Integrated circuit devices and methods

Information

  • Patent Grant
  • 9741428
  • Patent Number
    9,741,428
  • Date Filed
    Thursday, April 21, 2016
    8 years ago
  • Date Issued
    Tuesday, August 22, 2017
    7 years ago
Abstract
An integrated circuit can include multiple SRAM cells, each including at least two pull-up transistors, at least two pull-down transistors, and at least two pass-gate transistors, each of the transistors having a gate; at least one of the pull-up transistors, the pull-down transistors, or the pass-gate transistors having a screening region a distance below the gate and separated from the gate by a semiconductor layer, the screening region having a concentration of screening region dopants, the concentration of screening region dopants being higher than a concentration of dopants in the semiconductor layer, the screening region providing an enhanced body coefficient for the pull-down transistors and the pass-gate transistors to increase the read static noise margin for the SRAM cell when a bias voltage is applied to the screening region; and a bias voltage network operable to apply one or more bias voltages to the multiple SRAM cells.
Description
TECHNICAL FIELD

This disclosure relates generally to semiconductor devices and integrated circuits and, more specifically, to a Static Random Access Memory (SRAM) device and a method of operation that enhances the performance of the SRAM device.


BACKGROUND

There are several interrelated design parameters that must be considered during SRAM cell design. These include, static noise margin (hereinafter “SNM”), write margin, bit line speed, and data retention voltage. SNM is defined as the minimum DC noise voltage necessary to flip the state of the SRAM cell. An SRAM cell can have different SNM during read and write operations, referred to as read SNM and write SNM, respectively. Read SNM is also an indicator of cell stability and is sometimes simply referred to as cell stability. A higher read SNM indicates that it is more difficult to invert the state of the cell during a read operation. Write margin is defined as the minimum bit line voltage necessary to invert the state of an SRAM cell. A higher write margin indicates that it is easier to invert the state of the cell during a write operation. Read speed is defined as the bit line slew rate in response to a high word line voltage, typically the time from the rising edge assertion of word line until some differential between the high and falling bit line is obtained. Data retention voltage is defined as the minimum power supply voltage required to retain a logic value in the SRAM cell in standby mode.


As process technology has scaled, it has become increasingly difficult to control the variation of transistor parameters because of a variety of factors, including, for example, Random Dopant Fluctuation (RDF). Other reasons for this variation include dopant scattering effect, such as the well proximity effect, that makes the placement of dopants in MOSFET transistors increasingly difficult as transistor size is reduced. Misplaced dopants can reduce transistor performance, increase transistor variability, including variability of channel transconductance, capacitance effects, threshold voltage, and leakage. Such variability increases as transistors are reduced in size, with each misplaced dopant atom having a greater relative effect on transistor properties, as a result of the overall reduction in the number of dopant atoms.


In part because of such random variations, threshold voltage variations have become a limiting factor in transistor design as process technology is scaled downward. The resulting threshold voltage variations between neighboring MOSFETs can have significant impact on the SNM, cell stability, write margin, read speed, and data retention voltage of the SRAM cell. For example, threshold voltage variations between pass-gate and pull-down transistors of the SRAM cell can significantly degrade cell stability. During a read, the read current discharging the bit line flows through the series connection of the pass-gate and pull-down NMOS transistors. The voltage divider formed by these transistors raises the low voltage in the cell, and may unintentionally cause the cell to flip when read. Variations in the threshold voltage of the pass-gate or pull-down transistor can result in a large variation in the voltage divider ratio of the pass-gate transistors and the pull down transistors, increasing the likelihood of inverting the SRAM cell during a read operation, i.e., upsetting the stored state. Other SRAM cell design parameters such as write margin, bit line speed (as measured by slew rate) or read current, and data retention voltage can also be affected by threshold voltage variations.


Attempts have been made to correct the adverse effect of threshold voltage variations on SRAM cell performance. For example, U.S. Pat. No. 7,934,181 titled, “Method and Apparatus for Improving SRAM Cell Stability by Using Boosted Word Lines”, assigned to International Business Machines Corporation, sets out a boost voltage generator that applies a predetermined boosted word line voltage to the word line of a selected SRAM cell. The boosted word line voltage is predetermined for each SRAM cell, and is sufficiently higher than the power supply voltage of the SRAM cell to improve the cell stability to a desired level.


Alternatively, US Patent Publication 20100027322 titled, “Semiconductor Integrated Circuit and Manufacturing Method Therefor”, assigned to Renesas Technology Corp., sets out measuring the threshold voltages of PMOS and NMOS transistors of the SRAM, programming control information in control memories that are associated with PMOS and NMOS transistors based on the measurements, and adjusting the levels of the body bias voltages applied to the PMOS and NMOS transistors of the SRAM to compensate for the threshold voltage variations and improve manufacturing yield.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A illustrates an deeply depleted channel (DDC) transistor with a screening region, in accordance with one embodiment.



FIG. 1B is a flow diagram illustrating a general method for forming a DDC transistor having an enhanced body coefficient and reduced a Vt.



FIG. 2 illustrates an integrated circuit including static random access memory (SRAM) cells in accordance with one embodiment.



FIG. 3 illustrates butterfly curves and read static noise margins for SRAM cells using DDC transistors, and for SRAM cells using conventional transistors.



FIG. 4 illustrates butterfly curves showing read SNM and write SNM for SRAM cells using DDC transistors.



FIG. 5 illustrates butterfly curves showing an increase in read SNM resulting from the enhanced body coefficient of the NMOS DDC transistors.



FIG. 6 illustrates the drain current as a function of the drain voltage for a DDC transistor and a conventional transistor.



FIG. 7A illustrates butterfly curves for an SRAM cell using conventional transistors in the presence of threshold voltage variations.



FIG. 7B illustrates butterfly curves for an SRAM cell using DDC transistors in the presence of threshold voltage variations.



FIG. 8A illustrates the write margin for an SRAM cell using conventional transistors in the presence of threshold voltage variations.



FIG. 8B illustrates the write margin for an SRAM cell using DDC transistors in the presence of threshold voltage variations.



FIG. 9A illustrates bit line speed of an SRAM cell using conventional transistors in the presence of threshold voltage variations.



FIG. 9B illustrates bit line speed of an SRAM cell using DDC transistors in the presence of threshold voltage variations.



FIG. 10 illustrates an integrated circuit including static random access memory (SRAM) cells in accordance with one embodiment.



FIG. 11A is a timing diagram showing a DDC PMOS transistor source bias switching, in accordance with one embodiment.



FIG. 11B is a timing diagram showing a DDC NMOS transistor source bias switching, in accordance with one embodiment.



FIG. 12A is a timing diagram showing a DDC PMOS transistor source bias switching and DDC PMOS transistor body bias switching operation, in accordance with one embodiment.



FIG. 12B is a timing diagram showing a DDC NMOS transistor source bias switching and DDC NMOS transistor body bias switching operation, in accordance with one embodiment.



FIG. 13 is a block schematic diagram of a decoder circuit that can be included in certain embodiments.



FIG. 14 is a block schematic diagram of a memory device, in accordance with one embodiment.



FIG. 15 illustrates a layout of a SRAM cell using DDC transistors that has substantially no jogs or notches, in accordance with one embodiment.





DETAILED DESCRIPTION

Various embodiments of the present invention will now be described in detail with reference to a number of drawings. The embodiments show circuits and methods related to an integrated circuit device having transistors that have an enhanced body coefficient. The embodiments described herein also show circuits and methods related to an integrated circuit having improved transistor matching, such that the transistors have reduced variability of threshold voltage and body coefficient. Particular embodiments may include static random access memories having enhanced performance characteristics as described herein.


In the various embodiments below, like items are referred to by the same reference character but with the leading digits corresponding to the figure number.



FIG. 1A shows an embodiment of a deeply depleted channel (DDC) transistor 100 having an enhanced body coefficient, along with the ability to set threshold voltage Vt with enhanced precision, according to certain described embodiments. The DDC transistor 100 includes a gate electrode 102, source 104, drain 106, and a gate dielectric 128 positioned over a substantially undoped channel 110. Lightly doped source and drain extensions (SDE) 132, positioned respectively adjacent to source 104 and drain 106, extend toward each other, setting the transistor channel length.


In FIG. 1A, the DDC transistor 100 is shown as an N-channel transistor having a source 104 and drain 106 made of N-type dopant material, formed upon a substrate such as a P-type doped silicon substrate providing a P-well 114 formed on a substrate 116. In addition, the N-channel DDC transistor in FIG. 1A includes a highly doped screening region 112 made of P-type dopant material, and a threshold voltage set region 111 made of P-type dopant material. However, it will be understood that, with appropriate changes to dopant materials, a P-channel DDC transistor can be formed.



FIG. 1B is a flow diagram 150 illustrating a general method for forming a DDC transistor having an enhanced body coefficient and reduced a Vt, in accordance with the various embodiments described herein. The process illustrated in FIG. 1B is intended to be general and broad in its description, and more detailed embodiments and examples are set forth below. Each block in the flow diagram is illustrated and described in further detail below, in conjunction with the various alternatives associated with each block illustrated in FIG. 1B.


In step 152, the process begins at well formation, which can include one or more different process steps in accordance with different embodiments. The well formation step 152 includes the steps for forming the screening region 112, the threshold voltage set region 111 (if present), and the substantially undoped channel 110. As indicated in 153, the well formation 152 can be before or after STI (shallow trench isolation) formation 154.


The well formation 152 can include forming the screening region 112 by implanting dopants into the P-well 114, followed by an epitaxial (EPI) pre-clean process that is followed by a blanket or selective EPI deposition. Various alternatives for performing these steps are illustrated in FIG. 1B. In accordance with one embodiment, well formation 152 can include a beam line implant of Ge/B (N), As (P), followed by an epitaxial (EPI) pre-clean process, and followed by a non-selective blanket EPI deposition, as shown in 152A. Alternatively, the well formation 152 can include using a plasma implant of B (N), As (P), followed by an EPI pre-clean, then a non-selective (blanket) EPI deposition, as shown in 152B. The well formation 152 can alternatively include a solid-source diffusion of B(N), As(P), followed by an EPI pre-clean, and followed by a non-selective (blanket) EPI deposition, as shown in 152C. As yet another alternative, well formation 152 can also include well implants, followed by in-situ doped selective EPI of B (N), P (P) as shown in 152D. As will be described further below, the well formation can be configured with different types of devices in mind, including DDC transistors, legacy transistors, high VT transistors, low VT transistors, improved σVT transistors, and standard or legacy σVT transistors. Embodiments described herein allow for any one of a number of devices configured on a common substrate with different well structures and according to different parameters.


In step 152, Boron (B), Indium (I), or other P-type materials can be used for P-type implants, and arsenic (As), antimony (Sb) or phosphorous (P) and other N-type materials can be used for N-type implants. In certain embodiments, the screening region 112 can have a dopant concentration between about 1×1019 to 5×1020 dopant atoms/cm3, with the selected dopant concentration dependent on the desired threshold voltage as well as other desired transistor characteristics. A germanium (Ge), carbon (C), or other dopant migration resistant layer can be incorporated above the screening region to reduce upward migration of dopants. The dopant migration resistant layer can be formed by way of ion implantation, in-situ doped epitaxial growth or other process. In certain embodiments, a dopant migration resistant layer can also be incorporated to reduce downward migration of dopants.


In certain embodiments of the DDC transistor, a threshold voltage set region 111 is positioned above the screening region 112. The threshold voltage set region 111 can be either adjacent to, incorporated within or vertically offset from the screening region. In certain embodiments, the threshold voltage set region 111 is formed by delta doping, controlled in-situ deposition, or atomic layer deposition. In alternative embodiments, the threshold voltage set region 111 can be formed by way of controlled outdiffusion of dopant material from the screening region 112 into an undoped epitaxial layer, or by way of a separate implantation into the substrate following formation of the screening region 112, before the undoped epitaxial layer is formed. Setting of the threshold voltage for the transistor is implemented by suitably selecting dopant concentration and thickness of the threshold voltage set region 111, as well as maintaining a separation of the threshold voltage set region 111 from the gate dielectric 128, leaving a substantially undoped channel layer directly adjacent to the gate dielectric 128. In certain embodiments, the threshold voltage set region 111 can have a dopant concentration between about 1×1018 dopant atoms/cm3 and about 1×1019 dopant atoms per cm3. In alternative embodiments, the threshold voltage set region 111 can have a dopant concentration that is approximately less than half of the concentration of dopants in the screening region 112.


In certain embodiments, the final layer of the channel is formed above the screening region 112 and threshold voltage set region 111 by way of a blanket or selective EPI deposition (as shown in the alternatives shown in 152A-D), to result in a substantially undoped channel region 110 of a thickness tailored to the technical specifications of the device. As a general matter, the thickness of the substantially undoped channel region 110 ranges from approximately 5-25 nm, with the selected thickness based upon the desired threshold voltage for the transistor. Preferably, a blanket EPI deposition step is performed after forming the screening region 112, and the threshold voltage setting region 111 is formed by controlled outdiffusion of dopants from the screening region 112 into a portion of the blanket EPI layer, as described below. Dopant migration resistant layers of C, Ge, or the like can be utilized as needed to prevent dopant migration from the threshold voltage set region 111 into the substantially undoped channel region 110, or alternatively from the screening region 112 into the threshold voltage set region 111.


In addition to using dopant migration resistant layers, other techniques can be used to reduce upward migration of dopants from the screening region 112 and the threshold voltage set region 111, including but not limited to low temperature processing, selection or substitution of low migration dopants such as antimony or indium, low temperature or flash annealing to reduce interstitial dopant migration, or any other technique to reduce movement of dopant atoms can be used.


As described above, the substantially undoped channel region 110 is positioned above the threshold voltage set region 111. Preferably, the substantially undoped channel region 110 has a dopant concentration less than 5×1017 dopant atoms per cm3 adjacent or near the gate dielectric 128. In some embodiments, the substantially undoped channel region 110 can have a dopant concentration that is specified to be approximately less than one tenth of the dopant concentration in the screening region 112. In still other embodiments, depending on the transistor characteristics desired, the substantially undoped channel region 110 may contain dopants so that the dopant concentration is elevated to above 5×1017 dopant atoms per cm3 adjacent or near the gate dielectric 128. Preferably, the substantially undoped channel region 110 remains substantially undoped by avoiding the use of halo or other channel implants.


Referring to FIG. 1B, STI formation 154, which, again, can occur before or after well formation 152, can include a low temperature trench sacrificial oxide (TSOX) liner, which is formed at a temperature lower than 900° C. as shown by 154A. Embodiments that form the STI structures after the blanket EPI deposition step, using a process that remains within a low thermal budget, can reduce dopant migration from the previously formed screening region 112 and threshold voltage setting region 111.


As shown in step 156 (FIG. 1B), the gate stack 108 can be formed or otherwise constructed above the substantially undoped channel region 110 in a number of different ways, from different materials, and of different work functions. One option is a poly/SiON gate stack 156A. Another option is a gate-first process 156B that includes SiON/Metal/Poly and/or SiON/Poly, followed by High-K/Metal Gate. Another option, a gate-last process 156C includes a high-K/metal gate stack wherein the gate stack can either be formed with “Hi-K first-Metal gate last” flow or and “Hi-K last-Metal gate last” flow. Yet another option, 156D is a metal gate that includes a tunable range of work functions depending on the device construction. Preferably, the metal gate materials for NMOS and PMOS are selected to near mid-gap, to take full advantage of the DDC transistor. However, traditional metal gate work function band-gap settings may also be used. In one scheme, metal gate materials can be switched between NMOS and PMOS pairs as a way to attain the desired work functions for given devices.


