
6893967 | Wright et al. | May 2005 | B1 |
6897532 | Schwarz et al. | May 2005 | B1 |
6903031 | Karim et al. | Jun 2005 | B2 |
6903511 | Chistyakov | Jun 2005 | B2 |
6908862 | Li et al. | Jun 2005 | B2 |
6911112 | An | Jun 2005 | B2 |
6911401 | Khandan et al. | Jun 2005 | B2 |
6921556 | Shimizu et al. | Jul 2005 | B2 |
6924191 | Liu et al. | Aug 2005 | B2 |
6942753 | Choi et al. | Sep 2005 | B2 |
6951821 | Hamelin et al. | Oct 2005 | B2 |
6958175 | Sakamoto et al. | Oct 2005 | B2 |
6958286 | Chen et al. | Oct 2005 | B2 |
6974780 | Schuegraf | Dec 2005 | B2 |
7017269 | White et al. | Mar 2006 | B2 |
7018941 | Cui et al. | Mar 2006 | B2 |
7030034 | Fucsko et al. | Apr 2006 | B2 |
7049200 | Arghavani et al. | May 2006 | B2 |
7078312 | Sutanto et al. | Jul 2006 | B1 |
7081414 | Zhang et al. | Jul 2006 | B2 |
7084070 | Lee et al. | Aug 2006 | B1 |
7115525 | Abatchev et al. | Oct 2006 | B2 |
7122949 | Strikovski | Oct 2006 | B2 |
7148155 | Tarafdar et al. | Dec 2006 | B1 |
7166233 | Johnson et al. | Jan 2007 | B2 |
7183214 | Nam et al. | Feb 2007 | B2 |
7196342 | Ershov et al. | Mar 2007 | B2 |
7205240 | Karim et al. | Apr 2007 | B2 |
7223701 | Min et al. | May 2007 | B2 |
7226805 | Hallin et al. | Jun 2007 | B2 |
7235137 | Kitayama et al. | Jun 2007 | B2 |
7253123 | Arghavani et al. | Aug 2007 | B2 |
7256370 | Guiver | Aug 2007 | B2 |
7288482 | Panda et al. | Oct 2007 | B2 |
7341633 | Lubomirsky et al. | Mar 2008 | B2 |
7365016 | Ouellet et al. | Apr 2008 | B2 |
7390710 | Derderian et al. | Jun 2008 | B2 |
7396480 | Kao et al. | Jul 2008 | B2 |
7416989 | Liu et al. | Aug 2008 | B1 |
7465358 | Weidman et al. | Dec 2008 | B2 |
7484473 | Keller et al. | Feb 2009 | B2 |
7488688 | Seung-Pil et al. | Feb 2009 | B2 |
7494545 | Lam et al. | Feb 2009 | B2 |
7575007 | Tang et al. | Aug 2009 | B2 |
7581511 | Mardian et al. | Sep 2009 | B2 |
7628897 | Mungekar et al. | Dec 2009 | B2 |
7709396 | Bencher et al. | May 2010 | B2 |
7722925 | White et al. | May 2010 | B2 |
7785672 | Choi et al. | Aug 2010 | B2 |
7807578 | Bencher et al. | Oct 2010 | B2 |
7871926 | Xia et al. | Jan 2011 | B2 |
7910491 | Soo Kwon et al. | Mar 2011 | B2 |
7915139 | Lang et al. | Mar 2011 | B1 |
7939422 | Ingle et al. | May 2011 | B2 |
7968441 | Xu | Jun 2011 | B2 |
7981806 | Jung | Jul 2011 | B2 |
8008166 | Sanchez et al. | Aug 2011 | B2 |
8058179 | Draeger et al. | Nov 2011 | B1 |
8071482 | Kawada | Dec 2011 | B2 |
8074599 | Choi et al. | Dec 2011 | B2 |
8083853 | Choi et al. | Dec 2011 | B2 |
8133349 | Panagopoulos | Mar 2012 | B1 |
8187486 | Liu et al. | May 2012 | B1 |
8211808 | Sapre et al. | Jul 2012 | B2 |
8309440 | Sanchez et al. | Nov 2012 | B2 |
8328939 | Choi et al. | Dec 2012 | B2 |
8435902 | Tang et al. | May 2013 | B2 |
8491805 | Kushibiki et al. | Jul 2013 | B2 |
8642481 | Wang et al. | Feb 2014 | B2 |
8772888 | Jung et al. | Jul 2014 | B2 |
8956980 | Chen et al. | Feb 2015 | B1 |
20010008803 | Takamatsu et al. | Jul 2001 | A1 |
20010015261 | Kobayashi et al. | Aug 2001 | A1 |
20010020365 | Kubo | Sep 2001 | A1 |
20010028922 | Sandhu | Oct 2001 | A1 |
20010030366 | Nakano et al. | Oct 2001 | A1 |
20010034121 | Fu et al. | Oct 2001 | A1 |
20010041444 | Shields et al. | Nov 2001 | A1 |
20010053585 | Kikuchi et al. | Dec 2001 | A1 |
20010054381 | Umotoy et al. | Dec 2001 | A1 |
20010055842 | Uh et al. | Dec 2001 | A1 |
20020000202 | Yuda et al. | Jan 2002 | A1 |
20020011210 | Satoh et al. | Jan 2002 | A1 |
20020016080 | Khan et al. | Feb 2002 | A1 |
20020016085 | Huang et al. | Feb 2002 | A1 |
20020028582 | Nallan et al. | Mar 2002 | A1 |
20020028585 | Chung et al. | Mar 2002 | A1 |
20020029747 | Powell et al. | Mar 2002 | A1 |
20020033233 | Savas | Mar 2002 | A1 |
20020036143 | Segawa et al. | Mar 2002 | A1 |
20020040764 | Kwan et al. | Apr 2002 | A1 |
20020045966 | Lee et al. | Apr 2002 | A1 |
20020054962 | Huang | May 2002 | A1 |
20020069820 | Yudovsky | Jun 2002 | A1 |
20020070414 | Drescher et al. | Jun 2002 | A1 |
20020074573 | Takeuchi et al. | Jun 2002 | A1 |
20020079088 | Agonafer | Jun 2002 | A1 |
20020098681 | Hu et al. | Jul 2002 | A1 |
20020124867 | Kim et al. | Sep 2002 | A1 |
20020129769 | Kim et al. | Sep 2002 | A1 |
20020177322 | Li et al. | Nov 2002 | A1 |
20020187280 | Johnson et al. | Dec 2002 | A1 |
20020187655 | Tan et al. | Dec 2002 | A1 |
20020197823 | Yoo et al. | Dec 2002 | A1 |
20030003757 | Naltan et al. | Jan 2003 | A1 |
20030010645 | Ting et al. | Jan 2003 | A1 |
20030019428 | Ku et al. | Jan 2003 | A1 |
20030019580 | Strang | Jan 2003 | A1 |
20030029566 | Roth | Feb 2003 | A1 |
20030029715 | Yu et al. | Feb 2003 | A1 |
20030032284 | Enomoto et al. | Feb 2003 | A1 |
20030038127 | Liu et al. | Feb 2003 | A1 |
20030038305 | Wasshuber | Feb 2003 | A1 |
20030054608 | Tseng et al. | Mar 2003 | A1 |
20030072639 | White et al. | Apr 2003 | A1 |
20030075808 | Inoue et al. | Apr 2003 | A1 |
20030077909 | Jiwari | Apr 2003 | A1 |
20030079686 | Chen et al. | May 2003 | A1 |
20030087531 | Kang et al. | May 2003 | A1 |
20030091938 | Fairbairn et al. | May 2003 | A1 |
20030098125 | An | May 2003 | A1 |
20030109143 | Hsieh et al. | Jun 2003 | A1 |
20030116087 | Nguyen et al. | Jun 2003 | A1 |
20030116439 | Seo et al. | Jun 2003 | A1 |
20030121608 | Chen et al. | Jul 2003 | A1 |
20030124465 | Lee et al. | Jul 2003 | A1 |
20030124842 | Hytros et al. | Jul 2003 | A1 |
20030129106 | Sorensen et al. | Jul 2003 | A1 |
20030129827 | Lee et al. | Jul 2003 | A1 |
20030132319 | Hytros et al. | Jul 2003 | A1 |
20030148035 | Lingampalli | Aug 2003 | A1 |
20030173333 | Wang et al. | Sep 2003 | A1 |
20030173347 | Guiver | Sep 2003 | A1 |
20030181040 | Ivanov et al. | Sep 2003 | A1 |
20030183244 | Rossman | Oct 2003 | A1 |
20030190426 | Padhi et al. | Oct 2003 | A1 |
20030199170 | Li | Oct 2003 | A1 |
20030221780 | Lei et al. | Dec 2003 | A1 |
20030224217 | Byun et al. | Dec 2003 | A1 |
20030224617 | Baek et al. | Dec 2003 | A1 |
20040005726 | Huang | Jan 2004 | A1 |
20040033678 | Arghavani et al. | Feb 2004 | A1 |
20040050328 | Kumagai et al. | Mar 2004 | A1 |
20040069225 | Fairbairn et al. | Apr 2004 | A1 |
20040070346 | Choi | Apr 2004 | A1 |
20040072446 | Liu et al. | Apr 2004 | A1 |
20040101667 | O'Loughlin et al. | May 2004 | A1 |
20040110354 | Natzle et al. | Jun 2004 | A1 |
20040115876 | Goundar et al. | Jun 2004 | A1 |
20040129224 | Yamazaki | Jul 2004 | A1 |
20040137161 | Segawa et al. | Jul 2004 | A1 |
20040144490 | Zhao et al. | Jul 2004 | A1 |
20040154535 | Chen et al. | Aug 2004 | A1 |
20040175929 | Schmitt et al. | Sep 2004 | A1 |
20040182315 | Laflamme et al. | Sep 2004 | A1 |
20040192032 | Ohmori et al. | Sep 2004 | A1 |
20040194799 | Kim et al. | Oct 2004 | A1 |
20040211357 | Gadgil et al. | Oct 2004 | A1 |
20040219789 | Wood et al. | Nov 2004 | A1 |
20040245091 | Karim et al. | Dec 2004 | A1 |
20050001276 | Gao et al. | Jan 2005 | A1 |
20050003676 | Ho et al. | Jan 2005 | A1 |