A gate stack may be formed or otherwise constructed above the substantially undoped channel region 110 in a number of different ways, from different materials including polysilicon and metals to form what is known as “high-k metal gate”. The metal gate process flow may be “gate 1st” or “gate last”. Preferably, the metal gate materials for NMOS and PMOS are selected to near mid-gap, to take full advantage of the DDC transistor. However, traditional metal gate work function band-gap settings may also be used. In one scheme, metal gate materials can be switched between NMOS and PMOS pairs as a way to attain the desired work functions for given devices. Following formation of the gate stack, source/drain portions may be formed. Typically, the extension portions are implanted, followed by additional spacer formation and then implant or, alternatively, selective epitaxial deposition of deep source/drain regions.


In step 158, Source/Drain tips can be implanted. The dimensions of the tips can be varied as required, and will depend in part on whether gate spacers (SPGR) are used. In one embodiment, Source/Drain tips are not formed, and there may be no tip implant.


In step 160, the source 104 and drain 106 can be formed preferably using conventional processes and materials such as ion implantation (160A) and in-situ doped epitaxial deposition (160B). Optionally, as shown in step 160C, PMOS or NMOS selective EPI layers can be formed in the source and drain regions as performance enhancers for strained channels. Source 104 and drain 106 can further include raised and/or recessed source/drains, asymmetrically doped, counter-doped or crystal structure modified source/drains, or implant doping of source/drain extension regions according to LDD (lightly doped drain) techniques, provided that the thermal budget for any anneal steps be within the boundaries of what is required to keep the screening region 112 and threshold voltage setting region 111 substantially intact.


In step 162, a metal gate is formed in accordance with a gate last process. Step 162 is optional and may be performed only for gate-last processes (162A).


Referring to FIG. 1A, the channel 110 contacts and extends between the source 104 and the drain 106, and supports movement of mobile charge carriers between the source and the drain. In operation, when gate electrode voltage is applied to the DDC transistor 100 at a predetermined level, a depletion region formed in the substantially undoped channel 110 can extend to the screening region 112, since channel depletion depth is a function of the integrated charge from dopants in the doped channel lattice, and the substantially undoped channel 110 has very few dopants. The screening region 112, if fabricated according to specification, effectively pins the depletion region to define the depletion zone width.


The threshold voltage in conventional field effect transistors (FETs) can be set by directly implanting a “threshold voltage implant” into the channel, raising the threshold voltage to an acceptable level that reduces transistor off-state leakage while still allowing speedy transistor switching. Alternatively, the threshold voltage (Vt) in conventional FETs can also be set by a technique variously known as “halo” implants, high angle implants, or pocket implants. Such implants create a localized, graded dopant distribution near a transistor source and drain that extends a distance into the channel. Halo implants are often required by transistor designers who want to reduce unwanted source/drain leakage conduction or “punch through” current, but have the added advantage of adjusting threshold voltage. Unfortunately halo implants introduce additional process steps, thereby increasing the manufacturing cost. Also, halo implants can introduce additional dopants in random, unwanted locations in the channel. These additional dopants increase the variability of threshold voltage between transistors, and decrease mobility and channel transconductance due to the adverse effects of additional and unwanted dopant scattering centers in the channel. Eliminating or greatly reducing the number of halo implants is desirable for reducing manufacture time and making more reliable wafer processing. By contrast, the techniques for forming the DDC transistor 100 use different threshold voltage setting techniques that do not rely on halo implants (i.e. haloless processing) or channel implants to set the threshold voltage to a desired range. By maintaining a substantially undoped channel near the gate, the DDC transistor further allows for greater channel mobility for electron and hole carriers with improved variation in threshold voltage from device to device.


As will also be appreciated, position, concentration, and thickness of the screening region 112 are important factors in the design of the DDC transistor. In certain embodiments, the screening region is located above the bottom of the source and drain junctions. To dope the screening region so as to cause its peak dopant concentration to define the edge of the depletion width when the transistor is turned on, methods such as delta doping, broad dopant implants, or in-situ doping is preferred, since the screening region 112 should have a finite thickness to enable the screening region 112 to adequately screen the well therebelow while avoiding creating a path for excessive junction leakage. When transistors are configured to have such screening regions, the transistor can simultaneously have good threshold voltage matching, high output resistance, low junction leakage, good short channel effects, and still have an independently controllable body due to a strong body effect. In addition, multiple DDC transistors having different threshold voltages can be easily implemented by customizing the position, thickness, and dopant concentration of the threshold voltage set region 111 and/or the screening region 112 while at the same time achieving a reduction in the threshold voltage variation. In one embodiment, the screening region is positioned such that the top surface of the screening region is located approximately at a distance of Lg/1.5 to Lg/5 below the gate (where Lg is the gate length). In one embodiment, the threshold voltage set region has a dopant concentration that is approximately 1/10 of the screening region dopant concentration. In certain embodiments, the threshold voltage set region is thin so that the combination of the threshold voltage set region and the screening region is located approximately within a distance of Lg/1.5 to Lg/5 below the gate.


Modifying threshold voltage by use of a threshold voltage set region 111 positioned above the screening region 112 and below the substantially undoped channel 110 is an alternative technique to conventional threshold voltage implants for adjusting threshold voltage. Care must be taken to prevent dopant migration into the substantially undoped channel 110, and use of low temperature anneals and anti-migration materials such as carbon or germanium is recommended for many applications. More information about the formation of the threshold voltage set region 111 and the DDC transistor is found in pending U.S. patent application Ser. No. 12/895,785 filed Sep. 30, 2010, published as US Patent Publication 2011/0079861, the entirety of which disclosure is herein incorporated by reference.


Yet another technique for modifying threshold voltage relies on selection of a gate material having a suitable work function. The gate electrode 102 can be formed from conventional materials, preferably including, but not limited to, metals, metal alloys, metal nitrides and metal silicides, as well as laminates thereof and composites thereof. In certain embodiments the gate electrode 102 may also be formed from polysilicon, including, for example, highly doped polysilicon and polysilicon-germanium alloy. Metals or metal alloys may include those containing aluminum, titanium, tantalum, or nitrides thereof, including titanium containing compounds such as titanium nitride. Formation of the gate electrode 102 can include silicide methods, chemical vapor deposition methods and physical vapor deposition methods, such as, but not limited to, evaporative methods and sputtering methods. Typically, the gate electrode 102 has an overall thickness from about 1 to about 500 nanometers. In certain embodiments, metals having a work function intermediate between band edge and mid-gap can be selected. As discussed in pending U.S. patent application Ser. No. 12/960,266 filed Dec. 3, 2010, issued as U.S. Pat. No. 8,569,128, the entirety of which disclosure is herein incorporated by reference, such metal gates simplify swapping of PMOS and NMOS gate metals to allow a reduction in mask steps and different required metal types for systems on a chip or other die supporting multiple transistor types.


Applied bias to the screening region 112 is yet another technique for modifying threshold voltage of the DDC 100. The screening region 112 sets the body effect for the transistor and allows for a higher body effect than is found in conventional FET technologies. For example, a body tap 126 to the screening region 112 of the DDC transistor can be formed in order to provide further control of threshold voltage. The applied bias can be either reverse or forward biased, and can result in significant changes to threshold voltage. Bias can be static or dynamic, and can be applied to isolated transistors, or to groups of transistors that share a common well. Biasing can be static to set threshold voltage at a fixed set point, or dynamic, to adjust to changes in transistor operating conditions or requirements. Various suitable biasing techniques are disclosed in pending U.S. patent application Ser. No. 12/708,497 filed Feb. 18, 2010, and issued U.S. Pat. No. 8,273,617, the entirety of which disclosure is herein incorporated by reference.


Advantageously, DDC transistors created in accordance with the foregoing embodiments, structures, and processes, can have a reduced mismatch arising from scattered or random dopant variations as compared to conventional MOS transistors. In certain embodiments, the reduced variation results from the adoption of structures such as the screening region, the optional threshold voltage set region, and the epitaxially grown channel region. In certain alternative embodiments, mismatch between DDC transistors can be reduced by implanting the screening layer across multiple DDC transistors before the creation of transistor isolation structures, and forming the channel layer as a blanket epitaxial layer that is grown before the creation of transistor epitaxial structures. In certain embodiments, the screening region has a substantially uniform concentration of dopants in a lateral plane. The DDC transistor can be formed using a semiconductor process having a thermal budget that allows for a reasonable throughput while managing the diffusivities of the dopants in the channel. Further examples of transistor structure and manufacture suitable for use in DDC transistors are disclosed in U.S. patent application Ser. No. 12/708,497, filed on Feb. 18, 2010, titled ELECTRONIC DEVICES AND SYSTEMS, AND METHODS FOR MAKING AND USING THE SAME, and issued as U.S. Pat. No. 8,273,617, by Scott E. Thompson et al., as well as U.S. patent application Ser. No. 12/971,884, filed on Dec. 17, 2010 titled Low Power Semiconductor Transistor Structure and Method of Fabrication Thereof, and issued as U.S. Pat. No. 8,530,286, and U.S. patent application Ser. No. 12/971,955 filed on Dec. 17, 2010 titled Transistor with Threshold Voltage Set Notch and Method of Fabrication Thereof, and issued as U.S. Pat. No. 8,759,872, the respective contents of which are incorporated by reference herein.


Referring initially to FIG. 2, an integrated circuit device according to an embodiment is shown in a block diagram and designated by the general reference character 200. Integrated circuit 200 is a Static Random Access Memory (SRAM) device that may include a number of SRAM cells, including SRAM cells arranged in multiple rows and columns. For ease of discussion, however, only two SRAM cells 205 and 210 are illustrated and discussed along with the associated column power supplies 215 and 220 to generate the applied power supply voltages. The SRAM cells 205 and 210 are implemented using DDC transistors.


In FIG. 2, the SRAM cell 205 includes a pair of pass-gate DDC transistors 225 and 230, a pair of pull-up DDC transistors 235 and 240, and a pair of pull-down DDC transistors 245 and 250. The pass-gate DDC transistors 225 and 230, and the pull-down DDC transistors 245 and 250 are typically NMOS transistors. The pass-gate DDC transistors 225 and 230 couple a pair of data lines BL0 and BLN0, also referred to as “bit lines”, to storage nodes SN1 and SN2 respectively, where the voltages at nodes SN1 and SN2 are inversely related. The pull-down DDC transistors 245 and 250 couple a power supply VSS, usually the ground voltage of the circuit, to the storage nodes SN1 and SN2 respectively. The pull-up DDC transistors 235 and 240 are typically PMOS transistors that couple the positive power supply VDDCOL0 to the storage nodes SN1 and SN2 respectively. The substrates of the NMOS transistors are connected to the ground voltage of the circuit, and the substrates for the PMOS transistors are connected to a power supply voltage VBPCOL0. SRAM cell 210 is similar, and includes a pair of pass-gate DDC transistors 255 and 260, a pair of pull-up DDC transistors 265 and 270, a pair of pull-down DDC transistors 275 and 280, storage nodes SN3 and SN4, bit lines BL1 and BLN1, and power supplies VDDCOL1 and VBPCOL1.


In FIG. 2 each column of the SRAM 200 includes a column power supply block that supplies the power supply voltage for the corresponding column. The column power supply block 215 supplies the power supply voltage VDDCOL0 and body bias voltage VBPCOL0, and the column power supply block 220 supplies the power supply voltage VDDCOL1 and body bias voltage VBPCOL1. Each column power supply block independently controls the power supply voltage and PMOS pull-up transistor body bias voltage supplied to each column such that each column can receive different power supply and body bias voltages. In addition, the column power supply block can provide different power supply voltages and body bias voltages to the same column at different times, or during different modes of operation. For example, as described in more detail below, the column power supply block can supply different power supply voltages and/or body bias voltages to the corresponding column during read and write operations.


The SRAM cell shown in FIG. 2 can retain its state indefinitely as long as the supplied power is sufficient to operate the cell correctly. The SRAM cell 205 includes two cross-coupled inverters formed of the pair of transistors 235 and 245, and 240 and 250. The two inverters operate to reinforce the stored charge on storage nodes SN1 and SN2 continuously, such that the voltages at each of the two storage nodes are inverted with respect to one another. When SN1 is at a logical “1”, usually a high voltage, SN2 is at a logical “0”, usually a low voltage, and vice versa.


Referring to FIG. 2, a write operation can be performed to store data in a selected SRAM cell, and a read operation can be performed to access stored data in a selected SRAM cell. In one embodiment, data is stored in a selected SRAM cell, e.g. SRAM cell 205, during a write operation by placing complementary write data signals on the two bit lines BL0 and BLN0, and placing a positive voltage VWL on the word line WL connected to the gate of the pass-gate transistors 225 and 230, such that the two bit lines are coupled to the storage nodes SN1 and SN2, respectively. The write operation is successful when the write data signals on the two bit lines overcome the voltages on the two storage nodes and modify the state of the SRAM cell. The cell write is primarily due to the bit line driven low overpowering the PMOS pull-up transistor via the pass-gate transistor. Thus the relative strength ratio of the NMOS pass-gate transistor to the PMOS pull-up transistor is important to maximizing the write margin. Data is accessed from a selected SRAM cell, e.g. SRAM cell 205, during a read operation by placing a positive voltage VWL on the word line WL such that the pass-gate transistors 225 and 230 allow the storage nodes SN1 and SN2 to be coupled to the bit lines BL0 and BLN0 respectively. During the read operation the SRAM cell 205 drives complementary read data signals onto the bit lines BL0 and BLN0. The differential voltage on the bit lines BL0 and BLN0 can be sensed using a differential sense amplifier (not shown) that senses and amplifies the differential voltage signal on the bit lines. The output of the sense amplifier is subsequently output as the read data for the selected SRAM cell.


In one embodiment, during the write operation for selected SRAM cell 205 in FIG. 2, the column power supply control 215 places a high reverse body bias voltage on VBPCOL0 and a normal power supply voltage VDD on VDDCOL0, thereby applying a reverse body bias to the PMOS pull-up transistors 235 and 240 and reducing their leakage and drive current. For example, a power supply voltage (VDD) of 1 Volt is placed on the column power supply node VDDCOL0, and a reverse body bias voltage of 1.25 Volts is placed on the body bias control node VBPCOL0. Typically, VWL is VDD. During the read operation, the column power supply control 215 places a boosted power supply voltage 1.25 Volts on VDDCOL0, thereby reducing the difference between the voltages applied to the substrate and the source of the PMOS pull-up transistors 235 and 240. Therefore, the reverse bias applied to the PMOS pull-up transistors 235 and 240 during the read operation is lower than the reverse bias applied during the write operation. Since the PMOS pull-up transistors have an enhanced body coefficient, the reduction in reverse bias results in an increased current drive capability for these transistors. Therefore, the PMOS pull-up transistors 235 and 240 have a higher current drive capability during the read operation as compared to the write operation. The higher current drive capability of the PMOS pull-up transistor during read operations results in an increase in the read SNM, and therefore, an increase in cell stability for the SRAM cell 205. In addition, the write SNM that can be lower than the read SNM, and therefore, the SRAM cell 205 has reduced stability during the write operation which facilitates writing. Reduced write SNM due to a weaker PMOS transistor can translate directly to increased write margin.