20050009358 | Choi et al. | Jan 2005 | A1 |
20050026430 | Kim et al. | Feb 2005 | A1 |
20050026431 | Kazumi et al. | Feb 2005 | A1 |
20050035455 | Hu et al. | Feb 2005 | A1 |
20050048801 | Karim et al. | Mar 2005 | A1 |
20050073051 | Yamamoto et al. | Apr 2005 | A1 |
20050090120 | Hasegawa et al. | Apr 2005 | A1 |
20050098111 | Shimizu et al. | May 2005 | A1 |
20050112901 | Ji et al. | May 2005 | A1 |
20050121750 | Chan et al. | Jun 2005 | A1 |
20050181588 | Kim | Aug 2005 | A1 |
20050199489 | Stevens et al. | Sep 2005 | A1 |
20050205110 | Kao et al. | Sep 2005 | A1 |
20050214477 | Hanawa et al. | Sep 2005 | A1 |
20050218507 | Kao et al. | Oct 2005 | A1 |
20050221552 | Kao et al. | Oct 2005 | A1 |
20050230350 | Kao et al. | Oct 2005 | A1 |
20050236694 | Wu et al. | Oct 2005 | A1 |
20050266622 | Arghavani et al. | Dec 2005 | A1 |
20050266691 | Gu et al. | Dec 2005 | A1 |
20050287771 | Seamons et al. | Dec 2005 | A1 |
20060000802 | Kumar et al. | Jan 2006 | A1 |
20060000805 | Todorow et al. | Jan 2006 | A1 |
20060011298 | Lim et al. | Jan 2006 | A1 |
20060019456 | Bu et al. | Jan 2006 | A1 |
20060019486 | Yu et al. | Jan 2006 | A1 |
20060024954 | Wu et al. | Feb 2006 | A1 |
20060024956 | Zhijian et al. | Feb 2006 | A1 |
20060033678 | Lubomirsky et al. | Feb 2006 | A1 |
20060046419 | Sandhu et al. | Mar 2006 | A1 |
20060046484 | Abatchev et al. | Mar 2006 | A1 |
20060051966 | Or et al. | Mar 2006 | A1 |
20060051968 | Joshi et al. | Mar 2006 | A1 |
20060054184 | Mozetic et al. | Mar 2006 | A1 |
20060093756 | Rajagopalan et al. | May 2006 | A1 |
20060102076 | Smith et al. | May 2006 | A1 |
20060130971 | Chang et al. | Jun 2006 | A1 |
20060162661 | Jung et al. | Jul 2006 | A1 |
20060166107 | Chen et al. | Jul 2006 | A1 |
20060166515 | Karim et al. | Jul 2006 | A1 |
20060178008 | Yeh et al. | Aug 2006 | A1 |
20060185592 | Matsuura | Aug 2006 | A1 |
20060191637 | Zajac et al. | Aug 2006 | A1 |
20060207504 | Hasebe et al. | Sep 2006 | A1 |
20060210723 | Ishizaka | Sep 2006 | A1 |
20060211260 | Tran et al. | Sep 2006 | A1 |
20060216923 | Tran et al. | Sep 2006 | A1 |
20060226121 | Aoi | Oct 2006 | A1 |
20060240661 | Annapragada et al. | Oct 2006 | A1 |
20060246717 | Weidman et al. | Nov 2006 | A1 |
20060251800 | Weidman et al. | Nov 2006 | A1 |
20060251801 | Weidman et al. | Nov 2006 | A1 |
20060252252 | Zhu et al. | Nov 2006 | A1 |
20060261490 | Su et al. | Nov 2006 | A1 |
20060264003 | Eun | Nov 2006 | A1 |
20060264043 | Stewart et al. | Nov 2006 | A1 |
20060266288 | Choi | Nov 2006 | A1 |
20070071888 | Shanmugasundram et al. | Mar 2007 | A1 |
20070072408 | Enomoto et al. | Mar 2007 | A1 |
20070090325 | Hwang et al. | Apr 2007 | A1 |
20070099428 | Shamiryan et al. | May 2007 | A1 |
20070099431 | Li | May 2007 | A1 |
20070099438 | Ye et al. | May 2007 | A1 |
20070107750 | Sawin et al. | May 2007 | A1 |
20070108404 | Stewart et al. | May 2007 | A1 |
20070111519 | Lubomirsky et al. | May 2007 | A1 |
20070117396 | Wu et al. | May 2007 | A1 |
20070123051 | Arghavani et al. | May 2007 | A1 |
20070163440 | Kim et al. | Jul 2007 | A1 |
20070181057 | Lam et al. | Aug 2007 | A1 |
20070193515 | Jeon et al. | Aug 2007 | A1 |
20070197028 | Byun et al. | Aug 2007 | A1 |
20070210717 | Smith | Sep 2007 | A1 |
20070232071 | Balseanu et al. | Oct 2007 | A1 |
20070238321 | Futase et al. | Oct 2007 | A1 |
20070243685 | Jiang et al. | Oct 2007 | A1 |
20070269976 | Futase et al. | Nov 2007 | A1 |
20070281106 | Lubomirsky et al. | Dec 2007 | A1 |
20080044990 | Lee | Feb 2008 | A1 |
20080075668 | Goldstein | Mar 2008 | A1 |
20080081483 | Wu | Apr 2008 | A1 |
20080085604 | Hoshino et al. | Apr 2008 | A1 |
20080099431 | Kumar et al. | May 2008 | A1 |
20080115726 | Ingle et al. | May 2008 | A1 |
20080124919 | Huang et al. | May 2008 | A1 |
20080124937 | Xu et al. | May 2008 | A1 |
20080142483 | Hua et al. | Jun 2008 | A1 |
20080142831 | Hua et al. | Jun 2008 | A1 |
20080153306 | Cho et al. | Jun 2008 | A1 |
20080160210 | Yang et al. | Jul 2008 | A1 |
20080162781 | Haller et al. | Jul 2008 | A1 |
20080182381 | Kiyotoshi | Jul 2008 | A1 |
20080182382 | Ingle et al. | Jul 2008 | A1 |
20080182383 | Lee et al. | Jul 2008 | A1 |
20080202892 | Smith et al. | Aug 2008 | A1 |
20080230129 | Davis | Sep 2008 | A1 |
20080230519 | Takahashi | Sep 2008 | A1 |
20080233709 | Conti et al. | Sep 2008 | A1 |
20080261404 | Kozuka et al. | Oct 2008 | A1 |
20080268645 | Kao et al. | Oct 2008 | A1 |
20080282979 | Chen | Nov 2008 | A1 |
20080292798 | Huh et al. | Nov 2008 | A1 |
20090004849 | Eun | Jan 2009 | A1 |
20090017227 | Fu et al. | Jan 2009 | A1 |
20090045167 | Maruyama | Feb 2009 | A1 |
20090104738 | Ring et al. | Apr 2009 | A1 |
20090104764 | Xia et al. | Apr 2009 | A1 |
20090104782 | Lu et al. | Apr 2009 | A1 |
20090170221 | Jacques et al. | Jul 2009 | A1 |
20090189246 | Wu et al. | Jul 2009 | A1 |
20090202721 | Nogami et al. | Aug 2009 | A1 |
20090255902 | Satoh et al. | Oct 2009 | A1 |
20090275205 | Kiehlbauch et al. | Nov 2009 | A1 |
20090275206 | Katz et al. | Nov 2009 | A1 |
20090277874 | Rui et al. | Nov 2009 | A1 |
20090280650 | Lubomirsky et al. | Nov 2009 | A1 |
20100048027 | Cheng et al. | Feb 2010 | A1 |
20100055917 | Kim | Mar 2010 | A1 |
20100059889 | Gosset et al. | Mar 2010 | A1 |
20100075503 | Bencher et al. | Mar 2010 | A1 |
20100093151 | Arghavani et al. | Apr 2010 | A1 |
20100098884 | Balseanu et al. | Apr 2010 | A1 |
20100099236 | Kwon et al. | Apr 2010 | A1 |
20100099263 | Kao et al. | Apr 2010 | A1 |
20100101727 | Ji | Apr 2010 | A1 |
20100105209 | Winniczek et al. | Apr 2010 | A1 |
20100144140 | Chandrashekar et al. | Jun 2010 | A1 |
20100173499 | Tao et al. | Jul 2010 | A1 |
20100178755 | Lee et al. | Jul 2010 | A1 |
20100187534 | Nishi et al. | Jul 2010 | A1 |
20100187588 | Gil-Sub et al. | Jul 2010 | A1 |
20100187694 | Yu et al. | Jul 2010 | A1 |
20100190352 | Jaiswal | Jul 2010 | A1 |
20100207205 | Grebs et al. | Aug 2010 | A1 |
20100330814 | Yokota et al. | Dec 2010 | A1 |
20110008950 | Xu | Jan 2011 | A1 |
20110011338 | Chuc et al. | Jan 2011 | A1 |
20110034035 | Liang et al. | Feb 2011 | A1 |
20110053380 | Sapre et al. | Mar 2011 | A1 |
20110081782 | Liang et al. | Apr 2011 | A1 |
20110124144 | Schlemm et al. | May 2011 | A1 |
20110143542 | Feurprier et al. | Jun 2011 | A1 |
20110151674 | Tang et al. | Jun 2011 | A1 |
20110151676 | Ingle et al. | Jun 2011 | A1 |
20110151677 | Wang et al. | Jun 2011 | A1 |
20110151678 | Ashtiani et al. | Jun 2011 | A1 |
20110155181 | Inatomi | Jun 2011 | A1 |
20110159690 | Chandrashekar et al. | Jun 2011 | A1 |
20110165771 | Ring et al. | Jul 2011 | A1 |
20110180847 | Ikeda et al. | Jul 2011 | A1 |
20110195575 | Wang | Aug 2011 | A1 |
20110217851 | Liang et al. | Sep 2011 | A1 |
20110226734 | Sumiya et al. | Sep 2011 | A1 |
20110230052 | Tang et al. | Sep 2011 | A1 |
20110266252 | Thadani et al. | Nov 2011 | A1 |
20110294300 | Zhang et al. | Dec 2011 | A1 |