Referring to the SRAM cell 205 in FIG. 2, in an alternative embodiment, the column power supply control block 215 places a lower body bias voltage VDD on VBPCOL0. In addition, the column power supply control 215 places a normal power supply voltage VDD on VDDCOL0 during the write operation, and a boosted power supply voltage on VDDCOL0 during the read operation. Typically VDD is 1 Volt and the boosted power supply voltage is 1.25 Volts. Therefore, a zero body bias voltage is applied to the PMOS pull-up transistors 235 and 240 during the write operation, and a forward body bias voltage is applied to the PMOS pull-up transistors during the read operation. As a result of the enhanced body coefficient, the PMOS pull-up transistors 235 and 240 have a higher current drive capability during the read operation as compared to the write operation. The higher current drive capability during read operations results in an increase in the read SNM, and therefore, an increase in stability for the SRAM cell 205. In addition, the write SNM that can be lower than the read SNM, and therefore, the SRAM cell 205 has reduced stability during the write operation. Other embodiments may apply PMOS reverse body bias during standby or write operations and forward body bias during read operations by driving appropriate voltages on VBPCOL0, VDDCOL0, or both.


It is noted that the SRAM 200 can include a plurality of word lines and bit lines, even though only one word line and two sets of bit lines have been shown in FIG. 2. Therefore, even though only two SRAM cells 205 and 210 are shown in FIG. 2, other SRAM cells (not shown) can be placed at intersections of the plurality of word lines and bit lines. In some embodiments, the SRAM 200 can have 8, 16, 32, 64, 128 or more columns that can be arranged in word widths of 8, 16, 32, 64, 128, 256, or more cells. In some embodiments, each column of the SRAM 200 can have an associated column power supply block that independently controls the column power supply voltages provided to the corresponding column. In alternative embodiments, each column of the SRAM 200 can be sub-divided into column sub-groups, where each column sub-group has an associated column power supply block that independently controls the column power supply voltages provided to corresponding column subgroup. In certain other embodiments, one column power supply block can be associated with more than one column or column subgroup. In addition, power supply and body bias voltages other than the ones described above may be applied to the SRAM cells of SRAM 200 during read and write operations. Such power supply voltages can be selected based on the design of the SRAM cell, and the electrical characteristics of the DDC transistors used in the SRAM cell.


Further embodiments of the SRAM 200 can sub-divide the constituent SRAM cells into multiple groups, where each group includes a plurality of SRAM cells in a row direction and a plurality of SRAM cells in a column direction. Each group can also include a biasing network that couples a power supply block associated with the group to the power supply voltage connections and/or the body bias voltage connections of the SRAM cells in the group, and is not coupled to the other groups. Thus, the power supply voltage and/or the body bias voltage for each group can be independently selected. In one embodiment, the power supply block generates different power supply and/or body bias voltages for each group depending on whether at least one SRAM cell in the group is being accessed for a read operation (read mode), or at least one SRAM cell in the group is being accessed for a write operation (write mode), or none of the SRAM cells in the group are being accessed for either read or write operation (standby mode). Therefore, at a particular time, the power supply blocks associated with the groups of SRAM cells can be configured as one or more rows or groups of SRAM cells to operate in a read mode while configuring the other groups of SRAM cells in the SRAM 200 to operate in a standby mode of operation, as determined by the memory address and read/write control signals received by the SRAM 200. In an alternative embodiment, the power supply block generates different power supply and/or body bias voltages for each column of the group depending on whether at least one SRAM cell in the column of the group is being accessed for a read operation (read mode), or at least one SRAM cell in the column of the group is being accessed for a write operation (write mode), or none of the SRAM cells in the group are being accessed for either read or write operation (standby mode). At a particular time, the power supply blocks can select one value of body bias voltage for a column of the group that is being accessed for a write operation (i.e., at least one SRAM cell in the column is being accessed for a write operation), and a different value of body bias voltage for other columns in the group that not being accessed for a write operation. Similarly, the power supply blocks can select one value of power supply voltage for a column of the group that is being accessed for a write operation, and a different value of body bias voltage for other columns in the group that not being accessed for a write operation. The values of the body bias voltage and the power supply voltage for each column of the group can be selected independently of each other.



FIG. 3 illustrates butterfly curves and read SNMs for SRAM cells using DDC transistors, and for SRAM cells using conventional transistors. The butterfly curves shown in FIG. 3 are obtained from SPICE simulations performed for SRAM cells using 65 nm technology node DDC transistors, and for SRAM cells using 65 nm technology node conventional transistors. These butterfly curves are only provided as an example. Similar butterfly curves can be obtained from SPICE simulations performed for SRAM cells using DDC transistors and SRAM cells using conventional transistors that are fabricated using other technology nodes, e.g., 40 nm, 28 nm, etc. Each butterfly curve consists of two voltage transfer curves, where one of the voltage transfer curve corresponds to one of the inverters in the SRAM cell, and the other voltage transfer curve is the result of taking the first voltage transfer curve and flipping it and rotating it by 90 degrees. The two voltage transfer curves 305 and 310 together represent the butterfly curve for an SRAM cell implemented using DDC transistors. Similarly, the two voltage transfer curves 315 and 320 together represent the butterfly curve for an SRAM cell implemented using conventional transistors. The SRAM cells associated with the two butterfly curves in FIG. 3 differ with regard to the type of transistor used in the SRAM cell, i.e., DDC transistor vs. conventional transistor, but are otherwise identical in all respects, such as transistor sizes for the transistors used in the cells and the voltages applied by the column power supply during read and write operations. The butterfly curves in FIG. 3 are obtained for voltages applied during read operations, such that VDDCOL0 is 0.8 Volts, and VBPCOL0 is 0.6 Volts.


Referring to FIG. 3, the read SNM is the length of a side of a largest square that can be drawn between the two voltage transfer curves that are part of the butterfly curve. Therefore, a larger opening between the two voltage transfer curves, i.e., a larger eye in the butterfly curve indicates increased read SNM and increased cell stability of the SRAM cell. Regions 325 and 330 of the butterfly curve represent the increase in cell stability for the SRAM cell using DDC transistors resulting from the enhanced body coefficient of the PMOS pull-up transistors when the VDD and VBP is varied as described. The increased body effect can raise or lower the threshold voltage of the NMOS pass-gate transistor when the stored low voltage in the cell rises, weakening the NMOS pass-gate transistor with respect to the NMOS pull-down transistor and providing a more favorable strength ratio during read operations. Similarly, regions 335 and 340 of the butterfly curves represent the increase in cell stability for the SRAM cell using DDC transistors resulting from the enhanced body coefficient of the NMOS pull-down and pass-gate transistors. Therefore, the SRAM cell using DDC transistors has increased cell stability because of the increased stability resulting from regions 325, 330, 335, and 340. The read SNM for the SRAM cell using DDC transistors is 186 millivolts, and the read SNM for the SRAM cell using conventional transistors is 132 millivolts, as measured from the simulation results illustrated in FIG. 3. Similar curves may be obtained by experimental measurements of fabricated SRAM cells that are properly instrumented, i.e., have probe points on the internal cell nodes. In general, calibrated simulations are used to determine margins by simulation as is done here.



FIG. 4 shows butterfly curves illustrating that by driving the appropriate combination of VDDCOL and VBPCOL the read SNM can be greater than the SNM during write (an indicator of better write margin) for an SRAM cell using DDC transistors. The butterfly curves shown in FIG. 4 are obtained from SPICE simulations performed for SRAM cells using 65 nm technology node DDC transistors. These butterfly curves are only provided as an example. Similar butterfly curves can be obtained from SPICE simulations performed for SRAM cells using DDC transistors that are fabricated using other technology nodes, e.g., 40 nm, 28 nm, etc. The two voltage transfer curves 405 and 410, obtained from SPICE simulations, together represent a read butterfly curve that shows the voltage transfer characteristics of an SRAM cell implemented using DDC transistors during the read operation. Similarly, the two voltage transfer curves 415 and 420, obtained from SPICE simulations, together represent a write butterfly curve that shows the voltage transfer characteristics of an SRAM cell implemented using DDC transistors during the write operation. The SRAM cells associated with the two butterfly curves in FIG. 4 differ with regard to the body bias voltage applied to the PMOS pull-up transistor used in the SRAM cell, but are otherwise identical in all respects, such as transistor sizes and the power supply voltage applied to the PMOS pull-up transistor. The body bias voltage applied to the PMOS pull-up transistors during a read operation is sufficient to operate these transistors under forward body bias, while the body bias voltage applied to the PMOS pull-up transistors during write operations is sufficient to operate these transistors under reverse body bias. For the simulations in FIG. 4, the power supply voltage is 0.8 Volts, and the forward body bias voltage applied to the PMOS pull-up transistor is 0.25 Volts, i.e., VBPCOL0 is 0.55 Volts for read operations and the reverse body bias voltage is 0.25 Volts, i.e., VBPCOL0 is 1.05 Volts for write operations.


Referring to FIG. 4, the read SNM is the length of a side of a largest square that can be drawn between the two voltage transfer curves that are part of the read butterfly curve. Therefore, a larger opening between the two voltage transfer curves, i.e., a larger eye in the butterfly curve indicates increased read SNM and increased read stability of the SRAM cell. Region 425 of the butterfly curve shows that the read stability of the SRAM cell is higher than the write stability as a result of the enhanced body coefficient of the PMOS pull-up transistors and appropriate PMOS transistor biasing in the read and write operations. The read SNM for the SRAM cell using DDC transistors is 189 millivolts, and the SNM during write, an indicator of write margin, is 143 millivolts, as measured from the simulations results illustrated in FIG. 4. Therefore, the enhanced body coefficient of the DDC transistors results in an increase in the read SNM, and simultaneously results in an increased write margin, as indicated by a decrease in the SNM during a write. This provides an SRAM cell that has a higher cell stability during read operations (because of the higher read SNM), and at the same time, is easier to write to (because the lower SNM during a write results in a cell that is less stable for write operations).



FIG. 5 shows butterfly curves illustrating the increase in the read SNM resulting from the enhanced body coefficient of the NMOS DDC transistors for an SRAM cell. The voltage transfer curves 515 and 520 are obtained from SPICE simulations performed for an SRAM cell implemented with conventional transistors that have a low body coefficient. The voltage transfer curves 505 and 510 are obtained from SPICE simulations performed for an SRAM cell that uses conventional (low body coefficient) PMOS pull-up transistors, and DDC transistors with enhanced body coefficient for the NMOS pass-gate and pull-down transistors. In addition, the same body bias voltage is applied to the PMOS pull-up transistor for each of the voltage transfer curves 505-520. The butterfly curves shown in FIG. 5 are obtained from SPICE simulations performed for SRAM cells using 65 nm technology node DDC transistors and 65 nm technology node conventional transistors. These butterfly curves are only provided as an example. Similar butterfly curves can be obtained from SPICE simulations performed for SRAM cells using DDC transistors and conventional transistors that are fabricated using other technology nodes, e.g., 40 nm, 28 nm, etc.


In FIG. 5, the voltage transfer curves 505 and 510 together represent a butterfly curve that shows the voltage transfer characteristics of an SRAM cell implemented using DDC NMOS transistors. Similarly, the two voltage transfer curves 515 and 520 together represent a butterfly curve that shows the voltage transfer characteristics of an SRAM cell implemented using conventional (low body coefficient) pull-up transistors, and conventional (low body coefficient) NMOS pass-gate and pull-down transistors. The SRAM cells associated with the two butterfly curves in FIG. 5 differ with regard to the type of the NMOS transistors used in the cell, i.e., conventional (low body coefficient) vs. DDC (high body coefficient), but are otherwise identical in all respects, such as transistor sizes, NMOS transistor body bias voltages, and the power supply voltages applied by the column power supply. The butterfly curves in FIG. 5 are obtained for voltages applied during read operations, such that VDDCOL0 is 0.8 Volts, and VBPCOL0 is 0.8 Volts.


Referring to FIG. 5, the SNM for the SRAM cell using DDC transistors is the length of a side of a largest square that can be drawn between the two voltage transfer curves that are part of the read butterfly curve. Therefore, a larger opening between the two voltage transfer curves, i.e., a larger eye in the butterfly curve indicates increased read SNM and increased read stability of the SRAM cell. Regions 525 and 530 of the butterfly curve show that the stability of the SRAM cell using DDC NMOS transistors (having enhanced body coefficient) is higher than the stability of the SRAM cell using conventional (low body coefficient) NMOS transistors as a result of the enhanced body coefficient of the NMOS DDC transistors. The read SNM for the SRAM cell using NMOS DDC transistors is 142 millivolts, and the read SNM for the SRAM cell using conventional NMOS transistors is 111 millivolts, as measured from the simulations results illustrated in FIG. 5. Unlike the PMOS case, the body bias on the pass gate NMOS devices is provided naturally by the SRAM operation. As the read current flows through the series connection of the pass gate and pull down, the low stored voltage rises due to the voltage divider created by the series devices. Thus, node SN1 rises, producing body bias on transistor 225, which reduces the strength of 225, making the cell more stable in read. The improved body coefficient of the DDC transistor thus produces a negative feedback effect that increases as the cell goes unstable at low voltages, i.e., when node SN1 rises towards the cell flip point in a read.


The DDC transistors also exhibit a higher current drive as compared to conventional transistors, when a low voltage is being applied to the gate and the drain to source voltage is less than VGS-VT of the transistor, i.e., such that the transistor is operating in the linear mode. FIG. 6 shows the drain current as a function of the drain voltage for a DDC transistor, curve 605, and a conventional transistor, curve 610. As shown in FIG. 6, the DDC transistor drain current is 1.5-2 times the drain current of the conventional transistor when the transistor is operating in the linear mode and reduced VGS, which may occur due to the circuit operating at reduced VDD. The drain to source voltage on NMOS pull-down transistors of the SRAM cell is low during a read operation as it is obtained from the resistor divider ratio between the pull-down and the pass-gate transistors when the word line WL and the bit line BL are both at a high voltage level VDD. Therefore, these transistors operate in the linear region during a read operation. Typically, the drain to source voltage for the NMOS pull-down transistor can be approximately 0.1 Volts. The NMOS pass-gate transistor connected to the NMOS pull-down transistor is operating is in saturation during the signal generation portion of the read operation, and therefore, does not benefit from this enhanced current drive capability. However, the NMOS pass-gate transistor has an increased body bias voltage that results from the rise in the storage node voltage during the read operation. Therefore, the enhanced body coefficient of the DDC transistor results in a NMOS pass-gate transistor with reduced current drive capability. The combination of the enhanced drive capability of the pull down transistor, and the reduced drive capability of the pass-gate transistor result in an increased read SNM and increased cell stability. This is evident qualitatively by the better voltage divider ratio obtained by weakening the pass-gate and strengthening the pull-down NMOS transistors, respectively. The increase in the read SNM and cell stability can be determined from butterfly curves obtained from SPICE simulations of the SRAM cell using DDC transistors, as described in the discussion corresponding to FIG. 5.