20120003782 | Byun et al. | Jan 2012 | A1 |
20120009796 | Cui et al. | Jan 2012 | A1 |
20120068242 | Shin et al. | Mar 2012 | A1 |
20120135576 | Lee et al. | May 2012 | A1 |
20120164839 | Nishimura | Jun 2012 | A1 |
20120196447 | Yang et al. | Aug 2012 | A1 |
20120211462 | Zhang et al. | Aug 2012 | A1 |
20120238102 | Zhang et al. | Sep 2012 | A1 |
20120238103 | Zhang et al. | Sep 2012 | A1 |
20120285621 | Tan | Nov 2012 | A1 |
20120292664 | Kanike | Nov 2012 | A1 |
20120309204 | Kang et al. | Dec 2012 | A1 |
20130005140 | Jeng et al. | Jan 2013 | A1 |
20130034968 | Zhang et al. | Feb 2013 | A1 |
20130045605 | Wang et al. | Feb 2013 | A1 |
20130052827 | Wang et al. | Feb 2013 | A1 |
20130052833 | Ranjan et al. | Feb 2013 | A1 |
20130059440 | Wang et al. | Mar 2013 | A1 |
20130089988 | Wang et al. | Apr 2013 | A1 |
20130119483 | Alptekin et al. | May 2013 | A1 |
20130187220 | Surthi | Jul 2013 | A1 |
20130260533 | Sapre et al. | Oct 2013 | A1 |
20130284369 | Kobayashi et al. | Oct 2013 | A1 |
20130284370 | Kobayashi et al. | Oct 2013 | A1 |
20130302980 | Chandrashekar et al. | Nov 2013 | A1 |
20140147126 | Linnartz et al. | May 2014 | A1 |
20140263272 | Duan et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
1375575 | Oct 2002 | CN |
1412861 | Apr 2003 | CN |
101465386 | Jun 2009 | CN |
0329406 | Aug 1989 | EP |
0376252 | Jul 1990 | EP |
0475567 | Mar 1992 | EP |
0 496 543 | Jul 1992 | EP |
0 658 928 | Jun 1995 | EP |
0697467 | Feb 1996 | EP |
0913498 | May 1999 | EP |
1099776 | May 2001 | EP |
1107288 | Jun 2001 | EP |
1496542 | Jan 2005 | EP |
1568797 | Aug 2005 | EP |
2285174 | Jun 1995 | GB |
2058836 | Feb 1990 | JP |
02256235 | Oct 1990 | JP |
7297543 | Nov 1995 | JP |
09153481 | Jun 1997 | JP |
09-205140 | Aug 1997 | JP |
11124682 | May 1999 | JP |
04-239723 | Aug 2004 | JP |
1020000008278 | Feb 2000 | KR |
10-2001-0058774 | Jul 2001 | KR |
1020030096140 | Dec 2003 | KR |
10-2004-0096365 | Nov 2004 | KR |
1020050042701 | May 2005 | KR |
1020080063988 | Jul 2008 | KR |
10-2010-0074508 | Jul 2010 | KR |
1020110126675 | Nov 2011 | KR |
1020120082640 | Jul 2012 | KR |
1999026277 | May 1999 | WO |
Entry |
---|
Abe et al., “Developments of plasma etching technology for fabricating semiconductor devices,” Jpn. J. Appl. Phys., vol. 47, No. 3R, Mar. 2008, 21 pgs. |
Cho et al., “Dual Discharge Modes Operation of an Argon Plasma Generated by Commercial Electronic Ballast for Remote Plasma Removal Process,” IEEE Transactions on Plasma Science, vol. 42, No. 6, , Jun. 2014, 4 pages. |
Cho et al., “Dielectric-barrier microdischarge structure for effic ient positive-column plasma using a thick-film ceramic sheet,” IEEE Trans. Plasma Sci., vol. 37, No. 8, Aug. 2009, 4 pgs. |
Cho et al., “Three-dimensional spatiotemporal behaviors of light emission from discharge plasma of alternating current plasma display panels,” Appl. Phys. Lett. , vol. 92, No. 22, Jun. 2008, 3pgs. |
Cho et al., “Analysis of address discharge modes by using a three-dimensional plasma display panel,” IEEE Trans. Plasma Sci. , vol. 36, Oct. 2008, 4 pgs. |
C.K. Hu, et al. “Reduced Electromigration of Cu Wires by Surface Coating” Applied Physics Letters, vol. 81, No. 10, Sep. 2, 2002—pp. 1782-1784. |
Derwent 2006-065772, Formation of multilayer enscapulating film over substrate, e.g. displace device, comprising delivering mixture precursors and hydrogen gas into substrate processing system, 2006. |
European Search Report dated May 23, 2006 for EP Application No. 05251143.3. |
European Examination Report dated Nov. 13, 2007 for EP Application No. 05251143.3. |
EP Partial Search Report, Application No. 08150111.601235/1944796, dated Aug. 22, 2008. |
Eze, F. C., “Electroless deposition of CoO thin films,” J. Phys. D: Appl. Phys. 32 (1999), pp. 533-540. |
Galiano et al. “Stress-Temperature Behavior of Oxide Films Used for Intermetal Dielectric Applications”, VMIC Conference, Jun. 9-10, 1992, pp. 100-106. |
Goebels, F.J. et al. “Arbitrary Polarization from Annular Slot Planar Antennas.” Ire Transactions on Antennas and Propagation, Jul. 1961, 8 pgs. |
Iijima, et al., “Highly Selective SiO2 Etch Employing Inductively Coupled Hydro-Fluorocarbon Plasma Chemistry for Self Aligned Contact Etch”, Jpn. J. Appl. Phys., Sep. 1997, pp. 5498-5501, vol. 36, Part 1, No. 9A. |
International Search Report of PCT/US2009/059743 dated Apr. 26, 2010, 4 pages. |
International Search Report of PCT/US2012/061726 dated May 16, 2013, 3 pages. |
International Search Report of PCT/2013/052039 dated Nov. 8, 2013, 9 pages. |
International Search Report of PCT/2013/037202 dated Aug. 23, 2013, 11 pages. |
Kim et al., “Pendulum electrons in micro hollow cathode di scharges,” IEEE Trans. Plasma Sci. , vol. 36, No. 4, pp. Aug. 2008, 2 pgs. |
Lin, et al., “Manufacturing of Cu Electroless Nickel/Sn—Pb Flip Chip Solder Bumps”, IEEE Transactions on Advanced Packaging, vol. 22, No. 4 (Nov. 1999), pp. 575-579. |
Lopatin, et al., “Thin Electroless barrier for copper films”, Part of the SPIE Conference of Multilevel Interconnect technology II, SPIE vol. 3508 (1998), pp. 65-77. |
Musaka, “Single Step Gap Filling Technology fo Subhalf Micron Metal Spacings on Plasma Enhanced TEOS/O2 Chemical Vapor Deposition System,” Extended Abstracts of the 1993 International Conference on Solid State Devices and Materials pp. 1993, 510-512. |
Pearlstein, Fred. “Electroless Plating,” J. Res. Natl. Bur. Stan., Ch. 31 (1974), pp. 710-747. |
Redolfi et al., “Bulk FinFET fabrication with new approaches for oxide topography control using dry removal techniques,” Solid-State Electron., vol. 71, May 2012, 7 pgs. |
Saito, et al., “Electroless deposition of Ni—B, Co—B and Ni—Co—B alloys using dimethylamineborane as a reducing agent,” Journal of Applied Electrochemistry 28 (1998), pp. 559-563. |
Schacham-Diamond, et al., “Electrochemically deposited thin film alloys for ULSI and MEMS applications,” Microelectronic Engineering 50 (2000), pp. 525-531. |
Schacham-Diamond, et al. “Material properties of electroless 100-200 nm thick CoWP films,” Electrochemical Society Proceedings, vol. 99-34, pp. 102-110. |
Schoenbach et al.,“High-pressure hollow cathode di scharges,” Plasma Sources Sci. Te chnol.,vol. 6, No. 4, Nov. 1997, 10 pgs. |
Smayling, et al., “APF® Pitch-Halving for 2nm Logic Cells using Gridded Design Rules”, proceedings of the SPIE, 2008, 8 pages. |
Vassiliev, et al., “Trends in void-free pre-metal CVD dielectrics,” Solid State Technology, Mar. 2001, pp. 129-136. |
Weston, et al., “Ammonium Compounds,” Kirk-Othmer Encyclopedia of Chemical Technology, 2003,30 pages see pp. 717-718, John Wiley & Sons, Inc. |
Yosi Shacham-Diamond, et al. “High Aspect Ratio Quarter-Micron Electroless Copper Integrated Technology”, Microelectronic Engineering 37/38 (1997) pp. 77-88. |
Li, D. et al., “HDP-CVD dep/etch/dep Process for Improved Deposition into High Aspect Ratio Features,” U.S. Pat. No. 6,908,862 published Jun. 21, 2005. |