As discussed above, DDC transistors having a screening region have enhanced threshold voltage matching, in addition to having an enhanced body coefficient. Therefore, SRAMs using DDC transistors have reduced threshold voltage variations between the transistors used in different cells of the SRAM, as well as between the transistors used within a particular SRAM cell. An SRAM cell using DDC transistors also has increased read SNM and cell stability as a result of the reduced threshold voltage variations. Reduction of threshold voltage variation between the pass-gate transistors and the pull-down transistors within an SRAM cell contributes in part to the increase in read SNM. In addition, reduction in the threshold voltage variations of PMOS transistors in SRAM cells also contributes to the increase in read SNM, as well as less variability in write margin, i.e., an increase in worst-case as fabricated write margin.



FIG. 7A shows butterfly curves illustrating the read SNM for an SRAM cell using conventional transistors in the presence of the threshold voltage variations that can normally occur when the integrated circuit is fabricated. The voltage transfer curve families 710 and 715 that together make up the butterfly curves in FIG. 7A are obtained from Monte Carlo simulations performed for an SRAM cell that uses conventional PMOS and NMOS transistors having a low body coefficient. The butterfly curves in FIG. 7A show the results obtained from 4000 Monte Carlo trials performed under read operating conditions, where the word line voltage VWL is at VDD, the bit line voltages BL0 and BLN0 are at VDD and the pull-up power supply voltage VDDCOL0 is at VDD. VDD is set to 1 Volt for these simulations. In addition, no body bias in applied to the transistors in the SRAM cell for these simulations. The resulting butterfly curves show the variations in SNM that can be caused by the threshold voltage variations of transistors in 4000 SRAM cells. The resulting SNM is the worst-case SNM obtained by determining the largest box that fits between the butterfly curves. The largest diagonal that fits within the eye of butterfly curves determines the largest box that can fit, represented by diagonal line 705, and the dimensions of the sides of the square corresponding to the largest diagonal is the SNM in Volts. The SNM for the SRAM cell using conventional transistors simulated in FIG. 7A, as measured from the Monte Carlo simulations, is 92 mV.



FIG. 7B shows butterfly curves illustrating the read SNM for a SRAM cell using DDC transistors in the presence of the threshold voltage variations that will occur in the DDC transistors during integrated circuit fabrication. The voltage transfer curve families 725 and 730 that together make up the butterfly curves in FIG. 7B are obtained from Monte Carlo simulations performed for an SRAM cell that uses DDC PMOS and NMOS transistors having an enhanced body coefficient. As described above the DDC transistors also have reduced threshold voltage variations. The butterfly curves in FIG. 7B show the results obtained from 4000 Monte Carlo trials performed under read operating conditions, where the word line voltage VWL is at VDD, the bit line voltage BL0 and BLN0 is at VDD, the pull-up power supply voltage VDDCOL0 is at VDD. VDD is set to 1 volt for these simulations. In addition, no body bias in applied to the DDC transistors in the SRAM cell for these simulations. The DDC transistors used for the simulations in FIG. 7B have a σVT that is half of the conventional transistors used for the simulation in FIG. 7A, i.e., the DDC transistors corresponding to the simulations in FIG. 7B have a threshold voltage variation that is half that of the conventional transistors corresponding to the simulations in FIG. 7A. This reflects the improved variability of the DDC transistors due the improved DDC structure and the order of fabrication steps. The resulting butterfly curves show the variations in SNM that can be caused by the threshold voltage variations of transistors in 4000 SRAM cells. The resulting SNM is determined by the largest box that fits between the eye of the butterfly curves, represented by diagonal line 720, and the dimensions of the sides of the square corresponding to the largest diagonal is the SNM in Volts. The SNM for the SRAM cell simulated in FIG. 7B, as measured from the Monte Carlo simulations, is 127 mV.


The Monte Carlo simulations of FIG. 7A and FIG. 7B show that the SNM of the SRAM cell using DDC transistors is higher than the SNM of the SRAM cell using conventional transistors as a result of the reduced threshold voltage variations. Therefore, the SRAM cell using DDC transistors has greater cell stability as a result of the reduced threshold voltage variations. The increased SNM and cell stability for the SRAM cell using DDC transistors can be measured from the butterfly curves obtained as a result of simulations performed for the SRAM cell.



FIG. 8A shows the write margin for an SRAM cell using conventional transistors in the presence of as-fabricated threshold voltage variations. The write margin is defined as the minimum potential on the bit line, e.g., bit line BL0, which is required to invert the state of the SRAM cell when the bit line is driven slowly or swept down from VDD, i.e., the precharge voltage applied to the SRAM bit line, to VSS. Therefore, a higher write margin indicates that the SRAM cell is easier to write to because the state of the SRAM cell is inverted at a higher bit line voltage. The voltage response curves 805 shown in FIG. 8A are obtained from Monte Carlo simulations performed for an SRAM cell that uses conventional PMOS and NMOS transistors having conventional threshold voltage variability. The voltage response curves show the state of a storage node in the SRAM cell as the bit line voltage is swept from VDD to VSS. The voltage response curves in FIG. 8A show the results obtained from 4000 Monte Carlo trials performed under write operating conditions, where the word line voltage VWL is at VDD, the bit line voltage BLN0 is at VDD, the bit line voltage BL0 is slowly reduced to 0 volts, the pull-up power supply voltage VDDCOL0 is at VDD. VDD is set to 1 volt for these simulations. In addition, no body bias in applied to the transistors in the SRAM cell for these simulations. The resulting voltage response curves show the variations in write margin that can be caused by the threshold voltage variations of transistors in 4000 SRAM cells, by monitoring the cell storage node. The resulting write margin is the worst-case write margin obtained in the presence of the threshold voltage variations. The write margin for the SRAM cell using conventional transistors, as measured from the Monte Carlo simulations, is 52 mV.



FIG. 8B shows the write margin for an SRAM cell using DDC transistors in the presence of threshold voltage variations. The voltage response curves 810 shown in FIG. 8B are obtained from Monte Carlo simulations performed for an SRAM cell that uses DDC PMOS and NMOS transistors having an enhanced body coefficient. As described above the DDC transistors have reduced threshold voltage variations. The voltage response curves in FIG. 8B show the results obtained from 4000 Monte Carlo trials performed under write operating conditions, where the word line voltage VWL is at VDD, the bit line voltage BLN0 is at VDD, the bit line voltage BL0 is slowly reduced to 0 volts, and the pull-up power supply voltage VDDCOL0 is at VDD. VDD is set to 1 volt for these simulations. In addition, no body bias in applied to the DDC transistors in the SRAM cell for these simulations. The DDC transistors used for the simulations in FIG. 8B have a σVT that is half of the conventional transistors used for the simulation in FIG. 8A, i.e., the DDC transistors corresponding to the simulations in FIG. 8B have a threshold voltage variation that is half that of the conventional transistors corresponding to the simulations in FIG. 8A. The resulting voltage response curves show the variations in write margin that can result from the threshold voltage variations of transistors in 4000 SRAM cells. The resulting write margin is the worst-case write margin obtained in the presence of the threshold voltage variations. The write margin for the SRAM cell using DDC transistors, as measured from the Monte Carlo simulations, is 190 mV.


Therefore, the Monte Carlo simulations of FIG. 8A and FIG. 8B show that the write margin of the SRAM cell using DDC transistors is greater than the write margin of the SRAM cell using conventional transistors as a result of the reduced threshold voltage variations. The increased write margin for the SRAM cell using DDC transistors can be measured from the voltage response curves obtained as a result of simulations performed for the SRAM cell. Note that the higher write margin is obtained simultaneously with the higher read SNM shown above, without body bias changes. As shown previously, both read SNM and write margin can be further improved by appropriate manipulation of the body biases during read and write operations.



FIG. 9A shows simulation results for determining the read speed for an SRAM cell using conventional transistors in the presence of threshold voltage variations. The read speed can be primarily due to the bit line slew rate as a bit line voltage transition is triggered by a rising edge of the word line voltage. FIG. 9A shows the results obtained from Monte Carlo simulations using 4000 trials performed under read operating conditions, where the word line voltage VWL is VDD, the bit lines are initially precharged to VDD, and the pull-up power supply voltage is VDD. In addition, VDD is set to 1 Volt, and no body bias is applied to the transistors in the SRAM cell for these simulations. The simulation results show the bit line transition, represented by the group of falling lines 905, which are triggered by the rising edge of the voltage on the word line. The group of rising lines 910 represents the output of an inverter sense amplifier whose input is driven by the falling bit line. The resulting read speed is the worst case read speed obtained in the presence of the threshold voltage variations. The worst-case read speed for the SRAM cell using conventional transistors, as measured from the Monte Carlo simulations, is 530 picoseconds. The worst-case timing sets the speed of the integrated circuit, since it is directly impacted by the SRAM access time.



FIG. 9B shows simulation results for determining the read speed for an SRAM cell using DDC transistors in the presence of threshold voltage variations. FIG. 9B shows the results obtained from Monte Carlo simulations using 4000 trials performed under read operating conditions, where the word line voltage VWL is VDD, the bit line BL0 is initially precharged to VDD, and the pull-up power supply voltage is VDD. In addition, VDD is set to 1 Volt, and no body bias is applied to the transistors in the SRAM cell for these simulations. The simulation results show the bit line transition, represented by the group of falling lines 915, which are triggered by the rising edge of the voltage on the word line. The group of rising lines 920 represents the output of an inverter sense amplifier whose input is driven by the falling bit line. The simulations show that the variation in the bit line transition is significantly reduced as a result of the reduced transistor mismatch of the DDC transistors. In particular, the worst case curve is much closer to the median, which can result in a much faster worst case speed. The read speed of the SRAM cell using DDC transistors is 374 picoseconds.


The Monte Carlo simulations of FIG. 9A and FIG. 9B how that the read speed of the SRAM circuit using cells that in turn use DDC transistors is 42% faster than that of the SRAM circuit using cells that are comprised of conventional transistors as a result of the reduced threshold voltage variation. The increased read speed for the SRAM cell can be measured from the simulations performed for the SRAM cell. Thus, the SRAM cell comprised of DDC transistors has enhanced read stability, write margin, and read speed as compared to the SRAM using cells that are produced with conventional transistors.


The simulation results illustrated in FIGS. 7A, 8A, and 9A are obtained from simulations performed for SRAM cells using 28 nm technology node conventional transistors. It is noted that these simulations results are provided as an example of simulations that can be performed for SRAM cells using conventional transistors fabricated using other technology nodes. For example, similar simulation results can be obtained for simulations performed for SRAM cells using conventional transistors fabricated using other technology nodes, e.g. 65 nm, or 40 nm, etc. Similarly, the simulation results provided in FIGS. 7B, 8B, and 9B are obtained from simulations performed for SRAM cells using 28 nm technology node DDC transistors. It is noted that these simulations results are provided as an example of simulations that can be performed for SRAM cells using DDC transistors fabricated using other technology nodes. For example, similar simulation results can be obtained for simulations performed for SRAM cells using DDC transistors fabricated using other technology nodes, e.g. 65 nm, or 40 nm, etc.


Worst-case as-fabricated read SNM and write margin are typically ensured by choice of the transistor dimensions. For example, the pull-up transistors are generally as small as can be reliably fabricated; the pass-gate transistors are typically narrower and longer than the pull-down transistors to provide the necessary voltage divider ratio for the required read SNM; this in turn necessitates that the pull downs must be wide in comparison with the others. However, it is easier to manufacture transistors that are close in size—ideally all identical in size, particularly in channel length. Thus, the enhanced stability and margins provided by the DDC transistors, as well as the enhanced body coefficient and enhanced threshold voltage variation, can be used to allow design and fabrication of more lithography “friendly” SRAM cells, having substantially less, or no differences in the SRAM cell constituent transistor geometries, while still being stable and write-able. In one embodiment, SRAM cells using DDC transistors can have a cell size that is smaller compared to a cell size of a SRAM cell using conventional transistors having comparable cell stability and write margin. In alternative embodiments, SRAM cells using DDC transistors can have substantially less or no differences in the SRAM constituent transistor geometries (such as drawn transistor length and/or drawn transistor width), and therefore, can be easier to design and fabricate for lithography rules that require all transistors to be drawn to a substantially fixed pitch. The retention voltage can primarily be a function of the PMOS pull-up to NMOS pull-down ratio at reduced VDD (e.g., VDD=retention mode VDD=0.4V). The improved matching of the DDC transistor provides a lower VDD in retain mode without upsetting the cells due to mismatch in the constituent inverters.



FIG. 15 illustrates a layout 1500 of a SRAM cell using DDC transistors that has substantially no jogs or notches in the diffusion area for the DDC NMOS transistors, in accordance with one embodiment. In addition, the layout 1500 has substantially no jogs or notches in the gate layer of the DDC NMOS pull-down transistor and the DDC PMOS pull-up transistor. In layout 1500, the length of the DDC NMOS pull-down transistor is substantially the same as the length of the DDC PMOS pull-up transistor, and the width of the DDC NMOS pull-down transistor is substantially the same the width of the DDC NMOS pass-gate transistor. In one embodiment, the threshold voltage of the DDC NMOS and DDC PMOS transistors in the SRAM cell are selected to have substantially the same value as the corresponding DDC NMOS and DDC PMOS transistors used in logic gates in the same integrated circuit device. In an alternative embodiment, the threshold voltages VTN and VTP for the DDC transistors used in the SRAM cell are optimized to provide predetermined performance characteristics for the SRAM cell, such as, read SNM, write margin, cell leakage current, bit line speed (as measured by slew rate) or read current, and data retention voltage. The process for forming the SRAM cell can determine process parameters for fabricating the SRAM cell corresponding to the layout 1500, which has the selected VTN and VTP. Such process parameters can include the thickness of the blanket epitaxial layer, the position of the screening region, the position of the threshold voltage tuning region, and/or the dopant concentration of the threshold voltage tuning region. Substantially eliminating the jogs or notches in the SRAM cell layout can reduce geometric sources of mismatch between the transistors of the SRAM cell that arise from variation in alignment and additional lithographic effects such as corner rounding. Therefore, reducing these sources of mismatch can provide a SRAM cell with enhanced performance characteristics,


The predetermined cell stability resulting from the enhanced body coefficient for the DDC transistor can be obtained by using a circuit simulation program, such as the BERKELEY-SPICE simulation program, the H-SPICE simulation program, the P-SPICE simulation program, or any other circuit simulation program with similar capabilities using transistor parameters and variations in those parameters that appropriately reflect the as-manufactured transistor variability. The SPICE simulations discussed above with reference to FIGS. 2-5, are examples of how a predetermined cell stability can be obtained from SPICE simulations of the SRAM cell implemented using DDC transistors. In addition, the predetermined cell stability, write margin, and bit line speed in the presence of threshold voltage variations can be obtained from Monte Carlo simulations performed on the SRAM cell. The Monte Carlo simulations discussed above with reference to FIGS. 7A and 7B provide examples for obtaining a predetermined cell stability in the presence of threshold voltage variations. The Monte Carlo simulations discussed above with reference to FIGS. 8A and 8B provide examples for obtaining a predetermined write margin in the presence of threshold voltage variations. The Monte Carlo simulations discussed above with reference to FIGS. 9A and 9B provide examples for obtaining a predetermined bit line speed in the presence of threshold voltage variations.