Abraham, “Reactive Facet Tapering of Plasma Oxide for Multilevel Interconnect Applications”, IEEE, V-MIC Conference, Jun. 15-16, 1987, pp. 115-121. |
Applied Materials, Inc., “Applied Siconi™ Preclean,” printed on Aug. 7, 2009, 8 pages. |
Carlson, et al., “A Negative Spacer Lithography Process for Sub-100nm Contact Holes and Vias”, University of California at Berkeley, Jun. 19, 2007, 4 pp. |
Chang et al. “Frequency Effects and Properties of Plasma Deposited Fluorinated Silicon Nitride”, J. Vac Sci Technol B 6(2), Mar./Apr. 1988, pp. 524-532. |
Cheng, et al., “New Test Structure to Identify Step Coverage Mechanisms in Chemical Vapor Deposition of Silicon Dioxide,” Appl. Phys. Lett., 58 (19), May 13, 1991, p. 2147-2149. |
Examination Report dated Jun. 28, 2010 for European Patent Application No. 05251143.3. |
Fukada et al., “Preparation of SiOF Films with Low Dielectric Constant by ECR Plasma CVD,” ISMIC, DUMIC Conference, Feb. 21-22, 1995, pp. 43-49. |
Hashim et al., “Characterization of thin oxide removal by RTA Treatment,” ICSE 1998 Proc. Nov. 1998, Rangi, Malaysia, pp. 213-216. |
Hausmann, et al., “Rapid Vapor Deposition of Highly Conformal Silica Nanolaminates,” Science, Oct. 11, 2002, p. 402-406, vol. 298. |
Hayasaka, N. et al. “High Quality Low Dielectric Constant SiO2 CVD Using High Density Plasma,” Proceedings of the Dry Process Symposium, 1993, pp. 163-168. |
Hwang et al., “Smallest Bit-Line Contact of 76nm pitch on NAND Flash Cell by using Reversal PR (Photo Resist) and SADP (Self-Align Double Patterning) Process,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference, 2007, 3 pages. |
International Search Report and Written Opinion of the International Searching Authority dated Jul. 3, 2008 (PCT/US05/46226). |
International Search Report and Written Opinion for PCT Application No. PCT/US2011/027221, dated Nov. 1, 2011, 8 pages. |
International Search Report and Written Opinion of PCT/US2010/057676 dated Jun. 27, 2011, 9 pages. |
International Search Report and Written Opinion of PCT/US2011/030582 dated Dec. 7, 2011, 9 pages. |
International Search Report and Written Opinion of PCT/US2011/064724 dated Oct. 12, 2012, 8 pages. |
International Search Report and Written Opinion of PCT/US2012/028952 dated Oct. 29, 2012, 9 pages. |
International Search Report and Written Opinion of PCT/US2012/048842 dated Nov. 28, 2012, 10 pages. |
International Search Report and Written Opinion of PCT/US2012/053329 dated Feb. 15, 2013, 8 pages. |
International Search Report and Written Opinion of PCT/US2012/057294 dated Mar. 18, 2013, 12 pages. |
International Search Report and Written Opinion of PCT/US2012/057358 dated Mar. 25, 2013, 10 pages. |
International Search Report and Written Opinion of PCT/US2012/058818 dated Apr. 1, 2013, 9 pages. |
International Search Report and Written Opinion of the International Searching Authority for PCT Application No. PCT/US2012/028957, dated Oct. 18, 2012, 9 pages. |
International Search report and Written Opinion of PCT/CN2010/000932 dated Mar. 31, 2011, 8 pages. |
Japanese Patent Office, Official Action for Application No. 2007-317207 dated Dec. 21, 2011, 2 pages. |
International Search Report and Written Opinion of PCT/US2013/076217 dated Apr. 28, 2014, 11 pages. |
Jung, et al., “Patterning with amorphous carbon spacer for expanding the resolution limit of current lithography tool”, Proc. SPIE , 2007, 9 pages, vol. 6520, 65201C. |