Referring to FIG. 10, an integrated circuit according to an alternative embodiment is shown in a block diagram and designated by the general reference number 1000. Integrated circuit 1000 is a SRAM device that may include a number of SRAM cells, including SRAM cells arranged in multiple rows and columns. For ease of discussion, only two SRAM cells 1005 and 1010 are illustrated along with the associated power supplies 1015 and 1020 that generate the applied power supply voltages for the SRAM cells. The SRAM cells 1005 and 1010 are implemented using DDC transistors.


In FIG. 10, the SRAM device 1000 can include different DDC PMOS source bias lines 1025-0/1 coupled to the source terminals of the DDC PMOS transistors of the SRAM cells 1005 and 1010, respectively, as illustrated in the figure. Similarly the SRAM device can include different DDC NMOS source bias lines 1030-0/1 coupled to the source terminals of the DDC NMOS transistors of the SRAM cells 1005 and 1010. In addition, the SRAM device 1000 can include different DDC PMOS body bias lines 1035-0/1 and different DDC NMOS body bias lines 1040-0/1 that are coupled to provide body bias voltages to the screening regions of the DDC PMOS and DDC NMOS transistors of the SRAM cells 1005 and 1010, respectively, as illustrated in FIG. 10.


In FIG. 10, each of the power supply blocks (e.g., power supply blocks 1015 and 1020) can couple the source bias lines 1025-0/1 and 1030-0/1, and the body bias lines 1035-0/1 and 1040-0/1 to one or more bias voltages, to thereby place the SRAM cells 1005 and 1010 into different modes of operation. In particular, the DDC PMOS source bias lines 1025-0/1 can be coupled to PMOS source bias voltage VSPbias1 or VSPbias2 as determined by the value of the PMOS source bias control signal VSPSEL. Similarly, the DDC NMOS source bias lines 1030-0/1 can be coupled to NMOS source bias voltage VSNbias1 or VSNbias2 as determined by the value of the NMOS source bias control signal VSNSEL. In addition, the DDC PMOS body bias lines 1035-0/1 can be coupled to PMOS body bias voltage VBPbias1 or VBPbias2 as determined by the value of the PMOS body bias select signal VBPSEL. Further, the DDC NMOS body bias lines 1040-0/1 can be coupled to NMOS body bias voltage VBNbias1 or VBNbias2 as determined by the value of the NMOS body bias select signal VBNSEL.


As illustrated in FIG. 10, embodiments of the SRAM device 1000, can include bias voltage sources and bias voltage networks operable to apply one or more source bias voltages and one or more body bias voltages to the DDC NMOS and DDC PMOS transistors in the SRAM cells. Table I illustrates the various combinations of source bias voltages and body bias voltages that can be applied in various embodiments of the SRAM device 1000.













TABLE I






Apply more
Apply more





than one
than one
Apply more
Apply more



PMOS
NMOS
than one
than one



source bias
source bias
PMOS body
NMOS body


Embodiment
voltage
voltage
bias voltage
bias voltage



















1
Y
Y
Y
Y


2
Y
Y
Y
N


3
Y
Y
N
Y


4
Y
Y
N
N


5
Y
N
Y
Y


6
Y
N
Y
N


7
Y
N
N
Y


8
Y
N
N
N


9
N
Y
Y
Y


10
N
Y
Y
N


11
N
Y
N
Y


12
N
Y
N
N


13
N
N
Y
Y


14
N
N
Y
N


15
N
N
N
Y


16
N
N
N
N









Various SRAM memory embodiments described above have illustrated dynamic source biasing networks, which apply different source bias voltages to the source terminals of the DDC NMOS and DDC PMOS transistors in the SRAM cells. One example of a source bias voltage switching operation is shown in a timing diagram 1100 of FIG. 11A. The timing diagram 1100 can apply to source switching circuits included in the PMOS source power supply blocks 1045-0/1, in accordance with one embodiment.



FIG. 11A includes waveforms 1105, 1110, and 1115 corresponding to the PMOS source bias control signal VSPSEL, a source potential applied to a PMOS dynamic source bias network VVSS, and a word line coupled to an accessed SRAM cell. The PMOS source bias lines 1025-0/1 can be part of one or more PMOS dynamic source bias networks in the SRAM device. For example, in embodiments that sub-divide the SRAM into several groups of SRAM cells, the source bias line 1025-0 can be part of the PMOS dynamic source bias network of one group, and the source bias line 1025-1 can be part of the PMOS dynamic source bias network of a different group.


With reference to FIG. 11A, prior to time t0, VSPSEL and WL can both be inactive (which corresponds to a low voltage level in this example). Consequently, the dynamic source bias network can be coupled to the source bias voltage VSPbias1 and VVSS can be at a first PMOS source bias voltage (VSPbias1), placing the SRAM cell in a first mode. At about time t0, VSPSEL can transition to an active level (which corresponds to a high voltage level in this example). As a result, the dynamic source bias network can be coupled to the source bias voltage VSPbias2 and VVSS be at the second PMOS source bias voltage (VSPbias2), placing the SRAM cell in a second mode. In the embodiment shown, the voltage VSPbias1 is less than the voltage VSPbias2 (e.g., VSPbias1 can be the high voltage level VDD, and VSPbias2 can be a voltage that is higher than VDD).


Referring again to FIG. 11A, at about time t1, after VVSS has been switched to the bias voltage VSPbias2, the word line WL can transition to an active level (which corresponds to a high voltage level in this example). As a result, a row of memory cells coupled to the word line WL can be accessed for either read or write operation. At about time t2, WL can return to an inactive level (which corresponds to a low voltage level in this example), and the row of memory cells coupled to WL are no longer accessed for read or write operations. At about time t3, after WL has returned to an inactive level, the PMOS source bias signal VSPSEL can return to an inactive level (i.e., a low voltage level). As a result the PMOS source bias network can be coupled to the source bias voltage VSPbias1 and VVSS can be at the first PMOS source bias voltage (VSPbias1). In the embodiment shown, the VVSS transition from VSPbias2 to VSPbias1 (which starts at about time t3) is slower than the VVSS transition from VSPbias1 to VSPbias2 (which starts at about time t0). In addition, the voltage at VVSS transitions to the voltage level VSPbias2 within the time interval starting at t0 and ending at t1, before the word line WL transitions to the active level.



FIG. 11B shows a timing diagram 1150 that includes waveforms 1155, 1160, and 1165 corresponding to the NMOS source bias control signal VSNSEL, a source potential applied to a NMOS source bias network VVSS, and a word line coupled to an accessed SRAM cell WL. The NMOS source bias lines 1030-0/1 can be part of one or more NMOS dynamic source bias networks in the SRAM device, e.g., they can be part of the NMOS dynamic source bias networks of different groups of SRAM cell in embodiments that sub-divide the SRAM into multiple groups of SRAM cells. The transitions of these waveforms at times t0, t1, t2, and t3 are similar to the corresponding transitions described with reference to FIG. 11A, except for the fact that the voltage level VSNbias1 is higher than the voltage level VSNbias2. In the embodiment shown in FIG. 11B, the VVSS transition from VSNbias2 to VSNbias1 (which starts at about time t3) is slower than the VVSS transition from VSNbias1 to VSNbias2 (which starts at about time t0). In addition, the voltage at VVSS transitions to the voltage level VSNbias2 within the time interval starting at t0 and ending at t1, before the word line WL transitions to the active level.


Various SRAM memory embodiments described above have illustrated dynamic source biasing networks used in conjunction with dynamic body biasing networks, where the dynamic body biasing networks apply different body bias voltages to the screen regions of the DDC NMOS and DDC PMOS transistors in the SRAM cells. One example of a body bias voltage switching operation is shown in a timing diagram 1200 of FIG. 12A. The timing diagram 1200 can apply to source switching circuits included in the PMOS body bias power supply blocks 1055-0/1, in accordance with one embodiment.



FIG. 12A includes waveforms 1205, 1210, and 1225 corresponding to the PMOS source bias control signal VSPSEL, a source potential applied to a PMOS dynamic source bias network VVSS, and a word line WL coupled to an accessed SRAM cell. In addition, the waveforms 1215 and 1220, corresponding to PMOS body bias control signal VBPSEL and a body bias voltage VBP applied to a PMOS dynamic body bias network. The PMOS source bias lines 1025-0/1 can be part of one or more PMOS dynamic source bias networks in the SRAM device. Similarly, the PMOS body bias lines 1035-0/1 can be part of one or more PMOS dynamic body bias networks in the SRAM device. For example, in embodiments that sub-divide the SRAM into several groups of SRAM cells, the source bias line 1025-0 can be part of the PMOS dynamic source bias network of one group, and the source bias line 1025-1 can be part of the PMOS dynamic source bias network of a different group. Similarly, the body bias line 1035-0 can be part of the PMOS dynamic body bias network of one group, and the body bias line 1035-1 can be part of the PMOS dynamic body bias network of another group.


With reference to FIG. 12A, the waveforms for VSPSEL, VVSS, and WL are similar to the corresponding waveforms for these signals shown in FIG. 11A. In the embodiment shown in FIG. 12A, the operation of these waveforms and the timing relationships between these waveforms is similar to the description of these signals provided above with reference to FIG. 11A.



FIG. 12A also includes a waveform for the PMOS body bias control signal VBPSEL, and a waveform for the PMOS body bias voltage VBP. Prior to time ta, VBPSEL and WL can both be inactive (corresponding to a low voltage level in this example). Consequently, the PMOS dynamic body bias network can be coupled to the PMOS body bias voltage VBPbias1, and VBP can be at a first voltage VBPbias1, placing the SRAM cell in a third mode of operation. At about time ta, a predetermined duration of time prior to VSPSEL transitioning to the active level, VBPSEL can transition to an active level (a high voltage level in the illustrated embodiment). As a result, the PMOS dynamic body bias network can be coupled to the body bias voltage VBPbias2 and VBP can be at the second voltage VBPbias2, placing the SRAM cell in a fourth mode. In the embodiment shown, the voltage VBPbias1 is greater than the voltage VBPbias2, and the SRAM cell can have lower leakage and/or lower performance in the third mode in comparison to the fourth mode.


Referring to FIG. 12A, at about time t3, a predetermined duration of time after WL has returned to the inactive level, VBPSEL can transition to the inactive level. As a result the PMOS dynamic body bias network can be coupled to the body bias voltage VBPbias1 and VBP can be at the first PMOS source bias voltage (VBPbias1). In the embodiment shown, the VBP transition from VBPbias1 to VBPbias2 (which starts at about time ta) is faster than the VBP transition from VBPbias2 to VBPbias1 (which starts at about time t3). However, in alternative embodiments the VBP transition at time ta can be at a rate that is approximately the same or slower than the VBP transition at time t3. In addition, the voltage at VBP transitions to the voltage level VBPbias2 before VSPSEL transitions to the active level, and also before WL transitions to the active level.



FIG. 12B shows a timing diagram 1250 that includes waveforms 1255, 1260, and 1275 corresponding to the NMOS source bias control signal VSNSEL, a source potential applied to a NMOS dynamic source bias network VVSS, and a word line WL coupled to an accessed SRAM cell. In addition, the waveforms 1265 and 1270, corresponding to NMOS body bias control signal VBNSEL and a body bias voltage applied to a NMOS dynamic body bias network VBN. The NMOS source bias lines 1030-0/1 can be part of one or more NMOS dynamic source bias networks in the SRAM device. Similarly, the NMOS body bias lines 1040-0/1 can be part of one or more NMOS dynamic body bias networks in the SRAM device. For example, 1030-0 and 1030-1 (and similarly 1040-0 and 1040-1) can be part of the bias networks of different groups of SRAM cell in embodiments that sub-divide the SRAM into multiple groups of SRAM cells. The transitions of these waveforms at times ta, t0, t1, t2, and t3 are similar to the corresponding transitions described with reference to FIG. 12A, except for the fact that the voltage level VBNbias1 is higher than the voltage level VBNbias2. In the embodiment shown, the VBN transition from VBNbias1 to VBNbias2 (which starts at about time ta) is faster than the VBN transition from VBNbias2 to VBNbias1 (which starts at about time t3). However, in alternative embodiments the VBN transition at time ta can be at a rate that is approximately the same or slower than the VBN transition at time t3. In addition, the voltage at VBN transitions to the voltage level VBNbias2 before VSNSEL transitions to the active level, and also before WL transitions to the active level.


In embodiments shown above, groups of memory cells may switch between modes by controlling source switching circuits and/or body bias switch circuits. In some embodiments, such circuits may be controlled in response to a decoded address. Further, a decoding path for activating source switching or body bias switching may be faster than decode paths for accessing memory cells (such as decode paths to word lines). A particular embodiment showing such a decoding arrangement is shown in FIG. 13.


Referring now to FIG. 13, a decoding circuit according to an embodiment is shown in block schematic diagram and designated by the general reference character 1300. A decoding circuit 1300 may include a pre-decode section 1364 and a standard decode section 1366. Decoding circuit 1300 may also include a “fast” source decode section 1368 and/or a “fast” body bias decode section 1370. It is understood that in embodiments having only dynamic source switching, a body bias decode section 1370 may not be included. Similarly, in embodiments having only dynamic body bias switching, a source decode section 1368 may not be included.


A pre-decode section 1364 may receive address values (ADD), and in response, activate pre-decode signals PRED. In the embodiment shown, pre-decode signals PRED may be applied to standard decode section 1366, applied to “fast” source decode section 1368 (if included), and applied to “fast” body bias decode section 1370 (if included).


Standard decode section 1366 may include local decoders 1372 that activate particular word line select signals (WL_SEL) according to pre-decode signals PRED. In response to word lines select signals WL_SEL, a word line may be activated by a word line driver circuit 1374.


Source decode section 1368 may receive pre-decode signals PRED and provide source select signals (SSELs). Source decode section 1368 may activate one or more source select signals (SSELs), but not all such source select signals according to pre-decode signals PRED. A source decode section 1368 may provide a faster decode operation than standard decode section 1366, activating a source select signal(s) before a word line is activated. It is noted that source decode section 1368 may receive different pre-decode signals than standard decode section 1366, or a subset of the pre-decode signals received by standard decode section 1366. When activated, each source select signal (SSELs) may activate a corresponding one of source switches 1316, for NMOS and/or PMOS devices.


In a similar fashion, body bias decode section 1370 may receive pre-decode signals PRED and provide body bias select signals (BSELs). Body bias decode section 1370 may activate one or more body bias select signals (BSELs), but not all such source select signals, according to pre-decode signals PRED. As in the case of the source decode section 1368, body bias decode section may provide a faster decode operation than standard decode section 1366. Body bias decode section 1370 may also receive different pre-decode signals than standard decode section 1366. When activated, each body bias select signal (SSELs) may activate a corresponding one of body bias switches 1358 for NMOS and/or PMOS devices.


In this way, a memory device may include a source select decode path and/or body bias decode path that is faster than a standard decode path for a word line, or the like.


While selection signals for applying source and/or bias voltages may be generated in various ways, in particular embodiments group select signals may be utilized to generate source bias and/or body bias select signals. A particular embodiment showing such a selection arrangement is shown in FIG. 14.


Referring now to FIG. 14, a memory device according to one embodiment is shown in block schematic diagram and designated by the general reference character 1400. A memory device 1400 may include a memory cell group 1402, a pre-decode section 1464, word line decoder 1474, select circuits 1476, and group select decoders 1478.


The pre-decode section may receive address values (ADD), and in response, activate pre-decode signals PRED that are coupled to the word line decoder 1474 and the group select decoder 1478. The word line decoder 1474 can include decode logic that activates particular word lines according to the pre-decode signals PRED.


The memory cell group 1402 may include memory cells arranged into multiple rows, each row being accessed by activation of a corresponding word line. In addition, memory cells of memory cell group 1402 may each have a source connection and/or a body connection to enable the memory cells to be dynamically biased.


The group select decoder 1478 can receive the predecode signal PRED, and in response, generate group select signals that select one or more cell groups in the memory device 1400. In one embodiment, group select decoder 1478 can receive different pre-decode signals than the word line decoder 1474, or it can receive a subset of the predecode signals received by the word line decoder 1474. The group select decoder 1478 can provide a faster decode than the word line decoder 1474, thereby activating the group select signals GSEL a predetermined duration of time before a word line is activated.


Select circuits 1476 may apply different bias voltages to memory cells of cell group 1402 in response to the group select signals GSEL. In some embodiments, select circuits 1476 may include source switch circuits, body bias switch circuits, or combinations thereof as shown in other embodiments, or equivalents. In one, the select circuits 1476 can apply different power supply and/or body bias voltages for each column of the group depending on whether at least one SRAM cell in the column of the group is being accessed for a read operation (read mode), or at least one SRAM cell in the column of the group is being accessed for a write operation (write mode), or none of the SRAM cells in the group are being accessed for either read or write operation (standby mode). For example, the select circuits 1476 can apply one value of body bias voltage for a column of the group that is being accessed for a write operation (i.e., at least one SRAM cell in the column is being accessed for a write operation), and a different value of body bias voltage for other columns in the group that not being accessed for a write operation. Similarly, the select circuits 1476 can apply one value of power supply voltage for a column of the group that is being accessed for a read operation, and a different value of body bias voltage for other columns in the group that are not being accessed for a read operation. The values of the body bias voltage and the power supply voltage for each column of the group can be selected independently of each other.


The group select signals (GSEL) can have a smaller granularity than a cell group. For example, the group select signals can select one or more columns within the cell group in embodiments where the select circuits 1476 apply different body bias voltages and different power supply voltages to the columns within the cell group.


Together the structures and methods of making the structures described above allow for DDC transistors having an enhanced body coefficient as compared to conventional nanoscale devices. Thus, the response of the DDC transistor can vary within a wider range to a change in the body bias voltage applied to the screening region. More specifically, the enhanced body coefficient of the DDC transistor can allow a broad range of ON-current and the OFF-current that depends on the body bias voltage applied to the screening region, as compared to the body bias voltage applied to a conventional device. In addition, the DDC transistors have a lower σVT than conventional devices. The lower σVT provides a lower minimum operating voltage VDD and a wider range of available nominal values of VT. The enhanced body coefficient of the DDC transistor can also allow a broad range of threshold voltage that depends on the body bias voltage applied to the screening region, as compared to the body bias voltage applied to a conventional device. The screening region allows effective body biasing for enhanced control of the operating conditions of a device or a group of devices to be set by controlling the applied body bias voltage. In addition, different operating conditions can be set for devices or groups of devices as result of applying different body bias voltages.


As discussed with reference to the various embodiments above, the performance of an SRAM cell using DDC transistors can be modified by applying different bias voltages to the screening regions of the DDC NMOS transistors, and/or the DDC PMOS transistors of the SRAM cell. Therefore, SRAM cells using DDC transistors can be advantageously used in System-on-Chip (SOC) devices that include a number of different SRAMs with different performance targets. If SRAM cells using conventional transistors are used in such SOC devices, then SRAMs using different performance targets can be obtained by using additional threshold voltage set masks during fabrication to set different threshold voltages for the transistors used in the SRAM cell (typically done when the same SRAM cell design is used to obtain the different performance targets), or by using different SRAM cell designs that use differently sized transistors to obtain the different performance targets, or by using a combination of these two approaches. However, multiple SRAMs with different performance characteristics can be obtained using the same SRAM cell when it is implemented using DDC transistors, because the performance of the different SRAMs can be adjusted by applying different screening region bias voltages to the DDC transistors of the SRAM cells. Thus, a predetermined screening region bias voltage can be applied to the DDC transistors of the SRAM cell obtain a specified target performance, without using additional threshold voltage set masks and the additional process steps for setting different threshold voltages. In one embodiment, a deep N-well can be used to isolate each SRAM array from other SRAM arrays so that different body bias voltages can be applied to each SRAM array. In another embodiment, the threshold voltage of the base SRAM (i.e., the SRAM cell that does not use screening region bias voltages) is set at a higher value, and only forward bias voltages are generated for the screening region bias voltages to obtain the SRAM having different performance targets. In alternative embodiments both forward and reverse body bias voltages can be used as the screening region bias voltages.


Embodiments of the integrated circuit devices described herein can include devices that use both DDC transistors and legacy transistors. A process flow for forming such embodiments can include the process flow described with reference to FIG. 1B above, where some implants can be selectively masked over certain devices (e.g. the non-DDC transistors) that do not need the implants associated with DDC transistors. Such integrated circuit embodiments can also include hybrid SRAM cells that use both DDC transistors and legacy transistors. For example, a hybrid SRAM cell can use pair of legacy PMOS transistors as pull-up transistors, a pair of DDC NMOS transistors as pull-down transistors, and a pair of DDC pass gate transistors as pass-gate transistors.


The hybrid SRAM cell embodiments can have enhanced performance characteristics because of the DDC NMOS transistor characteristics. The DDC NMOS transistors can exhibit a higher current drive as compared to conventional MOSFETs, when a low voltage is being applied to the gate and the drain to source voltage is less than VGS-VT of the transistor, i.e., such that the transistor is operating in the linear region. The drain to source voltage on DDC NMOS pull-down transistors of the hybrid SRAM cell is diminished during a read operation, e.g., at full VDD=1.0 V, this voltage VCN can be lower than 0.2 V in certain embodiments. This voltage can be lower than 0.1 volts in certain alternative embodiments or at reduced VDD operation. Therefore, the higher current drive of the DDC NMOS transistors contributes to an enhanced Read SNM. In addition, during read operations, the DDC NMOS pass gate transistor of the hybrid SRAM cell has an increased body bias voltage that results from the rise in the storage node voltage during the read operation. Therefore, the enhanced body coefficient of the DDC NMOS transistor results in a DDC NMOS pass gate transistor with reduced current drive capability. The combination of the enhanced drive capability of the pull down transistor, and the reduced drive capability of the pass gate transistor results in an increased read SNM and increased cell stability. This is evident qualitatively from the better voltage divider ratio obtained by weakening the pass gate DDC NMOS transistor and strengthening the pull down DDC NMOS transistor, respectively, since the current drive is not reduced on a write, when the bit line BL is driven to or near VSS to write the cell. Thus, the hybrid SRAM cells using DDC NMOS pass-gate and DDC NMOS pull-down transistors can provide increased read SNM, and therefore, a lower read failure rate. In addition, since the DDC NMOS transistors have a lower variability of threshold voltage, i.e., lower σVT and lower AVT, the hybrid SRAM cells can have a lower VDDmin than a conventional SRAM cell that uses similarly sized conventional NMOS and PMOS transistors. In one embodiment, the hybrid SRAM cells can have a VDDmin of approximately 0.5 volts. In alternative embodiments, the hybrid SRAM cells can have a VDDmin approximately within a range of 0.35 volts to 0.5 volts.


It is noted from the description above that the DDC transistors provides an SRAM cell having an enhanced read SNM and an enhanced write margin (as shown by reduced write SNM), such that the SRAM cell has enhanced stability during read operations, and simultaneously has reduced stability during write operations that may optionally be manipulated by the designer by modulating the power supply and body bias voltages. The DDC transistors also provide an SRAM cell that has an enhanced read SNM as a result of the enhanced body coefficient and reduced threshold voltage variations, and a higher write margin as a result of the reduced threshold voltage variations.


It is understood that memory devices as shown herein, and equivalents may form an embedded memory in a larger integrated circuit and/or a standalone memory device. It is also understood that even though the foregoing discussion of exemplary embodiments has referred to SRAM cell using six transistors, it is also applicable to other SRAM cell designs. For example the foregoing discussion is also applicable to multi-ported SRAM cells having more than two pass-gate transistors. It is also applicable to SRAM cell designs that employ more than six transistors.


Still further, while the various embodiments have shown transistors arranged into memory cells, other embodiments may include different circuit types with transistors having sources and/or bodies dynamically biased as described herein. As but one example, alternate embodiments may include groups of logic cells formed with transistors in place of, or in addition to, memory cells, where such logic cell groups may be separately operated in two or more different modes with dynamic source and/or body biasing. Such logic cells may be connected to one another with metallization layers, a portion of which may form a source bias network and/or connections to drive well taps.


As another embodiment, custom logic may be designed having a source bias network and/or body bias connections as described herein. Such custom logic may be broken into sections that are dynamically biased.


In still another embodiment, a programmable logic device may have programmable logic circuit groups with transistors having dynamic source and/or body biasing as described herein. In a very particular programmable logic embodiment, such dynamically biased programmable logic transistors may be formed in conjunction with memory cells as described herein, with memory cells storing configuration data for establishing the operation of the programmable logic transistors.


Digital circuits according to the embodiments shown herein, and equivalents, may provide improved performance over conventional circuits by operating with transistors (e.g. DDC transistors) having lower threshold voltage variability. Possible improvements may include faster signal propagation times, as noted above. In addition, such improved performance can be obtained either with the application of a body bias voltage, or without the application of a body bias voltage.


Improved performance can translate into reductions in device size. For example, digital circuit transistors can be sized with respect to one another to achieve a particular response. Such sizing can take into account the enhanced body coefficient, and the enhanced threshold voltage variation of the DDC transistor. Because DDC transistors have lower threshold voltage variation, a lesser sizing margin can achieve a desired response with a smaller cell than would be required with conventional devices. As but one very particular example, SRAM cells can have a predetermined sizing between pass-gate transistors and pull-up transistors. SRAM cells using DDC transistors, in accordance with the embodiments described above can lower a relative sizing between these transistors relative to comparable SRAM cell using conventional transistors. As SRAM cells can be repeated thousands, or even millions of times in an integrated circuit, such reductions in size can extend the expected limits of size and/or performance presented by SRAM cells using conventional transistors.


In addition, such improvements may include lower operating voltages. It is noted that even though certain values of voltages have been provided in the context of the embodiments discussed above, alternate embodiments can use values of voltages that are different from the ones disclosed above. For example, in certain embodiments SRAM cells using DDC transistors can use power supply voltages that are lower than 1 Volt, e.g., 0.5 Volts. Since the DDC NMOS and DDC PMOS transistors have a lower variability of threshold voltage, i.e., lower σVT and lower AVT, the SRAM cells using DDC transistors can have a lower VDDmin than a conventional SRAM cell that uses similarly sized conventional NMOS and PMOS transistors. In one embodiment, the SRAM cells using DDC transistors can have a VDDmin of approximately 0.5 volts. In alternative embodiments, the SRAM cells using DDC transistors can have a VDDmin approximately within a range of 0.35 volts to 0.5 volts.


Various methods in accordance with the embodiments described above can be used to generate an optimized migrated SRAM cell based on a source SRAM cell, where the migrated SRAM cell uses DDC transistors and the source SRAM cell uses conventional MOSFETs, e.g., MOSFETs having dopants in the channel and/or halo implants. Such methods can be used to generate an optimized migrated SRAM cell based on the source SRAM cell, where the migrated SRAM cell is designed to be a drop-in replacement for the source SRAM cell. In one embodiment, the migrated SRAM cell can have the same area as the source SRAM cell, and each of the DDC transistors in the migrated SRAM cell can have the same size as the corresponding transistor in the source SRAM cell. In alternative embodiments, the migrated SRAM cell can be fabricated without making any modifications to the Graphic Data System (GDS) format information corresponding to the source SRAM cell. In other embodiments, the migrated SRAM cell can be fabricated using the same GDS format information as the source SRAM cell but the GDS information can be resized to produce the master or direct write information for the migrated SRAM cell. Similarly, a hybrid SRAM cell can also be generated as the optimized migrated SRAM cell, where the generated hybrid SRAM is a drop-in replacement of the source SRAM cell and uses transistors that have approximately the same size, or where the hybrid SRAM cell can be fabricated without making any modifications to the GDS format information of the source SRAM cell or making no modification other than resizing the GDS format information. In certain embodiments, the migrated cell can be smaller and/or have dimensions and layout that make it more lithography friendly, i.e., easier to fabricate at high yield. In other embodiments, the transistors of the migrated SRAM cell can use metal gates having a work function that is the same as the work function of the metal gates used for the conventional transistors of the source SRAM cell.


It should be appreciated that in the foregoing description of exemplary embodiments of the invention, various features of the invention are sometimes grouped together in a single embodiment, figure, or description thereof for the purpose of streamlining the disclosure aiding in the understanding of one or more of the various inventive aspects. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed invention requires more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment. Thus, the claims following the detailed description are hereby expressly incorporated into this detailed description, with each claim standing on its own as a separate embodiment of this invention.


It is also understood that the embodiments of the invention may be practiced in the absence of an element and/or step not specifically disclosed. That is, an inventive feature of the invention may be elimination of an element.


Accordingly, while the various aspects of the particular embodiments set forth herein have been described in detail, the present invention could be subject to various changes, substitutions, and alterations without departing from the spirit and scope of the invention.

Claims
  • 1. An integrated circuit comprising: multiple static random access memory (SRAM) cells, each SRAM cell having at least two pull-up transistors, at least two pull-down transistors, and at least two pass-gate transistors, each of the transistors having a gate;at least one of the pull-up transistors, the pull-down transistors, or the pass-gate transistors having a screening region positioned a distance below the gate and separated from the gate by a semiconductor layer, the screening region having a concentration of screening region dopants, the concentration of screening region dopants being higher than a concentration of dopants in the semiconductor layer, the screening region providing an enhanced body coefficient for the pull-down transistors and the pass-gate transistors to increase the read static noise margin for the SRAM cell when a bias voltage is applied to the screening region; anda bias voltage network operable to apply one bias voltage to the SRAM cell that is being accessed for a read operation and the other bias voltage to the other SRAM cells that are being not accessed for the read operation.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 14/455,892 filed on Aug. 9, 2014 which is a continuation application of U.S. patent application Ser. No. 13/471,353 filed on May 14, 2012, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/486,051 filed on May 13, 2011, the contents of which are incorporated by reference herein.