Laxman, “Low ϵ Dielectrics: CVD Fluorinated Silicon Dioxides”, Semiconductor International, May 1995, pp. 71-74. |
Lee, et al., “Dielectric Planarization Techniques for Narrow Pitch Multilevel Interconnects,” IEEE, V-MIC Conference Jun. 15-16, 1987, pp. 85-92 (1987). |
Matsuda, et al. “Dual Frequency Plasma CVD Fluorosilicate Glass Deposition for 0.25 um Interlevel Dielectrics”, ISMIC, DUMIC Conference Feb. 21-22, 1995, pp. 22-28. |
Meeks, Ellen et al., “Modeling of SiO2 deposition in high density plasma reactors and comparisons of model predictions with experimental measurements,” J. Vac. Sci. Technol. A, Mar./Apr. 1998, pp. 544-563, vol. 16(2). |
Mukai, et al., “A Study of CD Budget in Spacer Patterning Process”, Toshiba, SPIE 2008, Feb. 26, 2008, 12 pages. |
Nishino, et al.; Damage-Free Selective Etching of SI Native Oxides Using NH3/NF3 and SF6/H20 Down-Flow Etching, The Japanese Society of Applied Physics, vol. 74, No. 2, pp. 1345-1348, XP-002491959, Jul. 15, 1993. |
Ogawa, et al., “Dry Cleaning Technology for Removal of Silicon Native Oxide Employing Hot NH3/NF3 Exposure”, Japanese Journal of Applied Physics, pp. 5349-5358, Aug. 2002, vol. 41 Part 1, No. 8. |
Ota, et al., “Stress Controlled Shallow Trench Isolation Technology to Suppress the Novel Anti-Isotropic Impurity Diffusion for 45nm-Node High Performance CMOSFETs,” Symposium on VLSI Technology Digest of Technical Papers, 2005, pp. 138-139. |
Qian, et al., “High Density Plasma Deposition and Deep Submicron Gap Fill with Low Dielectric Constant SiOF Films,” ISMIC, DUMIC Conference Feb. 21-22, 1995, 1995, pp. 50-56. |
Robles, et al. “Effects of RF Frequency and Deposition Rates on the Moisture Resistance of PECVD TEOS-Based Oxide Films”, ECS Extended Abstracts, Abstract No. 129, May 1992, pp. 215-216, vol. 92-1. |
S.M. Sze, VLSI Technology, McGraw-Hill Book Company, pp. 107, 108. |
C.C. Tang and D. W. Hess, Tungsten Etching in CF4 and SF6 Discharges, J. Electrochem. Soc., 1984, 131 (1984) p. 115-120. |
Usami, et al., “Low Dielectric Constant Interlayer Using Fluorine-Doped Silicon Oxide”, Jpn. J. Appl. Phys., Jan. 19, 1994. pp. 408-412, vol. 33 Part 1, No. 1B. |
Wang et al.; Ultra High-selectivity silicon nitride etch process using an inductively coupled plasma source; J. Vac. Sci. Techno!. A 16(3),May/Jun. 1998, pp. 1582-1587. |
Wolf et al.; Silicon Processing for the VLSI Era; vol. 1; 1986; Lattice Press, pp. 546, 547, 618, 619. |
Yang, R., “Advanced in situ pre-Ni silicide (Siconi) cleaning at 65 nm to resolve defects in NiSix modules,” J. Vac. Sci., Technol. B, Microelectron. Nanometer Struct., vol. 28, No. 1, Jan. 2010, 6 pgs. |
Yasaka, Y. et al. “Planar microwave discharges with active control of plasma uniformity”. Physics of Plasmas, vol. 9 No. 3, Mar. 2002, 7 pgs. |
Yasuda et al., “Dual-function remote plasma etching/cleaning system applied to selective etching of Si02 and removal of polymeric residues,” J. Vac. Sci. Technol., A, vol. 11, No. 5, 1993, 12 pgs. |
Yu, et al., “Step Coverage Study of Peteos Deposition for Intermetal Dielectric Applications,” abstract, VMIC conference, Jun. 12-13, 1990, 7 pages, No. 82. |
Yutaka, et al., “Selective Etching of Silicon Native Oxide with Remote-Plasma-Excited Anhydrous Hydrogen Fluoride,” Japanese Journal of Applied Physics, 1998, vol. 37, pp. L536-L538. |
Number | Date | Country | |
---|---|---|---|
20140252134 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61774963 | Mar 2013 | US |