US Referenced Citations (514)
Number Name Date Kind
3958266 Athanas May 1976 A
4000504 Berger Dec 1976 A
4021835 Etoh May 1977 A
4242691 Kotani Dec 1980 A
4276095 Beilstein, Jr. Jun 1981 A
4315781 Henderson Feb 1982 A
4518926 Swanson May 1985 A
4559091 Allen Dec 1985 A
4578128 Mundt Mar 1986 A
4617066 Vasudev Oct 1986 A
4662061 Malhi May 1987 A
4761384 Neppl Aug 1988 A
4780748 Cunningham Oct 1988 A
4819043 Yazawa Apr 1989 A
4885477 Bird Dec 1989 A
4908681 Nishida Mar 1990 A
4945254 Robbins Jul 1990 A
4956311 Liou Sep 1990 A
5034337 Mosher Jul 1991 A
5144378 Hikosaka Sep 1992 A
5156989 Williams Oct 1992 A
5156990 Mitchell Oct 1992 A
5166765 Lee Nov 1992 A
5208473 Komori May 1993 A
5294821 Iwamatsu Mar 1994 A
5298763 Shen Mar 1994 A
5369288 Usuki Nov 1994 A
5373186 Schubert Dec 1994 A
5384476 Nishizawa Jan 1995 A
5426328 Yilmaz Jun 1995 A
5444008 Han Aug 1995 A
5552332 Tseng Sep 1996 A
5559368 Hu Sep 1996 A
5608253 Liu Mar 1997 A
5622880 Burr Apr 1997 A
5624863 Helm Apr 1997 A
5625568 Edwards Apr 1997 A
5641980 Yamaguchi Jun 1997 A
5663583 Matloubian Sep 1997 A
5712501 Davies Jan 1998 A
5719422 Burr Feb 1998 A
5726488 Watanabe Mar 1998 A
5726562 Mizuno Mar 1998 A
5731626 Eaglesham Mar 1998 A
5736419 Naem Apr 1998 A
5753555 Hada May 1998 A
5754826 Gamal May 1998 A
5756365 Kakumu May 1998 A
5763921 Okumura Jun 1998 A
5780899 Hu Jul 1998 A
5847419 Imai Dec 1998 A
5856003 Chiu Jan 1999 A
5861334 Rho Jan 1999 A
5877049 Liu Mar 1999 A
5885876 Dennen Mar 1999 A
5889315 Farrenkopf Mar 1999 A
5895954 Yasumura Apr 1999 A
5899714 Farremkopf May 1999 A
5918129 Fulford Jun 1999 A
5923067 Voldman Jul 1999 A
5923987 Burr Jul 1999 A
5936868 Hall Aug 1999 A
5946214 Heavlin Aug 1999 A
5985705 Seliskar Nov 1999 A
5989963 Luning Nov 1999 A
6001695 Wu Dec 1999 A
6020227 Bulucea Feb 2000 A
6043139 Eaglesham Mar 2000 A
6060345 Hause May 2000 A
6060364 Maszara May 2000 A
6066533 Yu May 2000 A
6072217 Burr Jun 2000 A
6087210 Sohn Jul 2000 A
6087691 Hamamoto Jul 2000 A
6088518 Hsu Jul 2000 A
6091286 Blauschild Jul 2000 A
6096611 Wu Aug 2000 A
6103562 Son Aug 2000 A
6121153 Kikkawa Sep 2000 A
6147383 Kuroda Nov 2000 A
6153920 Gossmann Nov 2000 A
6157073 Lehongres Dec 2000 A
6175582 Naito Jan 2001 B1
6184112 Maszara Feb 2001 B1
6190979 Radens Feb 2001 B1
6194259 Nayak Feb 2001 B1
6198157 Ishida Mar 2001 B1
6218892 Soumyanath Apr 2001 B1
6218895 De Apr 2001 B1
6221724 Yu Apr 2001 B1
6229188 Aoki May 2001 B1
6232164 Tsai May 2001 B1
6235597 Miles May 2001 B1
6245618 An Jun 2001 B1
6268640 Park Jul 2001 B1
6271070 Kotani Aug 2001 B2
6271551 Schmitz Aug 2001 B1
6288429 Iwata Sep 2001 B1
6297132 Zhang Oct 2001 B1
6300177 Sundaresan Oct 2001 B1
6313489 Letavic Nov 2001 B1
6319799 Ouyang Nov 2001 B1
6320222 Forbes Nov 2001 B1
6323525 Noguchi Nov 2001 B1
6326666 Bernstein Dec 2001 B1
6335233 Cho Jan 2002 B1
6358806 Puchner Mar 2002 B1
6380019 Yu Apr 2002 B1
6391752 Colinge May 2002 B1
6426260 Hshieh Jul 2002 B1
6426279 Huster Jul 2002 B1
6432754 Assaderaghi Aug 2002 B1
6444550 Hao Sep 2002 B1
6444551 Ku Sep 2002 B1
6449749 Stine Sep 2002 B1
6461920 Shirahata Oct 2002 B1
6461928 Rodder Oct 2002 B2
6472278 Marshall Oct 2002 B1
6482714 Hieda Nov 2002 B1
6489224 Burr Dec 2002 B1
6492232 Tang Dec 2002 B1
6500739 Wang Dec 2002 B1
6503801 Rouse Jan 2003 B1
6503805 Wang Jan 2003 B2
6506640 Ishida Jan 2003 B1
6518623 Oda Feb 2003 B1
6521470 Lin Feb 2003 B1
6534373 Yu Mar 2003 B1
6541328 Whang Apr 2003 B2
6541829 Nishinohara Apr 2003 B2
6548842 Bulucea Apr 2003 B1
6551885 Yu Apr 2003 B1
6552377 Yu Apr 2003 B1
6560139 Ma May 2003 B2
6573129 Hoke Jun 2003 B2
6576535 Drobny Jun 2003 B2
6600200 Lustig Jul 2003 B1
6620671 Wang Sep 2003 B1
6624488 Kim Sep 2003 B1
6627473 Oikawa Sep 2003 B1
6630710 Augusto Oct 2003 B1
6660605 Liu Dec 2003 B1
6662350 Fried Dec 2003 B2
6667200 Sohn Dec 2003 B2
6670260 Yu Dec 2003 B1
6693333 Yu Feb 2004 B1
6697978 Bear Feb 2004 B1
6730568 Sohn May 2004 B2
6737724 Hieda May 2004 B2
6743291 Ang Jun 2004 B2
6743684 Liu Jun 2004 B2
6751519 Satya Jun 2004 B1
6753230 Sohn Jun 2004 B2
6760900 Rategh Jul 2004 B2
6770944 Nishinohara Aug 2004 B2
6787424 Yu Sep 2004 B1
6797553 Adkisson Sep 2004 B2
6797602 Kluth Sep 2004 B1
6797994 Hoke Sep 2004 B1
6808004 Kamm Oct 2004 B2
6808994 Wang Oct 2004 B1
6813750 Usami Nov 2004 B2
6821825 Todd Nov 2004 B2
6821852 Rhodes Nov 2004 B2
6822297 Nandakumar Nov 2004 B2
6831292 Currie Dec 2004 B2
6835639 Rotondaro Dec 2004 B2
6852602 Kanzawa Feb 2005 B2
6852603 Chakravarthi Feb 2005 B2
6881641 Wieczorek Apr 2005 B2
6881987 Sohn Apr 2005 B2
6891439 Jachne May 2005 B2
6891745 Liaw May 2005 B2
6893947 Martinez May 2005 B2
6900519 Cantell May 2005 B2
6901564 Stine May 2005 B2
6916698 Mocuta Jul 2005 B2
6917237 Tschanz Jul 2005 B1
6927463 Iwata Aug 2005 B2
6928128 Sidiropoulos Aug 2005 B1
6930007 Bu Aug 2005 B2
6930360 Yamauchi Aug 2005 B2
6957163 Ando Oct 2005 B2
6963090 Passlack Nov 2005 B2
6995397 Yamashita Feb 2006 B2
7002214 Boyd Feb 2006 B1
7008836 Algotsson Mar 2006 B2
7013359 Li Mar 2006 B1
7015546 Herr Mar 2006 B2
7015741 Tschanz Mar 2006 B2
7022559 Barnak Apr 2006 B2
7036098 Eleyan Apr 2006 B2
7038258 Liu May 2006 B2
7039881 Regan May 2006 B2
7045456 Murto May 2006 B2
7057216 Ouyang Jun 2006 B2
7061058 Chakravarthi Jun 2006 B2
7064039 Liu Jun 2006 B2
7064399 Babcock Jun 2006 B2
7071103 Chan Jul 2006 B2
7078325 Curello Jul 2006 B2
7078776 Nishinohara Jul 2006 B2
7089513 Bard Aug 2006 B2
7089515 Hanafi Aug 2006 B2
7091093 Noda Aug 2006 B1
7105399 Dakshina-Murthy Sep 2006 B1
7109099 Tan Sep 2006 B2
7119381 Passlack Oct 2006 B2
7122411 Mouli Oct 2006 B2
7127687 Signore Oct 2006 B1
7132323 Haensch Nov 2006 B2
7169675 Tan Jan 2007 B2
7170120 Datta Jan 2007 B2
7176137 Perng Feb 2007 B2
7186598 Yamauchi Mar 2007 B2
7189627 Wu Mar 2007 B2
7199430 Babcock Apr 2007 B2
7202517 Dixit Apr 2007 B2
7208354 Bauer Apr 2007 B2
7211871 Cho May 2007 B2
7221021 Wu May 2007 B2
7221581 Jacquet May 2007 B2
7223646 Miyashita May 2007 B2
7226833 White Jun 2007 B2
7226843 Weber Jun 2007 B2
7230680 Fujisawa Jun 2007 B2
7235822 Li Jun 2007 B2
7256639 Koniaris Aug 2007 B1
7259428 Inaba Aug 2007 B2
7260562 Czajkowski Aug 2007 B2
7294877 Rueckes Nov 2007 B2
7297994 Wieczorek Nov 2007 B2
7301208 Handa Nov 2007 B2
7304350 Misaki Dec 2007 B2
7307471 Gammie Dec 2007 B2
7312500 Miyashita Dec 2007 B2
7323754 Ema Jan 2008 B2
7327598 Dang Feb 2008 B2
7332439 Lindert Feb 2008 B2
7348629 Chu Mar 2008 B2
7354833 Liaw Apr 2008 B2
7380225 Joshi May 2008 B2
7398497 Sato Jul 2008 B2
7402207 Besser Jul 2008 B1
7402872 Murthy Jul 2008 B2
7416605 Zollner Aug 2008 B2
7427788 Li Sep 2008 B2
7442971 Wirbeleit Oct 2008 B2
7449733 Inaba Nov 2008 B2
7462908 Bol Dec 2008 B2
7469164 Du-Nour Dec 2008 B2
7470593 Routh Dec 2008 B2
7485536 Jin Feb 2009 B2
7487474 Ciplickas Feb 2009 B2
7491988 Tolchinsky Feb 2009 B2
7494861 Chu Feb 2009 B2
7496862 Chang Feb 2009 B2
7496867 Turner Feb 2009 B2
7498637 Yamaoka Mar 2009 B2
7501324 Babcock et al. Mar 2009 B2
7503020 Allen Mar 2009 B2
7507999 Kusumoto Mar 2009 B2
7514766 Yoshida Apr 2009 B2
7521323 Surdeanu Apr 2009 B2
7531393 Doyle May 2009 B2
7531836 Liu May 2009 B2
7538364 Twynam May 2009 B2
7538412 Schulze May 2009 B2
7562233 Sheng Jul 2009 B1
7564105 Chi Jul 2009 B2
7566600 Mouli Jul 2009 B2
7569456 Ko Aug 2009 B2
7586322 Xu Sep 2009 B1
7592241 Takao Sep 2009 B2
7595243 Bulucea Sep 2009 B1
7598142 Ranade Oct 2009 B2
7605041 Ema Oct 2009 B2
7605060 Meunier-Beillard Oct 2009 B2
7605429 Bernstein Oct 2009 B2
7608496 Chu Oct 2009 B2
7615802 Elpelt Nov 2009 B2
7622341 Chudzik Nov 2009 B2
7638380 Pearce Dec 2009 B2
7642140 Bae Jan 2010 B2
7644377 Saxe Jan 2010 B1
7645665 Kubo Jan 2010 B2
7651920 Siprak Jan 2010 B2
7655523 Babcock Feb 2010 B2
7673273 Madurawe Mar 2010 B2
7675126 Cho Mar 2010 B2
7675317 Perisetty Mar 2010 B2
7678638 Chu Mar 2010 B2
7681628 Joshi Mar 2010 B2
7682887 Dokumaci Mar 2010 B2
7683442 Burr Mar 2010 B1
7688669 McClure Mar 2010 B2
7696000 Liu Apr 2010 B2
7704822 Jeong Apr 2010 B2
7704844 Zhu Apr 2010 B2
7709828 Braithwaite May 2010 B2
7723750 Zhu May 2010 B2
7737472 Kondo Jun 2010 B2
7741138 Cho Jun 2010 B2
7741200 Cho Jun 2010 B2
7745270 Shah Jun 2010 B2
7750374 Capasso Jul 2010 B2
7750381 Hokazono Jul 2010 B2
7750405 Nowak Jul 2010 B2
7750682 Bernstein Jul 2010 B2
7755144 Li Jul 2010 B2
7755146 Helm Jul 2010 B2
7759206 Luo Jul 2010 B2
7759714 Itoh Jul 2010 B2
7761820 Berger Jul 2010 B2
7795677 Bangsaruntip Sep 2010 B2
7802210 Bae Sep 2010 B2
7808045 Kawahara Oct 2010 B2
7808410 Kim Oct 2010 B2
7808804 Kwon Oct 2010 B2
7811873 Mochizuki Oct 2010 B2
7811881 Cheng Oct 2010 B2
7818702 Mandelman Oct 2010 B2
7821066 Lebby Oct 2010 B2
7829402 Matocha Nov 2010 B2
7831873 Trimberger Nov 2010 B1
7846822 Seebauer Dec 2010 B2
7855118 Hoentschel Dec 2010 B2
7859013 Chen Dec 2010 B2
7863163 Bauer Jan 2011 B2
7867835 Lee Jan 2011 B2
7883977 Babcock Feb 2011 B2
7888205 Herner Feb 2011 B2
7888747 Hokazono Feb 2011 B2
7895546 Lahner Feb 2011 B2
7897495 Ye Mar 2011 B2
7906413 Cardone Mar 2011 B2
7906813 Kato Mar 2011 B2
7910419 Fenouillet-Beranger Mar 2011 B2
7919791 Flynn Apr 2011 B2
7920438 Yamaoka Apr 2011 B2
7926018 Moroz Apr 2011 B2
7934181 Hanafi Apr 2011 B2
7935984 Nakano May 2011 B2
7940550 Behera May 2011 B2
7941776 Majumder May 2011 B2
7945800 Gomm May 2011 B2
7948008 Liu May 2011 B2
7952147 Ueno May 2011 B2
7960232 King Jun 2011 B2
7960238 Kohli Jun 2011 B2
7968400 Cai Jun 2011 B2
7968411 Williford Jun 2011 B2
7968440 Seebauer Jun 2011 B2
7968459 Bedell Jun 2011 B2
7989900 Haensch Aug 2011 B2
7994573 Pan Aug 2011 B2
8001493 Joshi Aug 2011 B2
8004024 Furukawa Aug 2011 B2
8012827 Yu Sep 2011 B2
8029620 Kim Oct 2011 B2
8039332 Bernard Oct 2011 B2
8046598 Lee Oct 2011 B2
8048791 Hargrove Nov 2011 B2
8048810 Tsai Nov 2011 B2
8051340 Cranford, Jr. Nov 2011 B2
8053340 Colombeau Nov 2011 B2
8063466 Kurita Nov 2011 B2
8067279 Sadra Nov 2011 B2
8067280 Wang Nov 2011 B2
8067302 Li Nov 2011 B2
8076719 Zeng Dec 2011 B2
8097529 Krull Jan 2012 B2
8103983 Agarwal Jan 2012 B2
8105891 Yeh Jan 2012 B2
8106424 Schruefer Jan 2012 B2
8106481 Rao Jan 2012 B2
8107279 Yamaoka Jan 2012 B2
8110487 Griebenow Feb 2012 B2
8114761 Mandrekar Feb 2012 B2
8119482 Bhalla Feb 2012 B2
8120069 Hynecek Feb 2012 B2
8129246 Babcock Mar 2012 B2
8129797 Chen Mar 2012 B2
8134159 Hokazono Mar 2012 B2
8143120 Kerr Mar 2012 B2
8143124 Challa Mar 2012 B2
8143678 Kim Mar 2012 B2
8148774 Mori Apr 2012 B2
8163619 Yang Apr 2012 B2
8169002 Chang May 2012 B2
8170857 Joshi May 2012 B2
8173499 Chung May 2012 B2
8173502 Yan May 2012 B2
8176461 Trimberger May 2012 B1
8178430 Kim May 2012 B2
8179530 Levy May 2012 B2
8183096 Wirbeleit May 2012 B2
8183107 Mathur May 2012 B2
8185865 Gupta May 2012 B2
8187959 Pawlak May 2012 B2
8188542 Yoo May 2012 B2
8196545 Kurosawa Jun 2012 B2
8201122 Dewey, III Jun 2012 B2
8214190 Joshi Jul 2012 B2
8217423 Liu Jul 2012 B2
8225255 Ouyang Jul 2012 B2
8227307 Chen Jul 2012 B2
8236661 Dennard Aug 2012 B2
8239803 Kobayashi Aug 2012 B2
8247300 Babcock Aug 2012 B2
8255843 Chen Aug 2012 B2
8258026 Bulucea Sep 2012 B2
8266567 El Yahyaoui Sep 2012 B2
8286112 Miranda Oct 2012 B2
8286180 Foo Oct 2012 B2
8288798 Passlack Oct 2012 B2
8296698 Wang Oct 2012 B2
8299562 Li Oct 2012 B2
8324059 Guo Dec 2012 B2
8811068 Clark Aug 2014 B1
9362291 Clark Jun 2016 B1
20010014495 Yu Aug 2001 A1
20010038552 Ishimaru Nov 2001 A1
20020042184 Nandakumar Apr 2002 A1
20030006415 Yokogawa Jan 2003 A1
20030047763 Hieda Mar 2003 A1
20030122203 Nishinohara Jul 2003 A1
20030173626 Burr Sep 2003 A1
20030183856 Wiecczorek Oct 2003 A1
20030215992 Sohn Nov 2003 A1
20040075118 Heinemann Apr 2004 A1
20040075143 Bae Apr 2004 A1
20040084731 Matsuda May 2004 A1
20040087090 Grudowski May 2004 A1
20040126947 Sohn Jul 2004 A1
20040175893 Vatus Sep 2004 A1
20040180488 Lee Sep 2004 A1
20050106824 Alberto May 2005 A1
20050116282 Pattanayak Jun 2005 A1
20050250289 Babcock Nov 2005 A1
20050280075 Ema Dec 2005 A1
20060022270 Boyd Feb 2006 A1
20060049464 Rao Mar 2006 A1
20060068555 Zhu et al. Mar 2006 A1
20060068586 Pain Mar 2006 A1
20060071278 Takao Apr 2006 A1
20060154428 Dokumaci Jul 2006 A1
20060197158 Babcock Sep 2006 A1
20060203581 Joshi Sep 2006 A1
20060220114 Miyashita Oct 2006 A1
20060220731 Taylor Oct 2006 A1
20060223248 Venugopal Oct 2006 A1
20070040222 Van Camp Feb 2007 A1
20070117326 Tan May 2007 A1
20070158790 Rao Jul 2007 A1
20070212861 Chidambarrao Sep 2007 A1
20070238253 Tucker Oct 2007 A1
20080067589 Ito Mar 2008 A1
20080108208 Arevalo May 2008 A1
20080143423 Komatsu Jun 2008 A1
20080158939 Chen Jul 2008 A1
20080169493 Lee Jul 2008 A1
20080169516 Chung Jul 2008 A1
20080197439 Goerlach Aug 2008 A1
20080227250 Ranade Sep 2008 A1
20080237661 Ranade Oct 2008 A1
20080258198 Bojarczuk Oct 2008 A1
20080272409 Sonkusale Nov 2008 A1
20090057746 Sugll Mar 2009 A1
20090108350 Cai Apr 2009 A1
20090134468 Tsuchiya May 2009 A1
20090224319 Kohli Sep 2009 A1
20090302388 Cai Dec 2009 A1
20090309140 Khamankar Dec 2009 A1
20090311837 Kapoor Dec 2009 A1
20090321849 Miyamura Dec 2009 A1
20100012988 Yang Jan 2010 A1
20100038724 Anderson Feb 2010 A1
20100100856 Mittal Apr 2010 A1
20100148153 Hudait Jun 2010 A1
20100149854 Vora Jun 2010 A1
20100187641 Zhu Jul 2010 A1
20100207182 Paschal Aug 2010 A1
20100270600 Inukai Oct 2010 A1
20110059588 Kang Mar 2011 A1
20110073961 Dennard Mar 2011 A1
20110074498 Thompson Mar 2011 A1
20110079860 Verhulst Apr 2011 A1
20110079861 Shifren Apr 2011 A1
20110080202 Moore Apr 2011 A1
20110095811 Chi Apr 2011 A1
20110147828 Murthy Jun 2011 A1
20110169082 Zhu Jul 2011 A1
20110175170 Wang Jul 2011 A1
20110180880 Chudzik Jul 2011 A1
20110193164 Zhu Aug 2011 A1
20110212590 Wu Sep 2011 A1
20110230039 Mowry Sep 2011 A1
20110242921 Tran Oct 2011 A1
20110248352 Shifren Oct 2011 A1
20110294278 Eguchi Dec 2011 A1
20110309447 Arghavani Dec 2011 A1
20120021594 Gurtej Jan 2012 A1
20120034745 Colombeau Feb 2012 A1
20120056275 Cai Mar 2012 A1
20120065920 Nagumo Mar 2012 A1
20120108050 Chen May 2012 A1
20120132998 Kwon May 2012 A1
20120138953 Cai Jun 2012 A1
20120146155 Hoentschel Jun 2012 A1
20120167025 Gillespie Jun 2012 A1
20120187491 Zhu Jul 2012 A1
20120190177 Kim Jul 2012 A1
20120223363 Kronholz Sep 2012 A1
Foreign Referenced Citations (13)
Number Date Country
0274278 Jul 1988 EP
0312237 Apr 1989 EP
0531621 Mar 1993 EP
0683515 Nov 1995 EP
0889502 Jan 1999 EP
1450394 Aug 2004 EP
59193066 Jan 1984 JP
4186774 Mar 1992 JP
8288508 Jan 1996 JP
8153873 Jun 1996 JP
2004087671 Mar 2004 JP
10-0794094 Jul 2003 KR
2011062788 May 2011 WO
Non-Patent Literature Citations (40)
Entry
English Abstract of JP2004087671.
English Abstract of JP4186774.
English Abstract of JP59193066.
English Abstract of JP8153873.
English Abstract of JP8288508.
English Translation of JP8288508.
Abiko, H et al., “A Channel Engineering Combined with Channel Epitaxy Optimization and TED Suppression for 0.15 μm n-n Gate CMOS Technology”, 1995 Symposium on VLSI Technology Digest of Technical Papers, 1995, pp. 23-24.
Chau, R et al., “A 50nm Depleted-Substrate CMOS Transistor (DST)”, Electon Device Meeting 2001, IEDM Technical Digest, IEEE International, 2001, pp. 29.1.1-29.1.4.
Ducroquet, F et al., “Fully Depleted Silicon-On-Insulator nMOSFETs with Tensile Strained High Carbon Content Sil-yCy Channel”, 2006, ECS 210th Meeting, Abstract 1033.
Ernst, T et al., “Nanoscaled MOSFET Transistors on Strained Si, SiGe, Ge Layers: Some Integration and Electrical Properties Features”, 2006, ECS Trans. 2006, vol. 3, Issue 7, pp. 947-961.
Goesele, U et al., “Diffusion Engineering by Carbon in Silicon”, 2000, Mat. Res. Soc. Symp. vol. 610.
Hokazono, A et al., “Steep Channel & Halo Profiles Utilizing Boron-Diffusion-Barrier Layers (Si:C) for 32 nm Node and Beyond”, 2008, 2008 Symposium on VLSI Technology Digest of Technical Papers, pp. 112-113.
Hokazono, A et al., “Steep Channel Profiles in n/pMOS Controlled by Boron-Doped Si:C Layers for Continual Bulk-CMOS Scaling”, 2009, IEDM09-676 Symposium, pp. 29.1.1-29.1.4.
Holland, OW and Thomas, DK “A Method to Improve Activation of Implanted Dopants in SiC” 2001, Oak Ridge National Laboratory, Oak Ridge, TN.
Kotaki, H., et al., “Novel Bulk Dynamic Threshold Voltage MOSFET (B-DTMOS) with Advanced Isolation (SITOS) and Gate to Shallow-Well Contact (SSS-C) Processes for Ultra Low Power Dual Gate CMOS”, 1996, IEDM 96, pp. 459-462.
Lavéant, P. “Incorporation, Diffusion and Agglomeration of Carbon in Silicon”, 2002, Solid State Phenomena, vols. 82-84, pp. 189-194.
Noda, K et al., “A 0.1-μm Delta-Doped MOSFET Fabricated with Post-Low-Energy Implanting Selective Epitaxy”, Apr. 1998, IEEE Transactions on Electron Devices, vol. 45, No. 4, pp. 809-814.
Ohguro, T et al., “An 0.18 μm CMOS for Mixed Digital and Analog Applications with Zero-Volt-Vth Epitaxial-Channel MOSFET's”, Jul. 1999, IEEE Transactions on Electron Devices, vol. 46, No. 7, pp. 1378-1383.
Pinacho, R et al., “Carbon in Silicon: Modeling of Diffusion and Clustering Mechanisms”, Aug. 2002, Journal of Applied Physics, vol. 92, No. 3, pp. 1582-1588.
Robertson, LS et al., “The Effect of Impurities on Diffusion and Activation of Ion Implanted Boron in Silicon”, 2000, Mat. Res. Soc. Symp. vol. 610.
Scholz, R et al, “Carbon-Induced Undersaturation of Silicon Self-Interstitals”, Jan. 1998, Appl. Phys. Lett. 72(2), pp. 200-202.
Scholz, RF et al., “The Contribution of Vacancies to Carbon Out-Diffusion in Silicon”, Jan. 1999, Appl. Phys. Lett., vol. 74, No. 3, pp. 392-394.
Stolk, PA et al., “Physical Mechanisms of Transient Enhanced Dopant Diffusion in Ion-Implanted Silicon”, May 1997, J. Appl. Phys. 81(9), pp. 6031-6050.
Thompson, S et al., “MOS Scaling: Transistor Challenges for the 21st Century”, 1998, Intel Technology Journal Q3 1998, pp. 1-19.
Wann, C. et al., “Channel Profile Optimization and Device Design for Low-Power High-Performance Dynamic-Threshold MOSFET”, 1996, IEDM 96, pp. 113-116.
Werner, P et al., “Carbon Diffusion in Silicon”, Oct. 1998, Applied Physics Letters, vol. 73, No. 17, pp. 2465-2467.
Yan, Ran-Hong et al., “Scaling the Si MOSFET: From Bulk to SOI to Bulk”, Jul. 1992, IEEE Transactions on Electron Devices, vol. 39, No. 7.
Banerjee et al., “Compensating Non-Optical Effects using Electrically-Driven Optical Proximity Correction”, Proc. of SPIE, vol. 7275, 2009.
Cheng et al., “Extremely Thin SOI (ETSOI) CMOS with Record Low Variability for Low Power System-on-Chip Applications”, IEDM 2009, Dec. 2009.
Cheng et al., “Fully Depleted Extremely Thin SOI Technology Fabricated by a Novel Integration Scheme Featuring Implant-Free, Zero-Silicon-Loss, and Faceted Raised Source/Drain”, 2009 Symposium on VLSI Technology Digest of Technical Papers, 2009.
Drennan et al., “Implications of Proximity Effects for Analog Design”, Custom Integrated Circuits Conference, 2006, CICC '06, IEEE,Sep. 10-13, 2006, pp. 169-176.
Hook et al., “Lateral Ion Implant Straggle and Mask Proximity Effect,” IEEE Transactions on Electron Devices, vol. 50, No. 9, Sep. 2003.
Hori et al., “A 0.1 um CMOS with a Step Channel Profile Formed by Ultra High Vacuum CVD and In-Situ Doped Ions”, IEDM 1993, May 12, 1993.
Matsuhashi et al, “High-Performance Double-Layer Epitaxial-Channel PMOSFET Compatible with a Single Gate CMOSFET”, 1996 Symposium on VLSI Technology Digest of Technical Papers, 1996.
Shao et al., “Boron diffusion in silicon: the anomalies and control by point defect engineering”, Materials Science and Engineering R 42 (2003), Nov. 2003, pp. 65-114.
Sheu et al., “Modeling the Well-Edge Proximity Effect in Highly Scaled MOSFETs”, IEEE Transactions on Electron Devices, vol. 53, No. 11, Nov. 2006, pp. 2792-2798.
Komaragiri, R. et al., “Depletion-Free Poly Gate Electrode Architecture for Sub 100 Nanometer CMOS Devices with High-K Gate Dielectrics”, IEEE IEDM Tech Dig., San Francisco CA, 833-836, Dec. 13-15, 2004.
Samsudin, K et al., “Integrating Intrinsic Parameter Fluctuation Description into BSIMSOI to Forecast sub-15 nm UTB SOI based 6T SRAM Operation”, Solid-State Electronics (50), pp. 86-93.
Wong, H et al., “Nanoscale CMOS”, Proceedings of the IEEE, Vo. 87, No. 4, pp. 537-570.
Machine Translation of KR 10-0794094 Submitted herewith.
Related Publications (1)
Number Date Country
20160232964 A1 Aug 2016 US
Provisional Applications (1)
Number Date Country
61486051 May 2011 US
Continuations (2)
Number Date Country
Parent 14455892 Aug 2014 US
Child 15134640 US
Parent 13471353 May 2012 US
Child 14455892 US